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Enabling Data Integrity Protection in
Regenerating-Coding-Based Cloud Storage:

Theory and Implementation
Henry C. H. Chen and Patrick P. C. Lee

Abstract—To protect outsourced data in cloud storage against corruptions, adding fault tolerance to cloud storage, along with efficient
data integrity checking and recovery procedures, becomes critical. Regenerating codes provide fault tolerance by striping data across
multiple servers, while using less repair traffic than traditional erasure codes during failure recovery. Therefore, we study the problem
of remotely checking the integrity of regenerating-coded data against corruptions under a real-life cloud storage setting. We design and
implement a practical data integrity protection (DIP) scheme for a specific regenerating code, while preserving its intrinsic properties of
fault tolerance and repair traffic saving. Our DIP scheme is designed under a mobile Byzantine adversarial model, and enables a client
to feasibly verify the integrity of random subsets of outsourced data against general or malicious corruptions. It works under the simple
assumption of thin-cloud storage and allows different parameters to be fine-tuned for a performance-security trade-off. We implement
and evaluate the overhead of our DIP scheme in a real cloud storage testbed under different parameter choices. We further analyze
the security strengths of our DIP scheme via mathematical models. We demonstrate that remote integrity checking can be feasibly
integrated into regenerating codes in practical deployment.
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1 INTRODUCTION

Cloud storage offers an on-demand data outsourcing
service model, and is gaining popularity due to its
elasticity and low maintenance cost. However, security
concerns arise when data storage is outsourced to third-
party cloud storage providers. It is desirable to enable
cloud clients to verify the integrity of their outsourced
data, in case their data have been accidentally corrupted
or maliciously compromised by insider/outsider attacks.

One major use of cloud storage is long-term archival,
which represents a workload that is written once and
rarely read. While the stored data is rarely read, it
remains necessary to ensure its integrity for disaster
recovery or compliance with legal requirements (e.g.,
[28]). Since it is typical to have a huge amount of
archived data, whole-file checking becomes prohibitive.
Proof of retrievability (POR) [16] and proof of data possession
(PDP) [3] have thus been proposed to verify the integrity
of a large file by spot-checking only a fraction of the file
via various cryptographic primitives.

Suppose that we outsource storage to a server, which
could be a storage site or a cloud storage provider. If we
detect corruptions in our outsourced data (e.g., when
a server crashes or is compromised), then we should
repair the corrupted data and restore the original data.
However, putting all data in a single server is susceptible
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to the single-point-of-failure problem [2] and vendor
lock-ins [1]. As suggested in [1], [2], a plausible solution
is to stripe data across multiple servers. Thus, to repair
a failed server, we can (i) read data from the other
surviving servers, (ii) reconstruct the corrupted data of
the failed server, and (iii) write the reconstructed data
to a new server. POR [16] and PDP [3] are originally
proposed for the single-server case. MR-PDP [10] and
HAIL [4] extend integrity checks to a multi-server set-
ting using replication and erasure coding respectively.
In particular, erasure coding (e.g., Reed-Solomon codes
[21]) has a lower storage overhead than replication under
the same fault tolerance level.

Field measurements [12], [22], [23] show that large-
scale storage systems commonly experience disk/sector
failures, some of which can result in permanent data loss.
For example, the annualized replacement rate (ARR) for
disks in production storage systems is around 2-4% [23].
Data loss events are also found in commercial cloud
storage services [18], [26]. With the exponential growth
of archival data, a small failure rate can imply significant
data loss in archival storage [29]. This motivates us to
explore high-performance recovery so as to reduce the
window of vulnerability. Regenerating codes [11] have
recently been proposed to minimize repair traffic (i.e.,
the amount of data being read from surviving servers).
In essence, they achieve this by not reading and recon-
structing the whole file during repair as in traditional
erasure codes, but instead reading a set of chunks smaller
than the original file from other surviving servers and
reconstructing only the lost (or corrupted) data chunks.
An open question is, can we enable integrity checks atop
regenerating codes, while preserving the repair traffic saving
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over traditional erasure codes? A related approach is HAIL
[4], which applies integrity protection for erasure codes.
It constructs protection data on a per-file basis and
distributes the protection data across different servers.
To repair any lost data during a server failure, one needs
to access the whole file, and this violates the design of
regenerating codes. Thus, we need a different design of
integrity protection tailored for regenerating codes.

In this paper, we design and implement a practical
data integrity protection (DIP) scheme for regenerating-
coding-based cloud storage. We augment the implemen-
tation of functional minimum-storage regenerating (FMSR)
codes [15] and construct FMSR-DIP codes, which allow
clients to remotely verify the integrity of random subsets
of long-term archival data under a multi-server setting.
FMSR-DIP codes preserve fault tolerance and repair
traffic saving as in FMSR codes [15]. Also, we assume
only a thin-cloud interface [27], meaning that servers
only need to support standard read/write functionali-
ties. This adds to the portability of FMSR-DIP codes and
allows simple deployment in general types of storage
services. By combining integrity checking and efficient
recovery, FMSR-DIP codes provide a low-cost solution
for maintaining data availability in cloud storage.

In summary, we make the following contributions:

• We design FMSR-DIP codes, which enable integrity
protection, fault tolerance, and efficient recovery for
cloud storage.

• We export several tunable parameters from FMSR-
DIP codes, such that clients can make a trade-off
between performance and security.

• We conduct mathematical analysis on the security
of FMSR-DIP codes for different parameter choices.

• We implement FMSR-DIP codes, and evaluate their
overhead over the existing FMSR codes through ex-
tensive testbed experiments in a cloud storage envi-
ronment. We evaluate the running times of different
basic operations, including upload, check, down-
load, and repair, for different parameter choices.

