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Abstract—Router virtualization enables multiple virtual
routers to be hosted on a physical shared substrate, and
hence facilitates network management and experimentation. One
critical issue of router virtualization is resource allocation of
virtual routers. We explore this issue in the user-space design
in order to allow extensibility. We develop a user-space load-
aware virtual router monitor (LVRM) atop a commodity multi-
core architecture, with a key feature that it can dynamically
manage CPU core resources among virtual routers based on
their traffic loads. Also, LVRM adopts an extensible design so
that each component can support different variants of implemen-
tation. We implement a proof-of-concept prototype for LVRM
and empirically evaluate its performance overhead. Our work
provides insights into resource management in user space in the
context of router virtualization.
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I. Introduction

The virtualization technology simplifies process manage-

ment by having multiple software instances hosted on a

shared hardware substrate, and evolves as a solution to reduce

hardware footprints. Specifically, in the context of packet

forwarding and routing in networks, router virtualization en-

ables multiple virtual routers to be hosted on shared network

resources, such that each virtual router has its own data for-

warding plane and is independently configured with its own set

of routing policies. Thus, a virtual router works like a typical

physical router. There have been commercial vendors (e.g., [9],

[21]) that develop router products with router virtualization,

in which a single physical router provides a platform for

hosting multiple virtual (logical) routers. Therefore, we believe

that router virtualization will be adopted in various practical

applications. One example is to deploy a single physical router

on a campus backbone network that provides connectivity for

the IP subnets of different departments [14]. Each department

can be assigned a set of virtual routers (hosted inside the phys-

ical router) and it can individually configure its own routing

policies on each virtual router. A more recent application of

router virtualization is network experimentation (e.g., VINI

[3], OpenFlow [25]), where users can form a network of

virtual routers (or switches) and conduct controlled wide-area

network experiments atop a shared network platform.

Instead of hosting virtual routers on physical routers, an al-

ternative of deploying router virtualization is to host software-

based virtual routers atop commodity, general-purpose hard-

ware and operating systems, so as to trade processing speed

for extensibility and programmability. Software routers (e.g.,

Click [20] and XORP [19]) emulate the routing functionalities

of hardware routers, and allow flexible extensions and re-

engineering of such functionalities. Given the emergence of

multi-core technologies and advances in hardware architec-

tures, it is shown that software-based router virtualization can

be feasibly deployed using commodity hardware [14], such

that the aggregate performance of software virtual routers is

close to that of a single software router without virtualization.

To exploit the full potential of software-based router virtu-

alization, a critical design issue is the resource management

of virtual routers. Specifically, virtual routers may receive

different amounts of data traffic load for their respective

networks, and require different shares of resources (e.g., I/O,

CPU, memory) for processing such packets in a fair manner.

One approach is to rely on a general-purpose hypervisor

(also called virtual machine monitor), such as Xen [2], for

resource management by running each virtual router inside

a virtual machine [16]. However, such an approach typically

involves unnecessary overhead of processing operating system

tasks besides routing functions. Also, it is unclear whether

such a general-purpose hypervisor effectively adapts toward

different network traffic patterns that are specific for router

virtualization. Thus, it is desirable to have a customized,

lightweight hypervisor that is capable of performing effective

resource management specifically for router virtualization.

In this paper, we propose a user-space load-aware virtual

router monitor (LVRM) that seeks to achieve resource man-

agement of virtual routers based on their data traffic loads.

LVRM can in essence host different implementations of virtual

routers, as long as we allow minimal changes to the interfaces

of the virtual routers to enable them to interact with LVRM.

Specifically, we focus on the deployment of software-based

virtual routers atop a commodity multi-core architecture, and

we narrow down our focus into one issue: how to dynamically

assign CPU cores to different virtual routers based on their

data traffic loads? LVRM addresses this question by consider-

ing different design dimensions, including: (i) core allocation,



(ii) load balancing, (iii) load estimation, and (iv) inter-process

communication. For each design dimension, LVRM allows

extensibility for different variants of implementation, so as

to adapt to different application requirements.

Through the extensible design of LVRM, our goal is to

explore a set of design guidelines of resource management

in router virtualization. We propose an extensible design of

LVRM, and implement a proof-of-concept prototype of LVRM

atop a multi-core architecture. Using extensive empirical ex-

periments, we demonstrate that LVRM incurs minimal per-

formance overhead in data forwarding in terms of throughput

and latency when compared to native Linux IP forwarding.

In addition, LVRM can support dynamic core allocation and

load balancing of virtual routers based on their traffic loads.

Our experimental results justify the feasibility of resource

management in user space in the context of software-based

router virtualization atop commodity multi-core architectures.

The remaining of the paper proceeds as follows. Section II

presents the design of LVRM. Section III presents the experi-

mental results for LVRM running atop a multi-core platform.

Section IV reviews related work, and Section V concludes.

II. Design

In this section, we address dynamic resource allocation in

router virtualization. Specifically, we focus on the allocation of

CPU processing resources among virtual routers (VRs) atop

a commodity multi-core architecture. We present the design

of a load-aware virtual router monitor (LVRM), in which one

key feature is to achieve dynamic allocation of CPU cores for

VRs based on their traffic loads, so that each VR receives

fair allocation of CPU processing power to process packets.

Also, LVRM adopts an extensible design in its components.

We first overview the router virtualization architecture that we

consider, and then describe the major components of LVRM

that collaboratively achieve the goal of resource allocation

among VRs. Note that the implementation that we consider

in this paper is based on C++ and is running atop Linux.

A. Summary of our Router Virtualization Architecture

Our main goal is to virtualize the data forwarding planes

of multiple virtual routers atop a shared hardware substrate.

