Mining Periodic Patterns with Gap Requirement from Sequences

Minghua Zhang
National University of Singapore
and
Ben Kao, David W. Cheung
The University of Hong Kong
and
Kevin Y. Yip
Yale University

We study a problem of mining frequently occurring periodic patterns with a gap requirement from sequences. Given a character sequence S of length L and a pattern P of length l, we consider P a frequently occurring pattern in S if the probability of observing P given a randomly picked length-l subsequence of S exceeds a certain threshold. In many applications, particularly those related to bioinformatics, interesting patterns are periodic with a gap requirement. That is to say, the characters in P should match subsequences of S in such a way that the matching characters in S are separated by gaps of more or less the same size. We show the complexity of the mining problem and discuss why traditional mining algorithms are computationally infeasible. We propose practical algorithms for solving the problem and study their characteristics. We also present a case study in which we apply our algorithms on some DNA sequences. We discuss some interesting patterns obtained from the case study.

Categories and Subject Descriptors: H.2.8 [Database Management]: Database Applications—Data Mining

General Terms: Algorithms

Additional Key Words and Phrases: Sequence mining, Periodic pattern, Gap requirement

1. INTRODUCTION

The completion of whole-genome sequencing of various organisms facilitates the detection of many kinds of interesting patterns in DNA and protein sequences. It is now well known that the genomes of most plants and animals contain large quantity of repetitive DNA fragments. For instance, it is estimated that one third of the human genome is composed of families of reiterated sequences [Kurtz et al. 2000]. The genomes are thus far from pieces of random strings, and it is widely believed that a substantial amount of currently unknown information can be extracted from the sequences.

A large number of studies on genome sequence mining are related to the identi-
fication of periodic patterns. This is largely due to the abundance and variety of periodic patterns that exist in the genomes. From the short three base pair (bp) periodicity in protein coding DNA [Fickett and Tung 1992] and the medium-length repetitive motifs found in some proteins [Coward and Drablos 1998] to the mosaic of very long DNA segments in the genome of warm-blooded vertebrates [Bernardi et al. 1985], periodic patterns of different lengths and types are found at both genomic and proteomic levels. Some of the patterns have been identified as having significant biological and medical values. For example, some repeats have been shown to affect bacterial virulence to human [van Belkum et al. 1997], while the excessive expansions of some Variable Number of Tandem Repeats (VNTRs) are the suspected cause of some nervous system diseases [Reddy and Housman 1997]. Efficient algorithms for searching periodic patterns from long sequences are therefore of growing importance.

Computationally, a DNA or protein sequence is treated as a long string of characters with a finite alphabet. The alphabet used in modeling a DNA sequence is usually the four-character set \{A, C, G, T\} representing the four nitrogenous bases Adenine, Cytosine, Guanine and Thymine. For protein sequences, the commonly used alphabet is the set of twenty amino acids.

Two types of periodic patterns have received much attention: tandem repeats and base pair oscillations. Given a (DNA or protein) sequence \(S = s_1s_2s_3 \cdots s_L \) of length \(L \) and an integer \(p \) (the period), a tandem repeat is a subsequence \(s_is_{i+1}s_{i+2} \cdots s_{i+p-1} \) where \(s_{i+j} = s_{i+p+j} \), for \(0 \leq j < p \). The basic computational problem is to find all tandem repeats in a given sequence. There are many variations of the problem, considering issues like the number of periods (tandem repeats vs. tandem arrays), the maximality of patterns, whether errors (insertions, deletions and substitutions) are allowed and the corresponding cost functions, palindromic reverses, and efficient approximate solutions. A recent survey on the works can be found in [Kurtz et al. 2000]. We are particularly interested in tandem repeats that are related to the three-dimensional structure of the sequence. For example, the protein sequence of the molecule porcine ribonuclease inhibitor (SwissProt entry RINI_PIG [Bairoch and Boeckmann 1992]) consists of an alternating pattern of two kinds of repeats with lengths 29 and 28 residues [Coward and Drablos 1998].

The two can be combined to form a repeating unit of 57 residues, and there are 7.5 such units in the molecule. As a result, the protein has a horseshoe shape with the interior face formed by a parallel \(\beta \) sheet of 17 \(\beta \) strands and the exterior face formed by 16 \(\alpha \) helices\(^2\).

It should be noted that the repeats are not error-free. For instance, a phase shift is found in one of the repeats, which may be due to the insertion or deletion of a short sequence.

