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Abstract—This paper presents a novel method that acquires 

camera position and orientation from a stereo image sequence 

without prior knowledge of the scene. To make the algorithm 

robust, the Interacting Multiple Model Probabilistic Data 

Association Filter (IMMPDAF) is introduced. The Interacting 

Multiple Model (IMM) technique allows the existence of more 

than one dynamic system in the filtering process and in return 

leads to improved accuracy and stability even under abrupt 

motion changes. The Probabilistic Data Association (PDA) 

framework makes the automatic selection of measurement sets 

possible, resulting in enhanced robustness to occlusions and 

moving objects. In addition to the IMMPDAF, the trifocal tensor 

is employed in the computation so that the step of reconstructing 

the 3-D models can be eliminated. This further guarantees the 

precision of estimation and computation efficiency. Real stereo 

image sequences have been used to test the proposed method in 

the experiment. The recovered 3-D motions are accurate in 

comparison with the ground truth data and have been applied to 

control cameras in a virtual environment. 

 

Index Terms: Pose tracking, Virtual reality, Augmented Reality, 

Interacting multiple model, Probabilistic data association, 

Trifocal tensor, Stereo vision, Multimedia processing 

I. INTRODUCTION 

irtual camera control can be understood as moving the 

user’s point of view in a 3-D virtual environment [1]. 

This task is also known as 3-D scene exploration or viewpoint 

placement in the computer graphics community. Controlling 

the camera viewpoint is crucial for a wide range of 

applications, for instances, movie making for entertainment 

and design of camera motions in animations. Given the 3-D 

structures, the problem of camera motion recovery can be 

solved using the model-based approaches [2][3][7][31], 

which are well-known and have good performance under a 

controlled environment. If prior information on the scene is 

not available, traditional Structure from Motion (SFM) 

algorithms [4][5], which simultaneously estimate the scene 

structure and pose information, are required. Lee and Kay [8] 

used an EKF to estimate the pose as well the structure of an 

object with a stereo camera system. The series of methods in 

[4][5][9][10][11][12][13] recover both the structure and 

motion simultaneously using Kalman filters.  

The research presented in this paper belongs to a different 

category: Motion from Motion (MFM), as mentioned in [16], 

in which the main concern is the camera position and 

orientation but not the 3-D structure. To be more precise, 

MFM algorithms have the capability of estimating 3-D 

camera motion directly from 2-D image motion without the 

explicit reconstruction of the scene structure, even though the 

3-D model structure is not known in prior [14][15][17][18]. 

As keeping track of the structural information is no longer 

required, putting these types of algorithms into real 

applications is relatively easy and convenient. 

A robust recursive MFM algorithm that recovers camera 

motion from a stereo image sequence for virtual reality based 

on the Interacting Multiple Model Probabilistic Data 

Association Filter (IMMPDAF) technique [21][22] is 

proposed in this article. The IMMPDAF computes the state 

estimates using multiple Probabilistic Data Association Filters 

(PDAFs), each of them describing a unique motion dynamic, 

and provides a probabilistic framework for the PDAFs to 

interact. The PDAF is able to account for the uncertainty of 

the measurement origin. Measurements acquired are checked 

against a validation region and the association probabilities of 

the validated measurements are computed, with which the 

final state is estimated. The IMMPDAF was originally 

designed to track a single target in a randomly distributed 

cluttered environment by the combination of multiple 

trajectory models with measurements from a radar and an 

infrared sensor [22]. Recently, such a concept has been 

adopted to the extraction of cavity contours from ultra sound 

images [24]. From the literature we have encountered, it is 

believed we are the first to incorporate the IMMPDAF 

framework into the latest model-less method [6][15] for 3-D 

motion recovery. The proposed approach is able to achieve 

high accuracy and stability under occlusions, moving objects, 

and the presence of abrupt motion changes. Compared to our 

previous SFM-based method that employs only the 

Interacting Multiple Model (IMM) [13], its performance has 

been greatly improved due to the probabilistic association of 

point features and model-free nature of the algorithm. 