The rest of the paper proceeds as follows. Section 2
reviews related work. Section 3 provides necessary pre-
liminaries for our DIP design. Section 4 presents the
design of FMSR-DIP codes. Section 5 presents the im-
plementation details and discusses how parameters can
be adjusted for different performance needs. Section 6
presents security analysis for FMSR-DIP codes. Section 7
reports evaluation results of FMSR-DIP codes in a cloud
storage testbed. Finally, Section 8 concludes the paper.
We also refer readers to our digital supplementary file
for additional discussion of this work.

2 RELATED WORK

We briefly summarize the most recent and closely related
work here. Further literature review can be found in
Section 1 of the supplementary file.

We consider the problem of checking the integrity of
static data, which is typical in long-term archival storage

systems. This problem is first considered under a single
server scenario by Juels et al. [16] and Ateniese et al. [3],
giving rise to the similar notions proof of retrievability
(POR) and proof of data possession (PDP) respectively. A
major limitation of the above schemes is that they are
designed for a single server setting. If the server is fully
controlled by an adversary, then the above schemes can
only provide detection of corrupted data, but cannot
recover the original data. This leads to the design of
efficient data checking schemes in a multi-server setting.
By striping redundant data across multiple servers, the
original files can still be recovered from a subset of
servers even if some servers are down or compromised.
Efficient data integrity checking has been proposed for
different redundancy schemes, such as replication [10],
erasure coding [4], [24], and regenerating coding [6].

Specifically, although Chen et al. [6] also consider
regenerating-coded storage, there are key differences
with our work. First, their design extends the single-
server compact POR scheme by Shacham et al. [25].
However, such direct adaptation inherits some short-
comings of the single-server scheme such as a large
storage overhead, as the amount of data stored increases
with a more flexible checking granularity in the scheme
of [25]. Second, the storage scheme of [6] assumes that
storage servers have encoding capabilities for generating
encoded data, while we consider a thin-cloud setting [27]
where servers only need to support standard read/write
functionalities for portability and simplicity. The most
closely related work to ours is HAIL [4], which stores
data via erasure coding. As stated in Section 1, HAIL
operates on a per-file basis and it is non-trivial to directly
apply HAIL to regenerating codes. In addition, our work
focuses more on the practical issues, such as how dif-
ferent parameters can be adjusted for the performance-
security trade-off in practical deployment.

3 PRELIMINARIES

In this section, we provide the background details for our
data integrity protection (DIP) scheme. We first describe
the functional minimum storage regenerating (FMSR) codes
considered in this paper. Then we state the threat model
and the cryptographic primitives in our DIP scheme.

3.1 FMSR Code Implementation

We first review FMSR codes in NCCloud [15], on which
our DIP scheme is developed. FMSR codes belong to
Maximum Distance Separable (MDS) codes. An MDS code
is defined by the parameters (n, k), where k < n. It
encodes a file F of size |F | into n pieces of size |F |/k
each. An (n, k)-MDS code states that the original file can
be reconstructed from any k out of n pieces (i.e., the
total size of data required is |F |). An extra feature of
FMSR codes is that a specific piece can be reconstructed
from data of size less than |F |. FMSR codes are built on
regenerating codes [11], which minimize the repair traffic
while preserving the MDS property.
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Fig. 1. Example of how a file is repaired in (4,2)-FMSR
codes. Each of the code chunks P1, · · · , P8 is a random
linear combination of the native chunks. P1 and P2 are
distinct random linear combinations of P3, P5 and P7.

We consider a distributed storage setting in which a
file is striped over n servers using an (n, k)-FMSR code.
Each server can be a storage site or even a cloud storage
provider, and is assumed to be independent of other
servers. An (n, k)-FMSR code splits a file of size |F |
evenly into k(n − k) native chunks, and encodes them
into n(n − k) code chunks, where each native and code
chunk has size |F |

k(n−k) . Each code chunk, denoted by Pi

(where 1 ≤ i ≤ n(n − k)), is constructed by a random
linear combination of the native chunks, similar to the
idea in [20]. The n(n − k) code chunks are stored in n
servers (i.e., n − k code chunks per server), where the
k(n−k) code chunks from any k servers can be decoded
to reconstruct the original data. Decoding can be done
by inverting the encoding matrix [19].

Suppose that one server fails. Our goal is to recon-
struct the lost data of the failed server in a new server, so
as to maintain the (n, k)-MDS fault tolerance. We define
the repair traffic as the amount of data read from the other
surviving servers, so as to reconstruct the lost data. We
assume that there is a proxy (NCCloud in our case) that
handles the entire repair operation.

The conventional repair method for a single-server
failure is to simply reconstruct the whole file by con-
tacting any k surviving servers, so the repair traffic is
|F |. Note that this repair method applies to all (n, k)-
MDS codes. On the other hand, in FMSR codes, we
first randomly pick a chunk from each of the (n − 1)
surviving servers, and then generate (n − k) random
linear combinations of these (n − 1) chunks to store in
a new server. To guarantee that the MDS fault tolerance
is preserved after multiple rounds of repair, NCCloud
performs two-phase checking on the new code chunks
generated in the repair operation [15]. Figure 1 illustrates
the repair operation for the (4,2)-FMSR code, in which
the repair traffic is reduced by 25% to 0.75|F |. It is shown
that the repair traffic of FMSR codes can be further
reduced to 50% for k = n− 2 if n is large [15].

Note that FMSR codes are non-systematic codes that
keep only code chunks rather than native chunks. Nev-
ertheless, FMSR codes are mainly designed for long-
term archival applications, where the read frequency is
low and each read operation typically restores the entire
file. In Section 2 of the supplementary file, we provide

additional illustrations of how FMSR codes work.