In our design, LVRM is a centralized process that manages

a number of VRs, each of which is an independently ad-

ministered router and has its own set of routing policies and

configurations. Depending on the current traffic load, LVRM

spawns one or multiple VR instances (VRIs) for each VR

to process packets. The VRIs that belong to the same VR

are expected to share the same set of routing policies and

configurations. Figure 1 depicts a high-level overview of the

entire router virtualization architecture that consists of LVRM

and the VRIs created for different VRs.

We run both LVRM and VRIs as user-space software-based

processes that can be deployed on commodity, general-purpose

multi-core architectures and operating systems. Running the

processes in user space enables better programmability and
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Fig. 1. Overview of the router virtualization architecture.

extensibility, with a trade-off of degraded data forwarding per-

formance as compared to the kernel space. It has been shown

that software routers running in user space have slower data

forwarding performance than in kernel space [24]. On the other

hand, if we leverage concurrent lock-free synchronization of

inter-process communication (IPC) [22] and kernel modules of

packet capture acceleration [12] (see Section: II-B), then our

experiments show that we can improve the data forwarding

throughput performance (see Section III for details).

To understand the workflow of our router virtualization

architecture in Figure 1, we present the forwarding path of

a data frame from input to output. Suppose that each hosted

VR is configured with an IP subnet and is responsible for

processing data packets originated from this subnet, and that

it is configured with the mappings of the routes to the network

interfaces of the deployment architecture. The workflow is

summarized as follows:

1) First, LVRM captures a raw data frame (in the Ethernet

layer) from an input network interface.

2) LVRM inspects the source IP address of the data frame,

and determines the VR that will process the data frame.

It then dispatches the data frame to a VRI of the VR

via an IPC queue called the data queue. Each VRI is

associated with a pair of incoming/outgoing data queues.

The dispatch decision of which VRI will process the data

frame is based on the number of VRIs that have been

spawned and the currently used load balancing scheme.

3) The data frame is then processed by the corresponding

VRI. If the VRI forwards the data frame, then it indicates

the output network interface in the data frame.

4) The VRI relays the data frame to its associated outgoing

data queue. LVRM then sends the data frame to the

correct output network interface.

Also, as shown in Figure 1, a VRI can share control

information with other VRIs of the same VR, for example,

to synchronize the routing state. The sharing is performed by

associating each VRI with another pair of incoming/outgoing

queues called the control queues. We assume that a control

queue has a higher priority than a data queue. Thus, each

VRI first processes any control event available in its incoming

control queue, and then processes data frames available in its

incoming data queue.
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B. Design of LVRM

Inside LVRM, its design is built on several major user-

space components arranged in a hierarchical structure. Figure 2

shows the internal design of LVRM, which can be viewed

as a hierarchical structure. The hierarchical design of LVRM

enables it to host multiple VRs, and each VR can host multiple

VRIs. In this subsection, we explain in detail the features of

each component, and justify how each component provides

extensibility for different variants of implementation.

Socket adapter. The socket adapter is the software interface

that relays data frames via LVRM. LVRM can obtain a data

frame by contacting the socket adapter, which then polls for

available data frames from a lower-level interface (e.g., the

kernel or the NIC). From the point of view of LVRM, the

polling process of the socket adapter is transparent. The socket

adapter is also responsible for forwarding any data frames

from LVRM to the lower level.

Currently, the socket adapter supports three variants of

implementation of accessing data frames in the lower level:

• Raw socket [27]. It is the interface between user-space

applications and the kernel network stack for send-

ing/receiving raw frames over the network. Our imple-

mentation is based on the BSD socket, with which we

create a socket descriptor to access raw frames that start

at the link layer (e.g., the Ethernet layer). We use the

system call recvfrom() to retrieve raw frames via non-

blocking polling, and use the system call send() to send

raw frames.

• PF RING [12]. It is a new socket type that is designed for

speeding up data capture in network monitoring. Its idea

is to poll the NIC directly and retrieve raw frames from

the NIC through the zero-copy technique, in order to save

the unnecessary kernel memory allocation/deallocation as

in the raw socket case. Note that it only considers how

to retrieve incoming frames, but does not consider how

to send outgoing frames. Thus, the socket adapter still

sends outgoing frames via the raw socket.

• Main memory. We also enable the socket adapter to

receive raw frames from main memory rather than from

the network. The idea is to exclude the performance

bottleneck in the network, so that we can evaluate the

processing overhead mainly due to LVRM. We load a

trace of raw frames into main memory, from which the

socket adapter can sequentially retrieve the raw frames.

VR monitor. LVRM is by itself a user-space process, and

it internally has a major component VR monitor that coordi-

nates different VRs. In particular, it is responsible for core

allocation, which coordinates how different VRs use CPU

core resources within the underlying multi-core architecture.

It adjusts the number of cores being allocated for each VR

based on its traffic load. To avoid the contention of multiple

processes for a single CPU core, it is important to associate a

CPU core with only one VRI.

Here, we consider two core allocation approaches:

• Fixed. The VR monitor pre-assigns a fixed set of cores

to a VR when the VR first starts.

• Dynamic. The VR monitor assigns cores to a VR based

on the traffic load of the VR. If the current traffic load

of the VR is above a threshold, then the VR monitor

allocates an additional CPU core to the VR; if the traffic

load of the VR is low, then the VR monitor deallocates a

CPU core from the VR. Currently, we measure the load

of a VR by estimating the exponential weighted average

arrival rate of incoming frames for the VR.

We expect that the dynamic approach is more resource-

efficient than the fixed approach, since it allocates cores based

on the traffic load and hence avoids over-provisioning. We also

consider two special heuristics to improve the performance of

the dynamic approach. First, LVRM is a user-space process

that we bind to a CPU core. It is intuitive to first assign a

VR the cores that are “close” to LVRM, so as to minimize

inter-core communication between LVRM and the VR. Thus,

the dynamic approach first allocates the sibling cores, i.e., the

cores that reside in the same CPU as the core on which LVRM

is running, followed by the non-sibling cores (i.e., cores in a

different CPU). We examine the impact of affinity in core

allocation in Section III.