Strengths of our algorithm are: 
 

Robust operation even when one of the stereo cameras 

is partially blocked. By making use of the Probabilistic Data 

Association (PDA) method [21], the proposed algorithm is 

able to take all available corner features into account in the 

filtering process elegantly no matter whether these features do 

or do not have stereo correspondences. Also, the PDA 

formulation enables our approach to choose reliable 

measurements, reject outliers and give weighting factor to the 

selected set of corner features, leading to an increase in 

robustness of the proposed method. 
 

Considering multiple motion dynamics and abrupt 

motion changes. With the Interacting Multiple Model (IMM) 

algorithm [22], a number of hypotheses on camera motion are 

enabled in our filter. The best motion model is “chosen” by 

the IMM algorithm in a probabilistic way. The highest 

accuracy on the recovered camera pose can thus be achieved 

due to the automatic application of the motion constraint. 

Moreover, the mechanism of “switching” among different 

models allows the presence of abrupt motion changes. In 

specific applications, the stability can be improved compared 

to the EKF-based approaches for SFM that use only one 

motion model. 
 

 

Recovering position and orientation without the explicit 

reconstruction of 3-D structure. Our novel method is able 

to compute the pose information directly from a stereo image 
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sequence without the step of reconstructing the 3-D model. 

To achieve the goal, the trifocal tensor point transfer function 

is applied to the measurement model of the filter. At each 

filtering cycle, only the 6 parameters of the pose, instead of N 

+ 6 parameters of both the structure and motion, are required 

to be estimated.  

This paper is organized as follows. The pose acquisition 

problem is defined in Section II. An overview of the 

IMMPDAF pose tracking algorithm is then illustrated in 

Section III. The details of the application of trifocal tensor, 

the formulation of the PDAF and IMMPDAF are given in 

Section IV. In Section V, the comparison among our 

approaches, the trifocal tensor-based EKF by Yu et. al. [15] 

and the standard model-based EKF [3] using synthetic data is 

presented. Also, experimental results of our IMMPDAF 

approach with a real stereo image sequence having ground 

truth are shown. Application of our method to virtual reality is 

illustrated before making a conclusion. 

II. MODELING OF THE POSE TRACKING PROBLEM 

 
Fig. 1. The geometric model used in this article. 

The geometric setup of our stereo system is shown in Fig. 1. 
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where E is a 43×  matrix representing the rigid 

transformation between the two cameras. K is a 33×  matrix 

that encodes the intrinsic parameters of a camera such as the 

focal length f. 
tM  transforms the 3-D structure from the 

world frame to the reference camera at time instance t. It can 

be parameterized into xt, yt, zt, ttt γβα ,, , which are 

respectively the translations in the x, y and z direction and  the 

rotations about the x, y and z axis, using the twist 

representation [27]. The actual image coordinates 
T

tntntn vup ],[ ,,, =  on the left view and T

tntntn vup ]','[' ,,, =  on the 

right view are respectively given by    
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The objective of the proposed algorithm is to compute the 

3-D camera motion, i.e. Mt, at each time-step recursively 

given only the image measurements 
tnp ,
 and 

tnp ,' . 

III. OUTLINE OF THE ALGORITHM 

A. Initialization 

An overview of the proposed pose tracking algorithm is 

shown in Fig. 2. The Kanade-Lucas-Tomasi (KLT) tracker 

[20] is employed to extract feature points and track them in 

the succeeding images. Starting from the 1
st
 image pair at time 

t=1, and stereo images are matched with each other to 

establish the stereo correspondences. To perform stereo 

matching, features from the left and right images are used to 

find the fundamental matrix (F) [26] and the Random Sample 

Consensus (RANSAC) robust estimator [23]. 

 
Fig.2. A flowchart giving an outline of the proposed algorithm. 

A guided search is then performed. The pair of points, say 

tn
p ,

 and 
tn

p ,' , is regarded as matched if the distance between 

tnp ,
 and the epipolar line of 

tn
p ,'  is the shortest and has the 

highest correlation value. The set of newly acquired matches 

is used to improve the accuracy of F, which can in turn be 

applied to the next guided search. The process is repeated 

until no more point matches can be found [25]. With known 

camera intrinsic parameters K, the extrinsic parameters E of 

the stereo system can be extracted from F according to [26]. 

The values from F are then used as part of the initial guess 

of tensors 1Τ  and 2Τ . A portion of the erroneous point 

features from the KLT tracker are rejected during the setup of 

stereo correspondences in the base image pair, as they are 

unable to have putative matches across the left and right 

views.  