3.2 Threat Model

We adopt the adversarial model in [4] as our threat
model. We assume that an adversary is mobile Byzantine,
meaning that the adversary compromises a subset of
servers in different time epochs (i.e., mobile) and exhibits
arbitrary behaviors on the data stored in the compro-
mised servers (i.e., Byzantine). To ensure meaningful file
availability, we assume that the adversary can compro-
mise and corrupt data in at most n−k out of the n servers
in any epoch, subject to the (n, k)-MDS fault tolerance
requirement. At the end of each epoch, the client can
ask for randomly chosen parts of remotely stored data
and run a probabilistic checking protocol to verify the
data integrity. Servers corrupted by the adversary may
or may not correctly return data requested by the client.
If corruption is detected, then the client may trigger the
repair phase to repair corrupted data.

3.3 Cryptographic Primitives

Our DIP scheme is built on several cryptographic prim-
itives, whose detailed descriptions can be found in [13],
[14]. The primitives include: (i) symmetric encryption,
(ii) a family of pseudorandom functions (PRFs), (iii)
a family of pseudorandom permutations (PRPs), and
(iv) message authentication codes (MACs). Each of the
primitives takes a secret key. Intuitively, it means that it
is computationally infeasible for an adversary to break
the security of a primitive without knowing its corre-
sponding secret key.

We also need a systematic adversarial error-correcting
code (AECC) [5], [9] to protect against the corruption of
a chunk. In conventional error-correcting codes (ECC),
when a large file is encoded, it is first broken down into
smaller stripes to which ECC is applied independently.
AECC uses a family of PRPs as a building block to ran-
domize the stripe structure so that it is computationally
infeasible for an adversary to target and corrupt any
particular stripe. Both FMSR codes and AECC provide
fault tolerance. The difference is that we apply FMSR
codes to a file striped across servers, while we apply
AECC to a single code chunk stored within a server.

4 DESIGN

We present our design of DIP atop FMSR codes, and
we call the augmented coding scheme FMSR-DIP codes.
Please refer to Section 3 of the supplementary file for a
summary of notations and an illustration of how FMSR-
DIP code chunks are formed from FMSR code chunks.

4.1 Design Goals

We first state the design goals of FMSR-DIP codes.
Preserving regenerating code properties. We preserve

the fault tolerance and repair traffic saving of FMSR
codes, with up to a small constant overhead.
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Thin-cloud storage [27]. Each server (or cloud storage
provider) only needs to provide a basic interface for
clients to read and write their stored files. No com-
putation capabilities are required from the servers to
support our DIP scheme. Specifically, most cloud storage
providers nowadays provide a RESTful interface, which
includes the commands PUT and GET. PUT allows
writing to a file as a whole (no partial updates), and GET
allows reading from a selected range of bytes of a file via
a range GET request. Our DIP scheme uses only the PUT
and GET commands to interact with each server.

Our thin-cloud setting enables our DIP scheme to be
portable to general types of storage devices or services,
since no implementation changes are required on the
storage backend. It differs from other “thick” cloud
storage services where servers have computational ca-
pabilities and are capable of aggregating the proofs of
multiple checks (e.g., [3], [4]). Nevertheless, we address
how our approach can be extended to thick cloud storage
services in Section 4 of the supplementary file.

Flexibility. There should not be any limits on the
number of possible challenges that the client can make,
since files can be kept for long-term archival. Also,
the challenge size should be adjustable with different
parameter choices, and this is useful when we want
to lower the detection rate when the stored data grow
less important over time. Such flexibility should come
without any additional penalties.

4.2 Notations

We now define notations for FMSR-DIP codes, based
on the FMSR codes described in Section 3.1. For an
(n, k)-FMSR code, we define {αij}1≤i≤n(n−k),1≤j≤k(n−k)

as the set of encoding coefficients that encode k(n − k)
native chunks {Fj}1≤j≤k(n−k) into n(n−k) code chunks
{Pi}1≤i≤n(n−k). Thus, each code chunk Pi is formed

by Pi =
∑k(n−k)

j=1 αijFj . All arithmetic operations are
performed in the Galois Field GF(28).

We use the cryptographic primitives stated in Sec-
tion 3.3, and define per-file secret keys κENC, κPRF, κPRP

and κMAC for the encryption, PRF, PRP, and MAC op-
erations, respectively. The usage of these keys should
be clear from the context and are omitted below for
clarity. Also, we implement AECC as an (n′, k′) error-
correcting code, which encodes k′ fragments of data into
n′ fragments such that up to b(n′ − k′)/2c errors, or up
to n′ − k′ erasures, can be corrected.

We define a row as a collection of all bytes that are
at the same offset of all native chunks or FMSR code
chunks. The rth rows of the native chunks and the FMSR
code chunks correspond to the bytes {Fjr}1≤j≤k(n−k)

and {Pir}1≤i≤n(n−k), respectively. We can see that the rth
row of each of the FMSR code chunks is encoded by the rth
row of the native chunks. That is, we can construct the rth
row of the FMSR code chunk Pi, where 1 ≤ i ≤ n(n−k),

as follows: Pir =
∑k(n−k)

j=1 αijFjr.
Each FMSR code chunk Pi from NCCloud is en-

coded by FMSR-DIP codes into P ′
i . The rth row of
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Fig. 2. Integration of DIP into the (4,2)-FMSR code. In this
example, each FMSR code chunk Pi is of size three bytes.
FMSR-DIP codes encode each chunk with (5,3)-AECC to
give {P ′

i}, so bytes P ′
i,4 and P ′

i,5 correspond to the AECC
parities of the ith chunk. Then P ′

1,2, P
′
2,2, · · · , P

′
8,2 form the

2nd row and P ′
1,5, P

′
2,5, · · · , P

′
8,5 form the 5th row.

the FMSR-DIP code chunks corresponds to the bytes
{P ′

ir}1≤i≤n(n−k). Figure 2 shows the layout of the FMSR-
DIP code chunks based on the (4, 2)-FMSR code.