Second, it is important to control how often the core allo-

cation/deallocation process should take place. If the frequency

is too high, then it will cause instability to the performance

of the VR; if the frequency is too low, then it will result in

poor responsiveness to the load conditions. Thus, the dynamic

approach periodically monitors the traffic load of each VR, and

triggers the core allocation/deallocation process if necessary.

Here, we set the period to be 1 second, while this parameter

is tunable depending on the applications. In general, our

experiments show that the core allocation/deallocation process

has a small reaction time (see Section III).

VRI monitor. A VRI monitor is associated with each VR, and

aims to coordinate the VRIs of a VR. It creates or deletes VRIs

via the function calls vfork() and kill(), respectively,

based on the number of cores assigned by the VR monitor

(assuming that one core is for only one VRI). It is also

responsible for load balancing, which balances the CPU core

resources among the VRIs of the same VR. Specifically, it

dispatches frames to different VRIs for processing, so that the

VRIs receive balanced shares of processing loads. Here, we

consider three implementations of load balancing:

• Join-the-shortest-queue. It forwards data frames to the

VRI that currently has the lightest traffic load, where the



load is estimated based on the load estimation algorithm

(see the description of the VRI adapter below).

• Random. It forwards each data frame to a VRI that is

uniformly selected among all available VRIs.

• Round-robin. It forwards packets to each VRI in a round-

robin manner.

Note that the above implementations are frame-based, in

which we dispatch data frames to VRIs on a per-frame basis.

Another type of implementation is flow-based (e.g., see [13]),

in which data frames of the same flow (e.g., based on 5-

tuples) are always forwarded to same core. The flow-based

implementation avoids reordering of data frames that belong

to the same flow. Note that the VRI monitor can support both

frame-based and flow-based load balancing without affecting

the design of other components.

VRI adapter. A VRI adapter is associated with each VRI,

and aims to relay data packets to/from the VRI. It is also

responsible for load estimation of the VRI, and reports the

estimated load values to the VRI monitor for load balancing.

While there are many variants of load estimation, we consider

a simple version as follows. When the VRI adapter forwards

a data frame to the VRI, it measures the load by observing

the current queue length. It then computes the exponential

weighted average queue length of the incoming data queue of

each VRI.

Inter-process communication (IPC) queue. An IPC queue

enables two processes (i.e., the producer and the consumer) to

share information, such that the producer (consumer) process

inserts (extracts) items to (from) the queue in a first-in-first-out

manner. Each VRI is associated with two types of IPC queues:

(i) data queues and (ii) control queues (see Figure 1). Each

VR can send/receive data frames to/from its VRIs via a pair

of incoming/outgoing data queues, while each pair of VRIs

can exchange control events via a pair of incoming/outgoing

control queues.

It is important to minimize the inter-process communication.

Thus, we consider an IPC queue implementation based on

lock-free synchronization [22]. It allows the producer and

consumer processes to simultaneously access the queue, so

long as they do not access the same queue entry. It is more

efficient than the lock-based synchronization, in which only

one process can access the queue at one time. Our current

lock-free queue implementation is based on [22], while other

improved lock-free queue implementations [17], [23] can also

be used in LVRM.

C. Interfacing between LVRM and VRs

LVRM is designed with the capability of hosting different

implementations of VRs, provided that we allow minimal

changes to the interfaces of the VRs in order for the VRs to

communicate with LVRM. Specifically, instead of accessing

data frames via network interfaces, the VRIs of each VR

should now access data via the IPC queues. LVRM allocates a

shared memory segment for each IPC queue (via the function

call shmget()). The shared memory segment is associated
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Sender S1

Sender S2

Fig. 3. The experimental topology.

with a shared memory identifier, through which LVRM and

VRIs can access.

Each VR implements the essential data forwarding/routing

functions as a software-based router. It can spawn multiple

VRIs for processing raw frames. Note that the internal pro-

cessing of the VRI on the raw frames is transparent to LVRM.

We consider two types of user-level VRs to be hosted by

LVRM, including (i) C++ VR, a simple data forwarding pro-

gram written in C++ and (ii) Click VR, a forwarding program

based on Click Modular Router [20]. By default, both types

of VRs perform the minimal data forwarding function, i.e., by

simply relaying data frames from an input network interface

to an output network interface. Note that the Click VR parses

a configuration script to conduct the forwarding function, and

internally relays data frames via different modules. Thus, we

expect that the C++ VR is more lightweight and can eliminate

the internal processing overhead in Click.

III. Experiments

In this section, we conduct empirical studies on LVRM and

evaluate its performance overhead. The goals of our empirical

studies are two-fold. First, we show that LVRM incurs minimal

performance overhead, even it is deployed in user space.

Second, we show that LVRM is load-aware, in the sense that

it dynamically allocates core resources for VRIs with regard

to the current loads of forwarding traffic.

A. Experimental Setup

Testbed. Figure 3 shows the testbed where we conduct our

experiments. The testbed is composed of two sub-networks

that connected by a gateway, on which we deploy LVRM.

The sub-networks and the gateway are connected via 1-

Gigabit switches and network interfaces (i.e., the raw network

bandwidth is 1Gbps). We put two sender hosts (S1 and S2)

on one sub-network, and two receiver hosts (R1 and R2) on

another sub-network. We have senders S1 and S2 generate raw

frames (in layer 2) to receivers R1 and R2 via the gateway,

respectively.