B. Pose acquisition 

The Interacting Multiple Model Probabilistic Data 

Association Filter (IMMPDAF) [21][22] is adopted to 

acquire the pose information from stereo image sequences. It 

is an extension of the Probabilistic Data Association Filter 

(PDAF) [21], a suboptimal Bayesian algorithm assuming that 

there is only one target of interest in the measurements. To 

account for the uncertainty of the origin of the feature 

coordinates, the PDAF associates probabilistically all the 
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point features within the scene. At each time-step, a validation 

region is set up and the probability of each validated 

measurement for being correct is computed. The 

measurements remained are considered as outliers that arise 

either from the inaccuracy of the feature trackers or point 

features on a moving object in the static scene. The filter state 

is estimated based on the association probabilities and 

validated point features. As an improvement on the PDAF, 

the IMMPDAF computes the state estimates using multiple 

motion filters. Each filter, basically a PDAF, describes a 

unique motion dynamic and interacts with the others via a 

probabilistic framework. 

 
Fig.3  Stereo image pair arrangements and partitioning of the views. 

Fig. 3 illustrates the arrangement of image views in our 

pose tracking algorithm. The partition is based on the 

property that point features observed from a stereo camera 

can or cannot have stereo correspondences. As a stereo 

camera captures two images at a time, a pair of images is 

divided into four parts. Two of them are the inner regions of 

the left and the right view, which are denoted by 1

,tnp  and 

2

,tnp , respectively. They completely overlap with each other 

and matching of stereo correspondences is possible. The 

remaining parts are the outer regions of the stereo view, 

denoted by 3

,tnp  and 4

,tnp , that cover the non-overlapping 

portions of the stereo view and the setup of stereo matches is 

impossible. 1

,tnp , 2

,tnp , 3

,tnp  and 4

,tnp  compose of the 4 

measurement sets in the PDAF. The major role of the PDAF 

is to provide a mechanism to “select” the reliable sets of point 

features for filtering. An auxiliary function of PDAF is to 

associate the corresponding point features in the inner parts of 

the stereo images. 

In order to recover the pose information directly without 

the explicit reconstruction of the scene structure, the trifocal 

tensor [26] is required. The 4 sets of measurements in a pair 

of stereo views are linked together by a total of 4 trifocal 

tensors as follows. The first tensor 1Τ  establishes the 

geometric relation among the inner left 1

1,np  and right view 

2

1,np  of the base pair, and the inner left view 1

,tnp  of the 

current stereo image. The second tensor 2Τ  sets up a relation 

among the inner left 1

1,np  and right view 2

1,np  of the base pair, 

and the inner right view 2

,tnp  of the current images. The third 

3Τ  and the fourth 4Τ  tensor connect the outer left views 3

1,np , 

3

',tnp , 3

,tnp  and outer right views 4

1,np , 4

',tnp , 4

,tnp , respectively. 

t’ is an integer such that tt << '1  and is chosen as 10 in the 

experiment. These 4 tensors are incorporated into the 

measurement model of the PDAF. 

The choice of t’ determines how far the first two image 

views in the outer partitions constrained by tensors 3Τ  and 4Τ  

are separated. A good choice of t’ could improve both the 

accuracy and robustness of the proposed approach. If t’ is set 

to a small value, say 2, the separation among image views 
3

1,np , 3

',tnp , 3

,tnp  and among 4

1,np , 4

',tnp , 4

,tnp  may be too small 

when the motion of the cameras is very slow, resulting in a 

near degenerate condition of tensors 3Τ  and 4Τ . Once 

happened, the proposed IMMPDAF can automatically be 

switched to make use of the measurements from the inner 

partitions and continue the operation. A better choice of t’ 

could avoid these two tensors becoming degenerate so that 

point features in all four partitions can be fully utilized, 

enhancing the accuracy and stability of the algorithm. 

In our implementation, three PDAFs are applied in parallel 

under the Interacting Multiple Model (IMM) framework. 

These filters are for static motion, and mixed motion and 

planar motion of constant velocity Additional motion models 

can be incorporated depending on the actual application of 

the proposed algorithm. 