4.3 Basic Operations of FMSR-DIP Codes

Our goal is to augment the basic file operations Upload,
Download, and Repair of NCCloud with the DIP feature.
During Upload, FMSR-DIP codes expand the code chunk
size by a factor of n′/k′ (due to the AECC). During
Download and Repair, FMSR-DIP codes maintain the
same transfer bandwidth requirements (with up to a
small constant overhead) when the stored chunks are
not corrupted. Also, we introduce an additional Check
operation, which verifies the integrity of a small part
of the stored chunks by downloading random rows
from the servers and checking their consistencies. In the
following, we assume that FMSR-DIP codes operate in
units of bytes. In Section 5, we discuss how we relax this
assumption to trade security for performance.

4.3.1 Upload Operation

We first describe how we upload a file F to the servers.
Step 1: Generate the per-file secrets. Before uploading F ,

we generate per-file secrets κENC, κPRP, κPRF, and κMAC.
All secret keys can be securely stored on the client side
without being revealed to any server. To reduce the
key management overhead, we can derive multiple keys
from a single secret using key derivation functions, as
detailed in prior studies and standards (e.g., [8], [17]).
In addition, to relieve the local storage burden, we can
encrypt all file keys with a master key, and outsource the
storage of the encrypted keys to the cloud. Since the files
in the cloud are typically of large size, we expect that the
secret keys only incur a small constant overhead.

Step 2: Encode the file using FMSR codes. NCCloud en-
codes F using the (n, k)-FMSR code to generate n(n−k)

code chunks {Pi} of b bytes each, where b = |F |
k(n−k) . It

also outputs a metadata file containing the file size |F |
and encoding coefficients {αij}.
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Step 3: Encode each code chunk with FMSR-DIP codes.
Consider the ith code chunk Pi. We first apply AECC
to the b bytes of the code chunk {Pir}1≤r≤b to generate
b′ − b parity bytes {Pir}b+1≤r≤b′ , where b′ = bn′

k′
. If b

is not a multiple of k′, then we simply pad the code
chunk without affecting the correctness. AECC is used
to recover a corrupted row that cannot be recovered by
FMSR codes alone. We apply the same AECC to each of
the code chunks (i.e., with the same permutations and
encoding parameters).

Then we apply PRF to all b′ bytes of the code chunk
(including the AECC parities): P ′

ir = Pir ⊕ PRF(i||r),
where ⊕ is the XOR operator, and i||r denotes the
concatenation of chunk identifier i and row identifier r.
PRF protects the integrity of each row, with the chunk
and row identifiers as inputs.

Finally, we compute a MAC Mi for the first b bytes
of the code chunk with PRF: Mi = MAC(P ′

i1|| . . . ||P
′
ib),

where || denotes concatenation. Note that we do not
include AECC parities in the MAC, as typically when
we download a file, only the original FMSR code chunk
needs to be downloaded and verified by the MAC. The
parity bytes are downloaded only when error correction
is needed.

Step 4: Update the metadata file and upload. We up-
load the FMSR-DIP code chunks P ′

i ’s to their respective
servers. Then, we append n′ and k′ to the metadata
file generated by NCCloud. We also append the MACs
of all chunks to the metadata. Finally, the metadata is
encrypted with κENC and replicated to each server (it
contributes to only a small storage overhead).

4.3.2 Check Operation

In the Check operation, we verify randomly chosen rows
of bytes of the currently stored chunks in the servers.

Step 1: Check the metadata file. We download a copy of
the encrypted metadata from each server and check if all
copies are identical. Since the metadata file is replicated
across all servers, we can run majority voting to restore
any corrupted file. We then decrypt the metadata file
and retrieve the encoding coefficients {αij}, the AECC
parameters n′ and k′, and the MACs {Mi}.

Step 2: Sampling and row verification. Based on the
FMSR-DIP code chunk size b′, we randomly generate
bλb′c distinct indices, where λ ∈ (0, 1] is a tunable check-
ing percentage. For each index r, we download the rth
byte from each of the n(n−k) code chunks (constituting
a row). Thus, we download λb′ rows in total.

For the rth row of bytes {P ′
ir}1≤i≤n(n−k), we remove

the PRF, i.e., Pir = P ′
ir ⊕ PRF(i||r). We then check the

consistency of {Pir} with respect to the encoding coef-
ficients {αij} as follows. Denote encoding matrix A =
[αij ]n(n−k)×k(n−k) and chunk vector P = [Pir]1≤i≤n(n−k).
We construct a system of linear equations, denoted by
an n(n − k) × [k(n − k) + 1] matrix A|PT , such that
P

T is the rightmost column of the system. Then the
system (and hence the rth row) is said to be consistent
if rank(A|PT ) = rank(A) = k(n− k), meaning that the

rth row of bytes can be uniquely decoded to a correct
solution that corresponds to the original native chunks.

The idea of the above rank checking can be intuitively
understood as follows. In FMSR codes, the k(n − k)
code chunks from any k servers can be decoded to
the original k(n − k) native chunks, so we must have
rank(A) = k(n−k). If chunk vector P is error-free, then
by solving the system of linear equations A|PT we can
retrieve the corresponding bytes in the original k(n− k)
native chunks, so rank(A|PT ) = rank(A) = k(n − k)
if the system is consistent. The PRF added to the code
chunk obfuscates the bytes and makes it difficult for the
adversary to corrupt the bytes while maintaining the
consistency of the system A|PT . In case of inconsistency,
we have rank(A|PT ) > k(n − k), while rank(A) =
k(n− k).