The gateway is deployed on a machine with two Intel

Xeon E5530 64-bit quad-core 2.4GHz CPUs (i.e., a total of

eight cores) and 8GB RAM. The sender and receiver hosts

are deployed on machines with two Intel Xeon 64-bit dual-

core W3565 3.2GHz CPUs and 2GB RAM. All machines are

running Linux 2.6.35 with Ubuntu 10.10. The implementation

is based on C++, and is compiled with GCC 4.4.5 with the

-O3 option.

Before we conduct our experiments, we first evaluate

whether our testbed can reflect a realistic network environ-

ment. In particular, we consider the maximum frame rate



[7] achievable by the gateway in forwarding data traffic. To

obtain our measurements, we enable Linux IP forwarding in

the gateway, so that it can relay traffic from the senders to

the receivers. Each sender host generates raw frames to its

respective receiver host using the minimum frame size of an

Ethernet frame [7], which is 84 bytes (including the preamble,

payload, and check sequence). We obtain the maximum frame

rate by increasing the sending rate of each sender host until

the sending rate and the receiving rate differ by more than

2%. Based on our measurements, we find that both sender

hosts can simultaneously send at most 224K frames per second

(fps) based on our requirement. Thus, the maximum frame rate

achievable by the gateway is 2×224 Kfps = 448 Kfps. This

value lies in the range of the maximum frame rates achievable

by commercial routers (e.g., 225 Kfps for a Cisco 3745 router

[8] and 2 Mfps for a Cisco 7200 router [10]). Thus, we believe

that our testbed can realistically resemble a routing network.

In our experiments, we have LVRM host two types of VRs:

C++ VR and Click VR (see Section II-B). Both VRs perform

the minimal data forwarding function by relaying raw frames

from the interface of the sender sub-network to the interface

of the receiver sub-network, as shown in Figure 3.

Default implementation of LVRM. Unless otherwise spec-

ified, we assume the following default implementation of

LVRM. We assume that the socket adapter is based on

PF RING. LVRM uses dynamic core allocation, and uses the

join-the-shortest-queue scheme for load balancing.

Metrics. We are interested in two metrics:

• Achievable throughput. It corresponds to the maximum

frame rate achievable by LVRM such that the sending

rate and the receiving rate differ by no more than 2%.

• Round-trip latency. It corresponds to the average round-

trip time obtained via the ICMP Ping utility. We generate

400K ICMP echo requests from a sender host to a

receiver host, and measure the average round-trip time

for the sender host to obtain the ICMP echo replies from

the receiver host.

B. Performance Overhead of LVRM

We first evaluate the performance overhead of the data path

in LVRM. We seek to address the following questions:

• Given that LVRM is deployed in user space, does it incur

significant performance overhead in data forwarding?

• Given that LVRM targets only data forwarding, is it

more lightweight than general-purpose hypervisors that

are designed for monitoring virtual machines?

In this subsection, we consider the case where LVRM hosts

a single VR, and the VR uses only a single VRI to process raw

frames. In Sections III-C and III-D, we consider how LVRM

hosts a single VR with multiple VRIs, and how LVRM hosts

multiple VRs.

Experiment 1a (Achievable throughput in data forward-

ing). In this experiment, we aim to show that LVRM will

not become a performance bottleneck in data forwarding

throughput. Using the topology in Figure 3, we have both

sender hosts generate raw frames of different frame sizes via

the gateway to their respective receiver hosts, and then measure

the achievable throughput. Here, we consider three types of

data forwarding mechanisms deployed in the gateway:

• Native Linux IP forwarding: We enable the IP forwarding

function in the gateway, and the forwarding decision is

made within the Linux kernel.

• LVRM: We disable Linux IP forwarding, and have LVRM

forward raw frames. Specifically, upon receiving raw

frames from the input network interface of the sender

sub-network, LVRM relays the raw frames to the VR that

is being hosted, and the VR relays the raw frames to the

outgoing network interface of the receiver sub-network.

In particular, we consider three variants of LVRM:

– LVRM with C++ VR and raw socket, in which

LVRM hosts a C++ VR and uses non-blocking polls

of the system call recvfrom() to retrieve raw

frames from the network interface,

– LVRM with C++ VR and PF RING, in which LVRM

hosts a C++ VR and uses the PF RING library [12]

to retrieve raw frames, and

– LVRM with Click VR and PF RING, in which LVRM

hosts a Click VR and uses PF RING.

We assume that each VR uses a single VRI for forwarding

raw frames. In later experiments, we also study how mul-

tiple VRIs further improve the forwarding performance.

• General-purpose hypervisors: We consider two publicly

known general-purpose hypervisors VMware Server [28]

and QEMU-KVM [4]. In each of the hypervisors, we

host a guest virtual machine (VM), on which we install

Linux and enable the IP forwarding function. We set the

network adapter of each guest VM to bridged mode, so

as to allow the guest VM to forward data frames. Each

of the hypervisors relays traffic to the guest VM, which

then relays traffic to the receiver sub-network through its

hypervisor.

Figure 4 shows the achievable throughput of different data

forwarding mechanisms versus the frame size1. First, we

observe that native Linux IP forwarding has the highest achiev-

able throughput for all frame sizes. This result is expected,

since the data path is the simplest among all the mechanisms.

The throughput performance of the general-purpose hyper-

visors (i.e., VMware Server and QEMU-KVM) is worse than

native IP Linux forwarding. A reason is that in addition to

data forwarding, they also incur performance overhead of

processing various operating system tasks. We observe that

QEMU-KVM has significantly poor performance. We do not

know the exact reason, but we conjecture that the performance

may be improved with other configuration settings.