C. Re-initialization 

While the cameras are in motion, the set of observable 

feature points is changing as new scene structures may appear 

and old ones may become out of sight. The coordinates of the 

corner features are input to the filter as measurements. The 

proposed filter is required to be bootstrapped once the 

number of available point features related by the trifocal 

tensors 1Τ  or 2Τ  in the central region of the stereo view is 

below 7. The reason is that a trifocal tensor is unable to be 

established with 6 or less point correspondences across 3 

views. With 7 or more point correspondences, the trifocal 

constraint is able to characterize the rigid motion of the 

cameras.  Under the stereo configuration, a degenerate 

situation of all the 4 trifocal tensors will only occur when the 

cameras are observing a pure planar surface, which is unlikely 

to happen in the reality. Such a situation will not cause the 

system to bootstrap but may lead the algorithm to diverge if 

the cameras do not move by following the original motion 

dynamic. 

During re-initialization, the views at the current time-step 

are set as the new base image pair and the KLT tracker is 

restarted. The number of points constrained by the 4 trifocal 

tensors can be increased by shifting the base image pair 

forward. Matching of stereo correspondences is performed on 

the base pair as mention in Section III-A. Note that the 

fundamental matrix F is not necessary to be re-computed as 

the relative pose of the two cameras is assumed fixed. 
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IV. STRUCTURE-LESS 3-D MOTION RECOVERY WITH 

IMMPDAF 

A.  The dynamic system and measurement model 

Let 
ttttt zyx βα &&&&& ,,,,  and 

tγ&  be the translational velocities 

along the x, y, z axis and the angular velocities on the x, y and 

z axis, respectively. The state vector )(itξ&  of the i
th

 motion 

filter (the i
th

 PDAF) is defined as 

[ ]Tttttttt zyxi γβαξ &&&&&&& =)(     (3) 

With the assumption that sampling rate of the 

measurements is high, the dynamic system of the filter and the 

absolute pose Mt can be expressed using twist as 

ttt iiAi ηξξ += − )()()( 1
&&         (4) 

))(
~

(1

)(
~

1 iIMeMM tt

i

tt
t ξξ &
&

+== −−
      (5) 

 where
66)1( Χ= IA , [ ])010100()2( diagA = and 

660)3( Χ=A  are designed for the mixed motion (translation 

and rotation), planar motion (translation on the z-axis and 

rotation on the Pitch angle) and static motion, respectively. 
tη  

is the zero-mean Gaussian noise with covariance 
tQ . )(

~
itξ&  is 

the matrix form of )(itξ&  [27]. The measurement equations of 

the filter are defined as 

)(),()( kkMgk tttt υε +=        (6) 
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),( kMg tt
 is the 1×N  output function that transfers the 

coordinates of N point features belonging to the k
th
 

measurement set from the base image pair to the t
th

 pair. It is 

actually the trifocal tensor point transfer function and has 

been given in (8), which is presented in the tensor notation. 

)(ktυ  represents the zero-mean Gaussian noise, having 

covariance )(kRt
, imposed on the images captured. kΤ  is the 

trifocal tensor  that encapsulates the geometric relations 

among three views [26] and is defined in Section III-B. Three 

corresponding points across the views related by tensor kΤ  

form a relation known as point-point-point correspondence. 
k

tnU ,
 is the normalized homogenous form of k

tnp ,
 such that 

[ ] [ ]Tk

tn

k

tn

Tk

tn

k

tn

k

tn

k

tn fvfuwvuU 1// ,,,,,, == . The relation 

between tensor kΤ  and matrix Mt , and the construction of line 
k

tnl ,
 can refer to [26].  

B. The interacting multiple model probabilistic data 

association filter (IMMPDAF) 

With the dynamic system and measurement model, the 

IMMPDAF can be implemented. A glance on the steps 

involved is demonstrated in Fig. 4. At the beginning, 

estimates of different motion filters from the previous time-

step )(
ˆ

1,1 itt −−ξ& , associated with covariance )(1,1 iP tt −−
, are mixed 

according to the 33×  switching matrix J(i,j) and the 

likelihood ut-1(i) 
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 where J(i,j) is the Markov model-switching probability that 

gives the jump probability from motion filter i to motion filter 

j. Then the predicted state )(
ˆ

1, itt −ξ& , having covariance )(1, iP tt −
, 

is computed  

t

T

tttt

tttt

QiAiPiAiP

iiAi

+=
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Fig. 4. A summary of the IMMPDAF method. 

