Exercises: Matrix Rank

Problem 1. Calculate the rank of the following matrix:

\[
\begin{bmatrix}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2 \\
\end{bmatrix}
\]

Solution. To compute the rank of a matrix, remember two key points: (i) the rank does not change under elementary row operations; (ii) the rank of a row-echelon matrix is easy to acquire. Motivated by this, we convert the given matrix into row echelon form using elementary row operations:

\[
\begin{bmatrix}
0 & 16 & 8 & 4 \\
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
2 & 4 & 8 & 16 \\
16 & 8 & 4 & 2 \\
4 & 8 & 16 & 2 \\
0 & 16 & 8 & 4 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 2 & 4 & 8 \\
0 & -24 & -60 & -126 \\
0 & 0 & 0 & -30 \\
0 & 4 & 2 & 1 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 2 & 4 & 8 \\
0 & 4 & 2 & 1 \\
0 & -24 & -60 & -126 \\
0 & 0 & 0 & -30 \\
\end{bmatrix} \Rightarrow \begin{bmatrix}
1 & 2 & 4 & 8 \\
0 & 4 & 2 & 1 \\
0 & 0 & -48 & -120 \\
0 & 0 & 0 & -30 \\
\end{bmatrix}
\]

As this matrix has 4 non-zero rows, we conclude that the original matrix has rank 4.

Problem 2. Calculate the rank of the following matrix:

\[
\begin{bmatrix}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4 \\
\end{bmatrix}
\]
Solution.

\[
\begin{bmatrix}
4 & -6 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
2 & -3 & 0 \\
-6 & 0 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 9 & -1 \\
0 & 1 & 4
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 0 & 0 \\
0 & 0 & 37/9
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
2 & -3 & 0 \\
0 & -9 & 1 \\
0 & 0 & 37/9 \\
0 & 0 & 0
\end{bmatrix}
\]

Hence, the rank of the original matrix is 3.

Problem 3. Judge whether the following vectors are linearly independent.

\[
\begin{bmatrix}
3 \\
6 \\
12 \\
6 \\
9
\end{bmatrix},
\begin{bmatrix}
0 \\
1 \\
1 \\
0 \\
0
\end{bmatrix},
\begin{bmatrix}
1 \\
0 \\
2 \\
2 \\
1
\end{bmatrix},
\begin{bmatrix}
2 \\
4 \\
4 \\
0 \\
2
\end{bmatrix},
\begin{bmatrix}
1 \\
2 \\
1 \\
2 \\
2
\end{bmatrix},
\begin{bmatrix}
2 \\
4 \\
4 \\
0 \\
1
\end{bmatrix}
\]

If they are not, find the largest number of linearly independent vectors among them.

Solution. This question is essentially asking for the rank of matrix:

\[
\begin{bmatrix}
3 & 0 & 1 & 2 \\
6 & 1 & 0 & 0 \\
12 & 1 & 2 & 4 \\
6 & 0 & 2 & 4 \\
9 & 0 & 1 & 2
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
3 & 0 & 1 & 2 \\
0 & 1 & -2 & -4 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & -2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\Rightarrow
\begin{bmatrix}
3 & 0 & 1 & 2 \\
0 & 1 & -2 & -4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\]

The rank of the matrix is 3. This means that the maximum number of linearly independent vectors is 3. They are the ones that correspond to the non-zero rows of the final matrix:

\[
\begin{bmatrix}
3, 0, 1, 2 \\
6, 1, 0, 0 \\
9, 0, 1, 2
\end{bmatrix}
\]
Problem 4. Prove: if A is not square, then either the row vectors or the column vectors are linearly dependent.

Proof. The maximum number of linearly independent row vectors is the rank of A, while the maximum number of linearly independent column vectors is the rank of A^T. Suppose that A is an $m \times n$ matrix. If $m < n$, then $\text{rank } A^T = \text{rank } A \leq m < n$. Therefore, the column vectors are linearly dependent. Similarly, if $n < m$, then the row vectors are linearly dependent.

Problem 5. Let S be an arbitrary set of vectors in \mathbb{R}^3. Prove that there are at most 3 linearly independent vectors in S.

Proof. Let n be the number of vectors in S. For an $n \times 3$ matrix A where the i-th $(1 \leq i \leq n)$ row is the i-th vector in S. Clearly, $\text{rank } A = \text{rank } A^T \leq 3$. Hence, S can have at most 3 linearly independent vectors.

Problem 6 (Hard). Prove: $\text{rank}(AB) \leq \text{rank} A$.

Proof. Suppose that A is an $m \times n$ matrix, and B an $n \times p$ matrix. Let $d = \text{rank } A$. Without loss of generality, assume that the first d rows of A are linearly independent. Denote the row vectors of A as $r_1, ..., r_m$ in top down order, and the column vectors of B as $c_1, ..., c_p$ in left-to-right order.

We will prove that for any $i \in [d+1, m]$, the i-th row of AB is a linear combination of the first d rows of AB. This, in effect, shows that $\text{rank}(AB) \leq d$.

We know that the first d rows of AB are:

$$v_1 = [r_1 \cdot c_1, r_1 \cdot c_2, ..., r_1 \cdot c_p]$$
$$v_2 = [r_2 \cdot c_1, r_2 \cdot c_2, ..., r_2 \cdot c_p]$$
$$\vdots$$
$$v_d = [r_d \cdot c_1, r_d \cdot c_2, ..., r_d \cdot c_p]$$

while the i-th ($i \in [d+1, m]$) row of AB is:

$$v_i = [r_i \cdot c_1, r_i \cdot c_2, ..., r_i \cdot c_p]$$

Since r_i is a linear combination of $r_1, r_2, ..., r_d$, there exist real values $\alpha_1, ..., \alpha_d$ that (i) are not all zero, and (ii) satisfy:

$$r_i = \sum_{z=1}^{d} \alpha_z r_z$$

This means that for any $j \in [1, p]$, we have

$$r_i \cdot c_j = \sum_{z=1}^{d} \alpha_z (r_z \cdot c_j)$$

This, in turn, indicates that

$$v_i = \sum_{z=1}^{d} \alpha_z v_z$$
namely, v_i is a linear combination of v_1, \ldots, v_d. \hfill \square

Problem 7 (Very Hard). Prove: $\text{rank}(A + B) \leq \text{rank } A + \text{rank } B$.

Proof. Let A, B be $m \times n$ matrices. Construct an $(2m) \times (2n)$ matrix:

$$Q = \begin{bmatrix} A & 0 \\ 0 & B \end{bmatrix}$$

$\text{rank } Q = \text{rank } A + \text{rank } B$ (you can see this by converting Q into row-echelon form).

Also observe that Q has the same rank as

$$\begin{bmatrix} A & 0 \\ A & B \end{bmatrix}$$

which has the same rank as

$$\begin{bmatrix} A & A \\ A & A + B \end{bmatrix}$$

Since the rank of a submatrix cannot exceed the rank of the whole matrix, we know that $\text{rank } (A + B)$ is at most the rank of Q, which as mentioned earlier is $\text{rank } A + \text{rank } B$. \hfill \square