For LVRM, it generally achieves higher throughput than

the general-purpose hypervisors. We note that using the Click

VR has smaller throughput than the C++ VR, since the

1It is expected that for small frames, the throughput is less than the raw
bandwidth 1Gbps, mainly due to the processing overhead of a large number
of frames.
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Click VR has more internal operations and hence higher

processing overhead. It is important to note that the throughput

performance also depends on the use of socket adaptors. The

PF RING-based LVRM generally has higher throughput than

the raw-socket-based LVRM. As shown in Figure 4, if C++

VR is hosted, then the PF RING-based LVRM outperforms

the raw-socket-based LVRM for smaller frame sizes (e.g., by

50% when the frame size is 84 bytes). More importantly, it

achieves very similar throughput as compared to native Linux

IP forwarding for all frame sizes.

We point out that there is room for further improving the

achievable throughput of LVRM, for example, through the I/O

optimization of the Linux network stack (e.g., see [13], [18]).

Note that PF RING is designed for packet capture, and it only

optimizes the receiving side of raw frames. When sending raw

frames, LVRM still uses the raw socket, which first copies the

sending frames to the kernel before the frames are sent to the

network. On the other hand, optimizing the Linux network

stack requires kernel modifications, and we pose this issue as

future work.

Experiment 1b (Round-trip latency in data forwarding).

In this experiment, we seek to show that LVRM is not the key

overhead compared to the network in terms of the latency of

forwarding raw frames. We compare different data forwarding

mechanisms as in Experiment 1a.
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Figure 5 shows the results of different data forwarding

mechanisms as defined in Experiment 1a. We observe that both

Linux IP forwarding and different variants of LVRM return

similar round-trip latencies, and their differences are mainly

due to the variance in measurements. On the other hand,

the general-purpose hypervisors QEMU-KVM and VMware

Server return remarkably higher round-trip latencies.

Experiment 1c (Maximum achievable throughput with

LVRM only). To fully understand the internal overhead (e.g.,

CPU or memory) of LVRM, we consider a different setting

that excludes the network transmission part. Here, we load a

trace file of 100M minimum-sized frames (i.e., 84 bytes) into

main memory within the gateway. We add an input interface to

LVRM to read the raw frames from RAM, and add an output

interface to LVRM to simply discard the frames. Then LVRM

reads the frames from RAM as fast as possible, relays the

frames to a hosted VR, and forwards the frames to the output

interface that will simply discard the frames. This enables us

to eliminate the overhead that occurs in network transmissions.

Here, we consider both C++ VR and Click VR, both of which

use a single VRI to process the frames.
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Fig. 6. Experiment 1c (Achievable throughput with LVRM only).

Figure 6 shows the results. We note that C++ VR can

achieve a significantly higher throughput than Click VR,

mainly because the latter is the implementation of a software

router and contains different internal operations that incur

substantial processing overhead. Thus, the peak achievable

throughput depends on the implementation of a VR. For C++

VR, which is a very simple VR implementation, LVRM can

achieve 3.7M frames per second for the smallest frame size 84

bytes; it can achieve 922K frames per second, or equivalently,

11Gbps, for the largest frame size 1538 bytes.

Experiment 1d (Round-trip latency with LVRM only).

Similar to Experiment 1c, we evaluate the minimum round-trip

latency with LVRM only by excluding the network transmis-

sion part. We use the same setting as in Experiment 1c, that is,

we let LVRM read raw frames from main memory rather than

from the network interface. LVRM forwards it to a VR that is

hosted, and the VR forwards it to the output interface, where

we simply discard the raw frames. We measure the latency of

each frame from the input interface (i.e., main memory) to the

output interface (i.e., where the raw frames are discarded) and

compute the average latency for a given frame size.

Figure 7 shows the results. If C++ VR is hosted on LVRM,

the latency is within 15 µs, as opposed to 70-120 µs as in

Experiment 1b. Thus, LVRM by itself does not contribute too

much latency overhead as opposed to the network interface.

The use of Click VR introduces a higher latency (in the range

of 25-35 µs), but this latency remains small in general.
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Fig. 7. Experiment 1d (Round-trip latency with LVRM only).

Experiment 1e (Latency of message passing). We now

evaluate the latency of LVRM in relaying messages among

VRIs. We have LVRM host a C++ VR, which has two VRIs.

Then we have one of the VRIs send a control event to another

VRI through the control queues. Then we measure the latency

of such message passing between the two VRIs. We consider

two settings: (i) no load, in which there is no raw data frames

traversing LVRM, and (ii) full load, in which we use the

topology in Figure 3 and have the sender hosts generate raw

frames to the receiver hosts at the achievable throughput (see

Experiment 1a).
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Fig. 8. Experiment 1e (Latency of message passing).

Figure 8 shows the latency of relaying control events

between two VRIs versus different sizes of the control events.

The full-load setting has a higher latency than the no-load one.

The reason is that in the full-load setting, a VRI is usually in

the middle of processing a data frame when a control event

arrives in the control queue, so it incurs some delay to retrieve

the control event. However, we observe that the latency in the

full-load setting remains in the range of 10-12 µs, which is

relatively small compared to the network transmission part (see

Experiment 1b). In the no-load setting, the latency is only in

the range of 5-7 µs. Overall, the latency overhead of relaying

control events between two VRIs is insignificant.

C. Core Allocation

We now evaluate the core allocation mechanism in LVRM.

Based on the topology in Figure 3, we have the two sending

hosts generate a certain traffic load, which contains raw frames

of minimize frame size (i.e., 84 bytes), to the gateway on

which we run LVRM. Our goal is to show that LVRM can

dynamically allocate CPU cores to a VR based on the input

traffic load.