After that, the measurements of feature set k predicted by 

the above models are combined using the predicted absolute 

pose ),(ˆ
1, jiM tt −

. 

)),,(ˆ()(),()(ˆ
1,11, kjiMgjujiJk ttt

i j

ttt −−− ∑∑=ε  (13) 

 )(ˆ
1, ktt −ε  represents the predicted coordinates after mixing. 

It is validated and thus should satisfy  
2

1,

1

1, )](ˆ)([)()](ˆ)([ GkkkSkk tttt

T

ttt <−− −
−

− εεεε (14) 

 G is the standard deviation of the gate. The determination 

of )(kS t
 can be found in [22]. Physically, the validation 

region is set to the largest volume among the three possible 

choices from the models. Point features in the outer partitions 

and matched point pairs in the inner partitions are validated 

by the g-sigma gate as described by formula (14). The volume 

of the gate depends on the residual covariance of the 

measurements obtained. If the predicted 2-D positions of the 
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point features lie outside the area determined by the 

validation gate, those features will be regarded as outliers and 

the associated partitions will not be used for the correction of 

prediction in the filter. 

Each validated set of measurements has a corresponding 

association probability )(kBt
 

1
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
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with   )](,0);([)()( 1 kSkrPke ttGt Ν= −     (16) 

1))()(1( −−= kVPPPPLb tGDGDt
    (17) 

)0(tB  is the probability that none of the measurement sets 

are correct. )](,0);([ kSkr ttΝ  is the normal probability density 

function. )(krt
 is the measurement innovation associated with 

variance )(kS t
. )(kVt

 is the volume of the validation gate. 
DP  

and 
GP  are respectively the probability for the scene point 

features being observed by the cameras and the probability 

for the features lying in the validation region. L is the number 

of valid measurement sets. 

The measurements passed through the validation gate and 

the association probabilities )(kBt
 are used for state 

estimation          ),(
ˆ
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ˆ

,, kikBi
k
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The corresponding covariances are computed by 
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where ),( kiWt
 is the gain of the filter 
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T
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T
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Mg∇  is the Jacobian of the point transfer function 

),( kMg tt
 evaluated at ),(

ˆ
1, kitt −ξ& . Following the filtering 

step, the probability of each motion filter )(iut
 is updated 

)()()( * iiuiu ttt Λ= κ         (23) 

 κ  is a normalization factor such that 1)( =∑
i

t iu . )(itΛ  is 

the joint probability density function of the innovations and 

its computation can refer to [22]. Lastly, the usable output 

state vector 
tt ,

ˆξ& and covariance 
ttP ,
 are generated  
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The final state estimates rely more on the less noisy 

measurement sets.  

V. EXPERIMENTS AND RESULTS 

A. Experiments with synthetic data 

A synthetic structure having 1000 randomly distributed 

feature points was generated. The stereo rig was moving in 

the structure and its motion was made up of 5 segments 

consisting of mixed (rotation and translation) and static 

motion. A 2-D zero-mean Gaussian noise of 0.5 pixel 

standard deviation was imposed. Projections of random point 

features were present on both the inner and outer partitions of 

the image planes. All partitions of the stereo views were filled 

with feature points unless the cameras moved out of or near to 

the boundaries of the 3-D structure. The moving path of the 

rig was long enough such that appearing and disappearing of 

feature points occurred naturally. The actual number of point 

features that could be observed from the stereo views 

depended on the position and orientation of the cameras. To 

simulate presence of moving objects in the scene, groups of 

randomly moving point features were injected. In addition, 

outliers were inserted into the synthetic sequences. 

 
Fig. 5. The average percentages of accumulated rotation errors (top) and 

translation errors (bottom) against frame number of the algorithms under 

comparison. The diverged cases were excluded when computing the average 

values. 