Step 3: Error localization. If the rth row is inconsistent,
then we know that some bytes in the row are erroneous.
We now attempt to localize the erroneous bytes in the
row, assuming that there are at most n − k − 1 failed
servers. We first choose any k servers and pick the bytes
{Pĩr} (with the PRF removed) for the k(n−k) chunks on
those k servers, where the values ĩ’s denote the k(n− k)
indices of the chosen chunks. Denote encoding matrix
Ã = [αĩj ]k(n−k)×k(n−k) and chunk vector P̃ = [Pĩr]. Note

that Ã and P̃ can be viewed as the subsets of A and
P defined above, respectively. As encoding coefficients
are assumed to be correct, the MDS property of the
FMSR code guarantees that rank(Ã) = k(n−k). In other
words, the system of linear equations formed from these
k(n−k) bytes gives a unique solution, as any k out of n
servers suffice to recover the original file. However, this
unique solution may not be correct, due to the presence
of erroneous bytes in P̃.

We now pick a chunk Ph from one of the remaining
n−k servers. We append its row of encoding coefficients
{αhj} and byte value Phr to Ã and P̃, respectively. Thus,
we now consider the bytes of a subset of k(n − k) + 1
code chunks. If rank(Ã) = rank(Ã|P̃T), then the system
is consistent, and we mark Phr correct. We repeat this
step for all the chunks from the remaining n− k servers
(setting h to be each of the chunks in turn). After all
chunks are exhausted, we pick a new combination of the
original k servers and repeat until all

(

n
k

)

combinations
have been tested. Bytes that are not marked correct at
the end of all checks are marked as corrupted. Note that
this enumeration approach is also used by HAIL [4].

The above error localization step assumes at most
n − k − 1 failed servers. If n − k servers fail, we may
recover the errors by downloading the full FMSR-DIP
code chunks, as discussed in the Download operation.

Step 4: Trigger repair. If a server has more than a
user-specified number of bytes marked as corrupted,
we consider it a failed server and trigger the Repair
operation (see below).

4.3.3 Download Operation

We download a file F from the servers as follows.
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Step 1: Check the metadata file. Refer to Step 1 of Check.
Step 2: Download and decode the FMSR-DIP code chunks

for file F . To reconstruct file F , we download k(n − k)
FMSR-DIP code chunks from any k servers (without the
AECC parities). After downloading a code chunk, we
verify its integrity with the corresponding MAC. We
strip the PRFs off the FMSR-DIP code chunks to form the
FMSR code chunks, which are then passed to NCCloud
for decoding if they are not corrupted. However, if we
have a corrupted code chunk, then we can fix it with
one of the following approaches:

• Download its AECC parities and apply error cor-
rection. Then we verify the corrected chunk with its
MAC again.

• Download the (n − k) code chunks from another
server.

• A last resort is to download the code chunks from all
n servers. We check all rows of the chunks including
their AECC parities. The rows with a subset of the
bytes marked correct can be recovered with FMSR
codes; the rows with all bytes marked corrupted are
treated as erasures and will be corrected with AECC.
A file is deemed unrecoverable if there are insuffi-
cient code chunks that pass their MAC verifications.

4.3.4 Repair Operation

If some server fails (e.g., when losing all data or having
too much corrupted data that cannot be recovered), we
trigger the repair operation via NCCloud as follows.

Step 1: Check the metadata file. Refer to Step 1 of Check.
Step 2: Download and decode the needed chunks. This is

similar to Step 2 of Download, as long as there are at
most n− k failed servers (see Section 3.2). In particular,
if there is only one failed server, then instead of trying
to download k(n − k) chunks from any k servers, we
download one chunk from all remaining n−1 servers as
in FMSR codes (see Figure 1 in Section 4.2).

Step 3: Encode, update metadata, and upload. NCCloud
generates (n−k) chunks to store at the new server. Each
chunk is encoded with FMSR-DIP codes again (Step 3
of Upload) and uploaded to the new server. Finally the
metadata is updated, encrypted and replicated to all
servers (Step 4 of Upload).

5 IMPLEMENTATION

We implement FMSR-DIP codes atop NCCloud [15]. In
this section, we address how our implementation can
fine-tune various design parameters to trade security for
performance. Please refer to Section 5 of the supplemen-
tary file for additional implementation details on how
we integrate FMSR-DIP codes into NCCloud and how
we instantiate the cryptographic primitives.

In Section 4, FMSR-DIP codes operate in units of
bytes. However, byte-level operations may make the im-
plementation inefficient in practice, especially for large
files. Here, we describe how FMSR-DIP codes can be
extended to operate in units of blocks (i.e., a sequence of
bytes) to trade security for performance. In the following,

we describe the possible tunable parameters that are
supported in FMSR-DIP codes.

PRP block size. Instead of permuting bytes, we can
permute blocks of a tunable size (called the PRP block
size). A larger PRP block size increases efficiency, but at
the same time decreases security guarantees.

PRF block size. In a byte-level PRF operation, we can
simply take the first byte of the AES-128 output as the
PRF output. In fact, we can also compute a longer PRF
and apply the PRF output to a block of bytes of a tunable
size (called the PRF block size). To extend the PRF beyond
the AES block size (16 bytes), we can pad the nonce with
a chain of input blocks of 16 bytes each, and encrypt
them using CBC mode. However, setting the PRF block
size to larger than 16 bytes shows minimal performance
improvement, as AES is invoked once for every 16 bytes
of input in CBC mode and the total number of AES
invocations remains the same for a larger PRF block size.