Experiment 2a (Throughput analysis on core affinity). In

this experiment, we evaluate how core affinity in the core

allocation mechanism affects the throughput. We have LVRM

host a single VR (either the C++ VR or the Click VR), and

we create a single VRI for the VR to process raw frames. We

run LVRM as a user-space process on a CPU core. Given that

our gateway has two quad-core CPUs, we consider different

approaches of allocating a CPU core for the VRI: (i) “sibling”,

in which LVRM dedicates a CPU core that resides in the

same CPU as with LVRM, (ii) “non-sibling”, in which LVRM

dedicates a CPU core that resides in a different CPU as with

LVRM, (iii) “default”, in which LVRM lets the kernel assign

the CPU core to the VRI, and (iv) “same”, in which LVRM

dedicates the same CPU core on which LVRM is currently

running (i.e., it has two processes running on one core).

Figure 9 shows the achievable throughput for both C++

and Click VRs. Clearly, the “same” approach has the poorest

performance, as a single core is bound with more than one pro-

cess. For the Click VR, both the “sibling” and “non-sibling”

approaches have similar achievable throughput, mainly be-

cause the bottleneck is due to the processing load of the Click

implementation. However, for the C++ VR, we observe that

the “sibling” approach has the highest achievable throughput.

Thus, in general, it is more beneficial to first associate a sibling

core to a VR if possible.
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Fig. 9. Experiment 2a (Throughput analysis on core affinity).

We also note that the “default” approach has less achievable

throughput, even when compared to the “non-sibling” ap-

proach. The reason is that the kernel may occasionally switch a

VRI process to a different core. This creates context switches,

and will degrade the throughput performance. Thus, LVRM

seeks to dedicate a core to a VRI process.

Experiment 2b (Throughput comparisons on fixed core

allocation). In this experiment, we seek to show that it is

important to adjust the number of cores assigned to a VR

based on its traffic load. We have LVRM host a single VR

(either the C++ VR or the Click VR). We then let LVRM

fix the number of cores (i.e., VRIs) associated with the VR

at the beginning when the VR is first started. Based on the

topology in Figure 3, we inject a traffic load of maximum

360 Kfps. In the C++/Click VR implementation, we add a



dummy processing load of 1/60 ms for each received raw

frame before the raw frame is to be forwarded. In the ideal

case, if c ≤ 6 cores are allocated for a VR, then the achievable

throughput is 60c Kfps.

Figure 10 shows the achievable throughput of the C++/Click

VR versus the number of cores allocated for the VR, as well as

the maximum achievable throughput in the ideal case (labeled

as “max”). Note that the gateway that we currently use has

eight CPU cores, one of which is used by the LVRM process

itself. Thus, we have seven cores available for the VR. We

observe that the achievable throughput of the VR can scale

up with the number of cores available. For the C++ VR,

its achievable throughput is slightly less than the ideal case,

implying that LVRM by itself is not a performance bottleneck.

On the other hand, if the number of allocated cores is larger

than the actual number of cores available in the gateway, then

we observe contention, and the achievable throughput drops.

Thus, LVRM seeks to limit the number of cores allocated for a

VR based on the available CPU cores in the currently deployed

system.
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Fig. 10. Experiment 2b (Throughput analyses on number of instances).

Experiment 2c (Dynamic core allocation). In this experi-

ment, we evaluate the dynamic core allocation approach that

adjusts the number of CPU cores based on the traffic load of

a VR. We assume that LVRM hosts a single C++ VR, whose

number of VRIs is varied by LVRM based on the current traffic

load. Based on our topology in Figure 3, the two sending hosts

generate an aggregate of traffic rate at S (in Kfps) for the C++

VR, while S increases from 60 to 360, and decreases from 360

to 60, at a step size of 60 at every 5 seconds. We also add

a dummy processing load of 1/60 ms for each received raw

frame to the VR implementation. We allocate c CPU cores to

the VR if the aggregate traffic rate is 60(c− 1) and 60c Kfps.

For example, LVRM initially allocates one CPU core for the

VR. If the aggregate traffic rate reaches the threshold 60 Kfps,

then LVRM increments the number of cores for the VR to two.

Note that each allocated core is associated with a VRI.

Figure 11 shows the number of CPU cores (or VRIs)

allocated for the C++ VR with respect to the traffic rate. We

observe that the number of cores is allocated for the VR in an

expected manner. This shows that our dynamic core allocation

approach can adapt the number of CPU cores with respect to

the traffic load of a VR.
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Fig. 11. Experiment 2c (Dynamic core allocation for one VR).

We also measure the time for allocating/deallocating a core

for a VR (not shown in the figure). In general, we observe that

the time is within 1 ms. Thus, the core allocation/deallocation

process can be completed within a small reaction time.

Experiment 2d (Dynamic core allocation with more than

one VR). In this experiment, we aim to show that our dynamic

core allocation can handle more than one VR. We now have

LVRM host two C++ VRs. Based on our topology in Figure 3,

each sending host generates a flow that is to be forwarded by

a respective C++ VR. We also have the two flows start at

different times. The core allocation condition is the same as

in Experiment 2c, such that we allocate c CPU cores to each

VR if the aggregate traffic rate is 60(c−1) and 60c Kfps. The

traffic generation approach is similar to that in Experiment 2c,

except that each flow has a maximum rate 180 Kfps and the

step size is 30 Kfps.

Figure 12 shows how the core allocation scheme adjusts

the numbers of CPU cores for each of the VRs based on their

traffic rates. We observe that each of the VRs is allocated the

number of cores in an expected manner, and the allocation is

reflected with a small reaction time.
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Fig. 12. Experiment 2d (Dynamic core allocation for more than one VR).

D. Load balancing

In this subsection, we explore the load balancing implemen-

tation of LVRM. Using the topology in Figure 3, we have the

two sending hosts generate raw frames of minimize frame size

(i.e., 84 bytes) to the gateway on which we run LVRM. Our

goal is to explore the achievable throughput of different load

balancing implementations.