We are interested in the performance of the proposed 

algorithm in comparison with other methods that do not 

require the computation of 3-D structure in the pose 

acquisition process. The proposed IMMPDAF algorithm, the 

proposed PDAF approach (i.e. a variation of the IMMPDAF 

method that uses a single motion filter), the tensor-based EKF 

by Yu et. al. [15] and the traditional model-based EKF [3], in 

which the 3-D structure was assumed known, were 

implemented in Matlab and run on a Pentium IV 2GHz 

machine to estimate the camera motion.  

There are also other approaches [28] that we would like to 

compare with. Due to the dissimilarities in operation as well 

as implementation consideration, these algorithms are not 

included in the empirical comparison. 

To test our approach with a more general setting, the planar 

motion filter, which is designed for robot motion, was 

disabled in this experiment so that the IMMPDAF only 

consisted of two motion filters. A total of 100 independent 
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tests were carried out. 

In Fig. 5. The lines with asterisk (*), circle ( ), triangle 

( ) and square ( ) markers represent the proposed 

IMMPDAF approach, the PDAF method, the tensor-based 

EKF by Yu et. al. [15] and the traditional model-based EKF 

[3], respectively. The diverged cases were removed when 

plotting these graphs so as to make the average values 

meaningful and reasonable. Here the accumulated rotation 

error is defined as the difference between the actual and the 

recovered angles in the axis-angle representation while the 

accumulated translation error equals to the absolute difference 

between the actual and the recovered translation. One can 

observe that both of our IMMPDAF and PDAF approach 

were more accurate than the tensor-based EKF [15] that does 

not have the ability to switch among partitions 

probabilistically. They were able to achieve an error level 

comparable to the model-based method within the first 40 

image frames. As the observable set of point features was 

changing in the synthetic environment, the pose acquired by 

our approaches might drift a bit, leading to a higher error 

compared to the model-based EKF. 

Table I summarizes the performance of the algorithms in 

the experiment. The differences in performance among them 

are quite clear after the injection of outlying point features. 

Our IMMPDAF method was the most stable (from the 

percentage of convergence) except for the model-based EKF. 

It was even better than the PDAF approach since the synthetic 

motion contained motion discontinuities and the use of 

multiple motion models made itself able to resolve the case. 

The tensor-based method [15], on the other hand, is 

susceptible to the attacks of outliers and moving objects. 

The computation time per point feature is also 

demonstrated. Since the IMMPDAF algorithm consisted of 

more than one PDAFs plus computation overhead, so it ran 

longer than our PDAF method. If a single PDAF was applied, 

its computation efficiency was higher than that of the tensor-

based EKF [15] because the input measurement set was 

broken down into smaller groups. Compared to the classic 

model-based EKF, the speed of the PDAF algorithm, a MFM 

method, was just a bit slower. 

Although the PDAF algorithm (a tradeoff between speed 

and accuracy) outperformed the tensor-based EKF, it was less 

precise and robust than the IMMPDAF. As the occurrences of 

independently moving point features was frequent and the 

change of motion was quite drastic, the benchmark model-

based EKF did diverge in a few test cases.  

B. Experiments with real images 

The proposed IMMPDAF, together with the PDAF 

approach (a variation of the IMMPDAF method with a single 

motion filter), were tested for their robustness using a real 

stereo image sequence. The sequence is consisted of 190 

frames and the robot was programmed to follow a path in the 

laboratory with disturbing moving objects. 

 

 

 
Fig. 6. In the first row, images 1,2 (from left) is the input image pair, and 3,4, 

are generated synthetic results of the 1st image pair. The second row shows 

the input and result of the corresponding 160th image pair. See 

http://www.cse.cuhk.edu.hk/~vision/ 

Figs. 6 to 9 are the results of the first test sequence. A 

virtual reality video was successfully created using the camera 

motion extracted by our IMMPDAF. From Fig. 6 and the 

demonstration video, both the original and recovered motion 

were consistent with each other. When compared to the 

ground truth, the proposed methods were precise and the 

IMMPDAF algorithm could recover a less noisy pose 

sequence than the PDAF approach as indicated in Fig. 7. 

There is a sudden increase in translation error along the x-axis 

of the proposed IMMPDAF approach. This is due to the fact 

that moving objects were present in the scene. Once these 

moving objects were “detected”, their effects were eliminated. 

One can noticed that the recovered translation xt in Fig. 7 

gradually returned to the correct value. The reaction time of 

the IMMPDAF to the moving objects can be tuned to obtain 

an optimal result. 