Check block size. Reading data from cloud storage
is priced based on the number of GET requests. In the
Check operation, downloading one byte per request will
incur a huge monetary overhead. To reduce the number
of GET requests, we can check a block of bytes of a
tunable size (called the check block size). The checked
blocks at the same offset of all code chunks will contain
multiple rows of bytes. Although not necessary, it is
recommended to set the check block size as a multiple
of the PRF block size, so as to align with the PRF block
operations.

AECC parameters. The AECC parameters (n′, k′) con-
trol the error tolerance within a code chunk and the
domain size of the PRP being used in AECC. Given
the same k′, a larger n′ implies better protection, but
introduces a higher computational overhead.

Checking percentage. The checking percentage λ de-
fines the percentage of a file to be checked in the Check
operation. A larger λ implies more robust checking, at
the expense of both higher monetary and performance
overheads with more data to download and check.

6 SECURITY ANALYSIS

In this section, we investigate the security guarantees of
FMSR-DIP codes. In Section 6 of the supplementary file,
we discuss how the security primitives affect the design
of FMSR-DIP codes.

6.1 Security Guarantees

We now provide a step-by-step security analysis of
FMSR-DIP codes.

Attack goal. Recall that an FMSR code chunk is en-
coded by (n′, k′)-AECC. The code chunk is divided into
k′ fragments and b/k′ stripes. In our implementation,
each fragment is permuted by a PRP of size b/k′, and
then each stripe is encoded by an (n′, k′)-ECC to give a
total of n′ bytes each, so the code chunk is encoded by
(n′, k′)-AECC into n′ fragments. Each stripe can correct
up to n′ − k′ erasures or b(n′ − k′)/2c errors.
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We assume that the goal of an adversary is to make
at least any one stripe unrecoverable by corrupting more
than (n′−k′)/2 bytes from the same stripe, while evading
detection by our probabilistic row verification in the
Check operation. Note that there is a trade-off of choos-
ing how many bytes to corrupt. A higher corruption rate
means that the adversary can corrupt more bytes in a
stripe, but the corruption is also easier to be detected by
our row verification. Our objective is to provide a math-
ematical framework that analyzes the security strength
of FMSR-DIP codes for different parameter choices.

Attack approach. We assume that the PRPs are ideal
(i.e., output random permutations), so the adversary can
do no better than corrupt randomly within a fragment.
We consider a set of adversarial corruption strategies of
the following form: given an overall corruption rate p,
the adversary corrupts only the first i fragments and
spreads the corruptions evenly among these i fragments,
for i ∈ ((n′ − k′)/2, n′]. For example, with (110,100)-
AECC, we have 105 corruption strategies. We refer to
a strategy as Strategy i, in which the adversary corrupts
only the first i fragments with rate pi = pn′/i.

Our attack approach enables us to study two ques-
tions: (i) how FMSR-DIP codes can remain secure (i.e.,
no corrupted stripes can evade detection by our Check
operation in each epoch under our threat model (see
Section 3.2)) subject to different corruption rates, and (ii)
how the design parameters of FMSR-DIP codes can be
fine-tuned to address the performance-security trade-off.
We do not know if there exists a better attack approach,
among all possible corruption approaches that can be
arbitrarily taken by an adversary. We pose the study of
different possible corruption approaches as future work.

6.1.1 Corrupting an AECC Stripe

We first consider the case where the PRP block size is
fixed at 1 byte. Considering only a single stripe, the
number of corrupted bytes is governed by a binomial
distribution, according to the corruption strategies that
we define above. Denote the number of stripes as N =
b/k′ and let Ci be the event that at least one stripe is
corrupted and made unrecoverable using Strategy i. We
now have

Pr(Ci) ≤ N ×



1−

b(n′−k′)/2c
∑

j=0

(

i

j

)

pji (1− pi)
i−j



 , (1)

where the right hand side is obtained using the union
bound and it approximates the actual value when the
corruption rate p is low.

Now we consider the effect of the PRP block size.
Denote BP as the PRP block size. Instead of corrupting
randomly within a fragment, the adversary can now do
better by corrupting a specific offset in randomly chosen
PRP blocks. For a stripe that is at this chosen offset,
this means that the adversary can achieve an effective
corruption rate p × BP , and there are N/BP stripes in

total at a specific offset of any PRP block. We can revise
Pr(Ci) to account for this.

Pr(Ci) ≤
N

BP
×



1−

b(n′−k′)/2c
∑

j=0

(

i

j

)

(piBP )
j(1− piBP )

i−j



 .

(2)

6.1.2 Picking Bytes for Checking

Next we bound the probability that no corrupted bytes
get picked during Check. Denote the check block size as
BC and the checking percentage as λ. Let Ei be the event
that all corrupted bytes do not get picked during Check
when Strategy i is used. For simplicity, we assume that
the check blocks do not span across fragments. For each
check block, the probability that it lands on a corrupted
fragment is i/n′; for any fragment with corruption rate
pi, the probability that none of the corrupted bytes

collide with the check block is
∏piN−1

x=0
N−BC−x

N−x , which

is approximately ((N − BC)/N)piN for small pi (upper
bound). Since the number of check blocks is λNn′/BC ,
we have

Pr(Ei) ≤

(

1−
i

n′

(

1−

(

N −BC

N

)piN
))

λNn
′

BC

. (3)

This is an over-estimation especially when λ is not
negligible compared to the code chunk size (say λ > 5%).
To see why, consider the case that two check blocks
fall into the same corrupted fragment. When we place
the second check block, the probability that none of

the corrupted bytes collide with it is
∏piN−1

x=0
N−2BC−x
N−BC−x

instead of
∏piN−1

x=0
N−BC−x

N−x due to an existing check
block taking up space.

Intuitively, the adversary has a higher evasion rate
Pr(Ei) if the corrupted bytes are more concentrated (e.g.,
in the first few fragments) and if we use a larger check
block size. The reason is that when the corrupted bytes
are more concentrated, a larger check block can capture
more corrupted bytes, but at the same time we use fewer
check blocks.