Experiment 3a (Throughput of load balancing implemen-

tation in a single VR). In this experiment, we first evaluate

how LVRM balances the processing load among VRIs of a

single VR. We generate a traffic load of 360 Kfps to the

gateway. We have LVRM host a single VR (either the C++

VR or the Click VR). In the VR implementation, we also add

a dummy processing load of 1/60 ms to each VRI. Based on

dynamic core allocation, the VR eventually is allocated six

cores, each of which runs a VRI (see Experiment 2c). We

evaluate different load balancing approaches, including join-

the-shortest-queue (JSQ), round-robin (RR), and random (see

Section II-B). We then evaluate the achievable throughput of

each load balancing scheme.

Figure 13 shows the achievable throughput of different load

balancing schemes, as compared to the maximum achievable

throughput (labeled “max”) in the ideal case (i.e., 360 Kfps).

The load balancing schemes have similar achievable through-

put. The Click VR has less achievable throughput than the

C++ VR, mainly due to its internal processing load. Note that

JSQ slightly outperforms others since it distributes raw frames

based on the current load of each VRI, while RR and random

do not take this factor into account.
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Fig. 13. Experiment 3a (Load balancing among VRIs of a VR).

Experiment 3b (Load balancing among VRs). In this

experiment, we evaluate how LVRM balances the loads of

more than one VR. We have LVRM host two VRs that are

either both C++ VRs or both Click VRs. Using the topology

in Figure 3, each sending host generates a flow that is to be

forwarded by a respective VR. The traffic rate of each flow is

180 Kfps (i.e., the aggregate traffic rate is 360 Kfps). For each

of the two VRs, we measure the achievable throughput values

(call them T1 and T2). Then we compute T = 2×min(T1, T2),
and compare it with the ideal value (i.e., 360 Kfps). If T is

close to the ideal value, then it implies that both VRs receive

fair shares of processing load.

Figure 14 shows the results. For the C++ VR, we observe

that the value of T for each of the load balancing scheme

is very close to the ideal value (labeled as “Max”). For the

Click VR, its achievable throughput is less due to its internal

processing load. Overall, LVRM can maintain load balancing

among more than one VR. Also, similar to Experiment 3a, we

observe that JSQ outperforms other load balancing schemes.
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Fig. 14. Experiment 3b (Load balancing among VRs).

E. Lessons Learned

We summarize the lessons learned from our experiments.

• Overall, LVRM itself incurs minimal performance over-

head in data forwarding in terms of throughput and

latency. It also provides a more lightweight approach than

general-purpose hypervisors for hosting VRs.

• LVRM dynamically allocates CPU cores for VRs based

on their traffic loads, with very small reaction times. To

make core allocation effective, it is desirable to first select

sibling cores that reside in the same CPU as LVRM for

core allocation, and to dedicate a CPU core to at most

one VRI.

• LVRM performs load balancing among VRIs of a VR,

as well as among VRs. In general, the join-the-shortest-

queue approach slightly outperforms other approaches

that do not consider the current load of a VRI, such as

round robin and random.

IV. Related Work

Router virtualization has appeared in commercial products.

For example, Cisco [9] and Juniper [21] partition the resources

of a physical router into multiple logical routers, each of which

has its own configuration and inventory information. However,

their logical router management systems are not fully open-

sourced, and hence lack the flexibility of customizing their

resource management policies.

Software programmable routers have been studied for em-

ulating routing functions of hardware routers. For example,

router plugins [11] are proposed such that they can be dy-

namically configured, loaded, and unloaded in the kernel.

Another software router architecture [26] is built on top of

network processors, where low-level implementation issues of

network processors are addressed. In particular, Click [20] and

XORP [19] are extensible software router architectures that

build configurable and flexible router instances and can run on

commodity infrastructures. In the context of router virtualiza-

tion, both Click and XORP can be extended for multi-process

frameworks. SMP Click [6] proposes Click optimization on

a multiprocessor setting that parallelizes packet processing,

while XORP enables multiple routing processes for different

routing protocols to run entirely sandboxed. Other areas of

router virtualization include router experimentation [3], [25],

performance evaluation of software-based virtual routers on



commodity hardware [14], [15], virtual router migration across

hardware platforms [29], parallel executions of virtual ma-

chines on a single data plane [24], and network I/O fairness

[1]. In particular, both [24], [1] address resource allocation

of virtual instances in the context of network virtualization.

In [24], it considers allocation of processing power among

different forwarding engines; while in [1], it allocates an

upper bound of bandwidth shares to virtual machines via rate

limiting. Both of them do not consider how the allocation can

be fine-tuned based on the load of each virtual instance.

With the emergence of multi-core technologies, multi-core

router design is getting increasing attentions. A PC-based

software router architecture [5] is proposed to use kernel-level

enhancements (e.g., CPU core binding of kernel-level packet

ring buffers) for a multi-core server to speed up the routing

performance. RouteBricks [13] proposes a multi-core archi-

tecture that speeds up packet processing, and PacketShader

[18] further accelerates packet processing using both multi-

core and GPU technologies. Note that [13], [18] use available

CPU cores for boosting the packet I/O performance, while

we focus on using cores for packet processing inside routers.

Our work differentiates itself from all the above virtual router

architectures in that it considers CPU core allocation that is

adaptive to the current traffic load.

V. Conclusions

We explore the potential of building a router virtualization

architecture in user space. We propose LVRM, a user-space

load-aware virtual router monitor that hosts software-based

virtual routers atop a commodity multi-core platform. A key

feature of LVRM is to dynamically allocate CPU cores to

different virtual routers based on their traffic loads. We pro-

pose an extensible design for LVRM that supports different

variants of implementation including core allocation, load

balancing, load estimation, and inter-process communication.