The transitions of the motion filters are revealed in Fig. 8. 

In this test case, sudden stops were intentionally made in the 

robot motion. Our IMMPDAF algorithm switched to the 

static motion filter (SMF) at the 40
th

, 106
th

 and 144
th
 frame 

successfully. For the rest of the video sequence, the planar 

motion was selected most of the time due to the constrained 

robot movement. The use of the mixed motion filter (MMF) 

between the 88
th

 and 124
th

 frame was for the correction on the 

accumulated pose errors other than the Pitch angle rotation 

(
tβ ) and Z translation (

tz ). Fig. 9 illustrates the probabilities 

associated with the measurement sets in the frequently 

selected planar motion filter. As moving objects were present 

in the scene, the likelihoods of some sets of measurements 

were significantly lowered from the 50
th

 to 100
th

 frame, and 

around the 125
th

 frame. The IMMPDAF handled occlusions 

and moving objects successfully. In addition, we verified the 

recovered pose by inserting a virtual object (a virtual human) 

into the original video. As can be seen, the estimated motion 

fit nicely to create the illusion that the human is standing on 

TABLE I  

COMPARISON OF ALGORITHMS IN THE SYNTHETIC EXPERIMENT. 

*=Diverged cases 

excluded 

Our IMM- 

PDAF 

Our 

PDAF 

Yu’s 

tensor-

based EKF 

Model-

based 

EKF 

% of convergence  98.0 90.0 86.0 99.0 

Average % of 

accumulated total 

rotation errors* 

2.95 3.89 5.02 1.87 

Average % of 

accumulated total 

translation errors * 

5.53 7.23 10.44 4.24 

Process 1 point 

feature in 1 image 

0.0032s 0.0014s 0.0017s 0.0011s 
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the red wing of a toy plane all the time. The augment reality 

video can be found at http://www.cse.cuhk.edu.hk/~vision/ 

 
Fig. 7. The pose recovered with our IMMPDAF and PDAF approach. The 

results are compared with the ground truth values. 

 
Fig. 8. The relation between the most probable motion filter and frame 

number in the IMMPDAF. MMF, PMF and SMF are the short forms of the 

mixed motion filter, planar motion filter and static motion filter, 

respectively. 

 
Fig. 9. The association probabilities of each measurement set of the planar 

motion filter computed by the IMMPDAF.  

VI. CONCLUSION 

An innovative method that acquires 3-D camera pose for 

virtual reality has been described in this paper. In the 

algorithm, the Interacting Multiple Model Probabilistic Data 

association Filter (IMMPDAF) is introduced to recover pose 

information from a stereo image sequence. Thanks to the 

probabilistic association of the point features across the stereo 

view, all corner features present in the images can be 

considered in the filtering process, no matter whether these 

features have or do not have stereo correspondences. The 

explicit searching of stereo matches is no longer necessary 

except during initialization. The use of multiple motion filters 

allows motion constraints to be applied automatically, 

achieving the highest precision on the recovered camera pose 

and, at the same time, making the algorithm robust to abrupt 

motion changes. The trifocal tensor embedded within the 

IMMPDAF enables the direct computation of the pose 

information by skipping the step of reconstructing the 3-D 

structure, even if the model of the scene is not available. The 

computation of our approach is thus optimized and its 

implementation becomes simple. Experimental results reveal 

that the stability of the proposed IMMPDAF method was 

comparable to the traditional model-based pose estimation 

algorithm, which requires known scene structure for 

calculation, and was much better than the latest Motion from 

Motion (MFM)-based extended Kalman filter (EKF) by Yu et. 

al. [15]. On the other hand, our Probabilistic Data 

Association Filter (PDAF) method that computes pose 

information with a single motion model can be regarded as a 

tradeoff between speed and accuracy. The real image 

experiment shows that both the IMMPDAF and PDAF 

algorithm were accurate in the presence of moving objects 

compared to the ground truth data. The estimated pose has 

successfully been applied to drive a pair of cameras in a 

virtual environment. The proposed approach has a great 

potential to be used in a wide range of multimedia 

applications such as the creation of augmented reality videos 

[29][30] in addition to virtual reality. 
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