6.2 Putting It All Together

Let Si be the event that the adversary uses Strategy i
to successfully make at least one stripe unrecoverable
without being detected by row checking. Then, Pr(Si) ≤
Pr(Ci) × Pr(Ei), which we can compute via Equations (2)
and (3). Note that if i increases, the corruption rate Pr(Ci)
increases, but the evasion rate Pr(Ei) also decreases. To
search for the maximum Pr(Si), we enumerate different
values of the corruption rate p for each Strategy i,
and enumerate all possible strategies. In the following,
we study how the maximum Pr(Si) varies for different
parameter choices.

Scenario 1 (Impact of different values of checking
percentage λ). First, we consider an FMSR code chunk
of size 4MB, n′ = 110, k′ = 100, BP = 16, BC = 16, and
different values of λ. Figure 3 shows that the maximum
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Fig. 4. Scenario 2: Max.
Pr(Si) (in log scale) versus
FMSR code chunk size.

Pr(Si) is less than 10−6 when λ = 1%, and it decreases
as the checking percentage λ increases. As we explain
above that Equation (3) is an over-estimation, we expect
that the actual maximum Pr(Si) can be even smaller.

Scenario 2 (Impact of different FMSR code chunk
sizes). It is beneficial to aggregate small files before
backing them up to the cloud to reduce monetary and
transfer overheads. For example, Cumulus [27] uploads
chunks of size roughly 4MB by default [1]. Here, we
consider the parameters n′ = 110, k′ = 100, BP = 16,
BC = 16, λ = 1%, and different values of FMSR code
chunk sizes. Figure 4 shows the maximum Pr(Si) for
different chunk sizes, and we find that the maximum
Pr(Si) decreases as the chunk size increases. For example,
when we increase the chunk size to 25MB, the maximum
Pr(Si) is on the order of 10−10, and if we further increase
the chunk size to 100MB, the maximum Pr(Si) is on the
order of 10−13. The reason is that as the chunk increases,
more bytes will be corrupted for the same corruption
rate (i.e., Pr(Ci) increases), but also more bytes will be
sampled for checking for a given checking percentage
(i.e., Pr(Ei) decreases). We see that Pr(Ei) decreases at a
rate faster than the increase in Pr(Ci), leading to a drop
in the maximum Pr(Si). As a result, we can afford to use
more efficient parameters (e.g., larger PRP block size and
check block size) while maintaining acceptable security.

Scenario 3 (Impact of different values of corruption
rate p). We now study how different values of p affect the
Pr(Si). This time for a given value of p, we enumerate
different strategies and select the strategy that gives the
maximum Pr(Si). We consider an FMSR code chunk of
size 100MB, n′ = 110, k′ = 100, BP = 256, BC = 4096,
λ = 1%. Then we have N = 1, 048, 576 and the adversary
succeeds if he can corrupt 6 bytes in any stripe without
being detected. Figure 5 plots the maximum Pr(Si) by
varying the corruption rate p from 0.001% (i.e., about
one corrupted byte per fragment on average) to 0.01%.
Note that the upper bound of Pr(Ci) increases beyond
1 when p ≥ 0.0054%, so we set the upper bound
to 1 in such cases. We note that the maximum Pr(Si)
shows a small peak at p = 0.0008%, mainly because of
the shift of the optimal strategy from Strategy 110 to
Strategy 6. We note that the maximum Pr(Si) increases
for 0.002% ≤ p ≤ 0.0054%, and then decreases because
Pr(Ci) is upper-bounded by one while Pr(Ei) continues
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to drop. From Figure 5, we note that Pr(Si) is less than
2×10−7 for all values of p. Figure 6 also plots the changes
of the upper bounds of Pr(Ci) and Pr(Ei) across different
strategies when p = 0.0008%.

7 EVALUATIONS

We evaluate the running time overhead of FMSR-DIP
codes atop a local cloud storage testbed by measuring
the running time overhead of DIP in the Upload and
Check operations. The goal of our evaluation is to under-
stand the overhead of FMSR-DIP codes over the original
implementation of FMSR codes in NCCloud [15]. In
Section 7 of the supplementary file, we present results for
the Download and Repair operations, and also analyze
the monetary cost overhead with the pricing models of
different commercial cloud providers.

Setup. We conduct testbed experiments on a local
cloud platform that is built on OpenStack Swift 1.4.2.
We deploy FMSR-DIP on a machine equipped with two
Intel Xeon E5530 Quad-Core CPUs (i.e., a total of eight
cores), 16GB RAM, and 64-bit Ubuntu 11.04. The ma-
chine is connected via a Gigabit switch to an OpenStack
Swift platform that is attached with 15 nodes. We create
multiple containers on Swift, such that each container
mimics a storage server.

We measure the running time of each operation. We
assume that all file objects being processed remain intact
(i.e., without corruptions) throughout an operation, so
that we can measure the overhead of FMSR-DIP codes
in normal usage. Our results are averaged over 40 runs.

We exploit parallelism in our implementation. We
spawn a DIP process for processing each FMSR-DIP
code chunk (i.e., encoding an FMSR code chunk into an
FMSR-DIP code chunk, or decoding an FMSR-DIP code
chunk into an FMSR code chunk). All DIP processes
are executed concurrently on our eight-core testbed.
Our parallel implementation can achieve up to eight-
fold speedup compared to our sequential evaluations
depending on the number of chunks that needed to be
processed (e.g., from Figure 7(a), encoding an 100MB file
with default parameters takes 1.355s, compared to 8.547s
re-running the same tests in sequential mode). For the
baseline evaluations of FMSR-DIP codes in sequential
mode, we refer readers to our conference paper [7].