We implement a proof-of-concept prototype of LVRM, and

conduct extensive empirical experiments. We demonstrate that

LVRM incurs minimal performance overhead in terms of

throughput and latency as compared to hosting virtual routers

atop general-purpose hypervisors. We also compare different

variants of implementation for different components of LVRM,

and show the extensibility of LVRM.

The source code of LVRM is published for academic use

at http://ansrlab.cse.cuhk.edu.hk/software/lvrm.

Acknowledgment

The work was supported in part by the CUHK CSE startup

fund and the CUHK faculty direct grant number 2050447.

REFERENCES

[1] M. B. Anwer, A. Nayak, N. Feamster, and L. Liu. Network I/O Fairness
in Virtual Machines. In ACM SIGCOMM Workshop on VISA, 2010.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neuge-
bauery, I. Pratt, and A. Warfield. Xen and the Art of Virtualization. In
Proc. of ACM Symp. on Operating Systems Principles (SOSP), 2003.

[3] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In VINI
Veritas: Realistic and Controlled Network Experimentation. In Proc. of

ACM SIGCOMM, 2006.

[4] F. Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX

ATC, Apr. 2005.
[5] R. Bolla and R. Bruschi. PC-based Software Routers: High Performance

and Application Service Support. In ACM workshop on Programmable

routers for extensible services of tomorrow, Aug. 2008.
[6] B. Chen and R. Morris. Flexible control of parallelism in a multipro-

cessor PC router. In USENIX ATC, pages 333–346, June 2001.
[7] Cisco Systems, Inc. Bandwidth, packets per second, and other net-

work performance metrics. http://www.cisco.com/web/about/security/
intelligence/network performance metrics.html.

[8] Cisco Systems, Inc. Cisco 3700 Series Multiservice Access
Routers [Cisco 3700 Series Multiservice Access Routers] - Cisco
Systems. http://www.cisco.com/en/US/prod/collateral/routers/ps282/
product data sheet09186a008009203f.html, 2004.

[9] Cisco Systems, Inc. Configuring Logical Routers on Cisco IOS
XR Software. http://www.cisco.com/en/US/docs/ios xr sw/iosxr r3.2/
interfaces/configuration/guide/hc32logr.html, 2005.

[10] Cisco Systems, Inc. Cisco 7200 Series Routers - Products & Services
- Cisco Systems. http://www.cisco.com/en/US/products/hw/routers/
ps341/, 2011.

[11] D. Decasper, Z. Dittia, G. Parulkar, and B. Plattner. Router Plugins: A
Software Architecture for Next Generation Routers. ACM SIGCOMM

Computer Communication Review, 28(4):229–240, Oct 1998.
[12] L. Deri. Improving Passive Packet Capture: Beyond Device Polling. In

System Administration and Network Engineering, Sept. 2004.
[13] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K. Fall, G. Iannaccone,

A. Knies, M. Manesh, and S. Ratnasamy. RouteBricks: Exploiting
Parallelism To Scale Software Routers. In ACM Symp. on Operating

Systems Principles (SOSP), Oct 2009.
[14] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy.

Towards High Performance Virtual Routers on Commodity Hardware.
In Proc. of ACM CoNEXT, Dec. 2008.

[15] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, L. Mathy, and
P. Papadimitriou. Implementing Software Virtual Routers on Multi-core
PCs using Click. In First Symp. on Click Modular Router, Nov. 2009.

[16] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, L. Mathy, and T. Schoo-
ley. Evaluating Xen for Router Virtualization. In Proc. of IEEE ICCCN,
2007.

[17] J. Giacomoni, T. Moseley, and M. Vachharajani. Fastforward for efficient
pipeline parallelism: a cache-optimized concurrent lock-free queue. In
Proc. of PPoPP, 2008.

[18] S. Han, K. Jang, K. Park, and S. Moon. PacketShader: a GPU-
accelerated Software Router. In Proc. of ACM SIGCOMM, 2010.

[19] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov.
Designing Extensible IP Router Software. In USENIX NSDI, May 2005.

[20] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The
Click modular router. ACM Trans. on Computer Systems, 18(3):263–
297, Aug. 2000.

[21] M. Kolon. Intelligent Logical Router Service. http://www.juniper.net/
solutions/literature/white papers/200097.pdf, Oct 2004. Juniper Net-
works, Inc.

[22] L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE

Trans. on Software Engineering, 3(2), Mar 1977.
[23] P. P. C. Lee, T. Bu, and G. Chandranmenon. A Lock-Free, Cache-

Efficient Multi-Core Synchronization Mechanism for Line-Rate Network
Traffic Monitoring. In Proc. of IEEE IPDPS, Oct 2010.

[24] Y. Liao, D. Yin, and L. Gao. PdP: Parallelizing Data Plane in Virtual
Network Substrate. In ACM SIGCOMM Workshop on VISA, 2009.

[25] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner. OpenFlow: enabling innovation in
campus networks. ACM SIGCOMM Computer Communication Review,
38(2):69–74, Apr 2008.

[26] T. Spalink, S. Karlin, L. Peterson, and Y. Gottlieb. Building a Robust
Software-Based Router Using Network Processors. In ACM Symp. on

Operating Systems Principles (SOSP), Oct 2001.
[27] W. R. Stevens. UNIX Network Programming: Networking APIs –

Sockets and XTI, 1998.
[28] VMware, Inc. VMware Server, Free Virtualization Download for Virtual

Server Consolidation. http://www.vmware.com/products/server/, 2011.
[29] Y. Wang, E. Keller, B. Biskeborn, J. van der Merwe, and J. Rexford.

Virtual Routers on the Move: Live Router Migration as a Network-
Management Primitive. In Proc. of ACM SIGCOMM, Jul 2008.