9

 0

 5

 10

 15

100MB 50MB 20MB 10MB 5MB 1MBT
im

e
 t

a
k
e

n
 (

s
e

c
o

n
d

s
)

FMSR
DIP-Encode
Transfer-Up

 0

 5

 10

 15

 20

 25

(4,2) (6,4) (8,6) (10,8)T
im

e
 t

a
k
e

n
 (

s
e

c
o

n
d

s
)

FMSR
DIP-Encode

Transfer-Up

(a) Different file sizes (b) Different (n, k) values of FMSR codes

 0

 5

 10

 15

 20

 25

(255,223)

(255,232)

(255,243)

(115,100)

(110,100)

(105,100)

T
im

e
 t

a
k
e

n
 (

s
e

c
o

n
d

s
)

FMSR
DIP-Encode

Transfer-Up

 0

 5

 10

 15

 20

 25

(16B,16B)

(64B,16B)

(256B,16B)

(1024B,16B)

(1024B,32B)

(1024B,1024B)

T
im

e
 t

a
k
e

n
 (

s
e

c
o

n
d

s
)

FMSR
DIP-Encode

Transfer-Up

(c) Different (n′, k′) values of AECC (d) Different block sizes of PRP and PRF
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Upload. We investigate the effects of four sets of
parameters on the running time of the Upload operation,
including (i) the input file size, (ii) the (n, k) parameters
of FMSR codes, (iii) the (n′, k′) parameters of AECC, and
(iv) the block sizes of PRP and PRF. We vary one set of
these parameters each time, while fixing the other three
sets at default values. By default, we use a 100MB file,
(4,2)-FMSR code, (110,100)-AECC, and a block size of
256B for both PRP and PRF.

Figure 7 plots the running times of the Upload oper-
ation for different sets of parameters. We further break
down each running time result into three parts denoted
by different labels: (i) “FMSR”, the time of encoding
a file into FMSR code chunks by NCCloud, (ii) “DIP-
Encode”, the time of encoding the FMSR code chunks
with our DIP scheme, and (iii) “Transfer-Up”, the net-
work transfer time of uploading FMSR-DIP code chunks
and metadata to the local cloud.

From Figure 7(a), we observe that the fractional over-
head of DIP encoding increases with the file size, and it
ranges from 3.76% (for 1MB) to 9.92% (for 100MB) of the
overall time of Upload. The reason is that for larger files,
the connection setup overhead of the data transmission
becomes less dominant. We expect that the fractional
overhead of DIP encoding to be smaller when the servers

are deployed over the Internet, where the transmission
time plays a bigger part in the Upload operation.

As shown in Figures 7(b) and 7(c), the DIP encoding
time increases with the redundancy level (i.e., the ratio of
the amount of the redundant data being stored to that of
the original data) of each of the underlying FMSR codes
and AECC. For instance, the DIP encoding time increases
from 0.893s to 1.346s when the redundancy of FMSR
codes increases from (10,8) to (4,2) (see Figure 7(b)); it
increases from 1.378s to 2.081s when the redundancy
of AECC increases from (255,243) to (255,223) (see Fig-
ure 7(c)). This is expected, as we now need to protect
more stored data with DIP.

Figure 7(d) shows that increasing the PRP and PRF
block sizes can reduce the DIP encoding time, yet we
observe that the overhead reduction of PRF is less promi-
nent than that of PRP. The reason is that we implement
PRF based on AES, a block cipher that must be invoked
for every 16 bytes (AES block size) of the file. Note that
one should not make the PRP block size too large, as an
FMSR code chunk is padded to a multiple of (k′× PRP
block size) before being encoded by DIP.

Check. We evaluate the effects of (i) the check block
size, (ii) the checking percentage, and (iii) the (n, k)
parameters of FMSR codes in the Check operation. Apart
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from the default parameters in the evaluations of the
Upload operation, we also use a check block size of
4KB and a checking percentage of 1% by default. In
evaluating the effect of checking percentage, we use a
check block size of 256KB.

Figure 8 shows the results. The transfer time of
downloading data from the local cloud (denoted by
“Transfer-Down”) dominates the total running time of
Check, which includes the computations of PRF and
rank checking. Figure 8(a) shows that when the check
block size is small, the TCP connection does not have
enough time to speed up when downloading each block,
resulting in a much longer download time. For instance,
the download time for the check block size of 256KB
is 3.130s, while that for the check block size of 1KB
21.523s, which is about seven times longer. On the other
hand, Figure 8(b) shows that the overall Check time
increases with the checking percentage, but in a sub-
linear rate. We note that Swift allows a connection to
be reused when downloading data from the same file,
so the connection setup overhead has less impact when
the download size is large. This effect is also observed in
Figure 8(c), where the download time increases with n
(from 8.527s for (4,2)-FMSR to 10.950s for (10,8)-FMSR).
The main reason for the increase is that more connections
have to be established to download data and metadata
from more chunks.

8 CONCLUSIONS

Given the popularity of outsourcing archival storage
to the cloud, it is desirable to enable clients to verify
the integrity of their data in the cloud. We design and
implement a practical data integrity protection (DIP)
scheme for the functional minimum-storage regener-
ating (FMSR) codes under a multi-server setting. We
construct FMSR-DIP codes, which preserve the fault
tolerance and repair traffic saving properties of FMSR
codes. We analyze the security strength via mathematical
modeling and evaluate the running time overhead via
testbed experiments. We show how FMSR-DIP codes
trade between performance and security under differ-
ent parameter settings. The source code of the im-
plementation of our FMSR-DIP codes is available at:
http://ansrlab.cse.cuhk.edu.hk/software/fmsrdip.
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