The second kind of important periodic pattern is base pair oscillations, which correspond to unexpected correlations between bases of distance \(p \). For example, the probability of having a ‘T’ located \(p \) base pair (bp) after an ‘A’ can be calculated as \(\frac{n_{AT}(p)}{L-p} \), where \(n_{AT}(p) \) is the number of such occurrences in the sequence and \(L-p \) is the number of base pairs located \(p \) bp apart. If base pairs of distance \(p \) are

\(^2\)A figure of the protein can be found in Figure 1 of [Coward and Drablos 1998] at http://www.nslij-genetics.org/dnacorr/.
independent, then the expected probability will be \(pr(A)pr(T) \), which is the product of the probabilities of occurrence of the two individual bases in the sequence. The difference \(\frac{pr_{A,T}(p)}{L-p} - pr(A)pr(T) \) can be used to reflect the correlation between the two bases at a distance of \(p \) apart [Herzel et al. 1999]. It has been shown in [Widom 1996; Herzel et al. 1999] that some base pairs exhibit an abnormally high correlation at a period of 10-11 base pairs and its multiples in many kinds of organisms. It is believed that a partial reason for the phenomenon is related to the helical structure of the DNA, which has a period of about 10-11 base pairs in some organisms [Herzel et al. 1999]. In other words, for some base pairs, if the first one is found in a certain position, there is an abnormally high probability of finding the second one after about one helical turn. Some interesting periodic patterns may thus be found in successive bases with similar 3D orientations.

Our study is based on the above observation. We would like to search for frequent periodic patterns that consist of bases physically located one helical turn after another. Symbolically, a pattern is defined as a subsequence

\[
s_i s_{i+g_1} s_{i+g_1+g_2} \cdots s_{i+g_1+g_2+\cdots+g_{l-1}},
\]

where \(l \) is the length (number of bases) in the subsequence and \(g_j, 1 \leq j < l \) is the length of period \(j \). Unlike previous studies, we define \(g_j \) as a range of integers instead of a fixed integer. The reason for this setting is two-fold: 1) the actual period of a helical turn is usually not an integer and 2) the actual period may vary in organisms. The introduction of a variable period thus provides a flexible way to capture any interesting patterns hidden in a sequence.

While the primary focus of our study is on the periodic patterns in DNA sequences due to its 3D structure, the techniques being developed can also be applied to mine other kinds of sequences, in which case the variable period can be used to model the maximum allowed insertions/deletions within a single period. As we will see later in Section 4, the mathematic theorems we prove are rather general. They are not dependent on any specific features of DNA sequences. So the algorithms we propose in this paper are also applicable to other sequences, such as web log sequences.

The rest of the paper is organized as follows. Section 2 mentions some related works. Section 3 formally defines our computational problem. In Section 4 we prove a couple of important theorems that lead to the derivation of efficient algorithms for our mining problem. Section 5 presents the algorithms. In Section 6 we analyze the algorithms’ performance. Section 7 presents a case study in which we document an interesting finding obtained by applying our algorithm to mining DNA sequences. Finally, Section 8 concludes the paper.

2. RELATED WORKS

Besides the studies on tandem repeats and base-pair oscillation, there are other related works that include studies on mining patterns from biological sequences with certain support requirement. For example, the TEIRESIAS algorithm [Rigoutsos and Floratos 1998] is designed for discovering patterns that are composed of characters (such as \(\{A,C,T,G\} \)) and wild-cards (which match any characters) from biological sequences. Although wild-cards provide some flexibility in specifying a pattern, too
many unrestricted wild-cards in a pattern would render the pattern uninteresting. Therefore, the authors restrict the number of wild-cards that can be present in the extracted patterns. In another study [Jonassen 1996], the Pratt algorithm is proposed for mining restricted patterns from a sequence database. The restrictions include the maximum number of characters and wild-cards in a pattern.

BLAST [Altschul et al. 1990] is one of the famous algorithms in the area of bioinformatics. Given a query sequence, it searches for matched sequences from a database. In essence, BLAST is a search algorithm with a known query as input, while our study focuses on mining unknown knowledge.

From the area of data mining, one related problem is to find frequent subsequences from transactional databases. Many efficient algorithms have been proposed for the problem [Srikant and Agrawal 1996; Zaki 1998; Zhang et al. 2001; Pei et al. 2001]. Their goal is to find patterns that appear in at least a certain number of sequences in the database. All the algorithms are based on the well-known Apriori property. Unfortunately, as we will see later, this property does not hold for our problem. Also, the sequence mining algorithms find patterns across sequences. On the other hand, our model is to discover patterns within a single sequence. Moreover, the characteristics of the biological sequences (e.g., very long sequence with very few different characters) makes a direct application of those sequence mining algorithms inefficient.

There are also some algorithms on mining frequent patterns from a single sequence [Mannila et al. 1997; Han et al. 1999]. In [Mannila et al. 1997], the input sequence is divided into some overlapped windows of fixed width w, and every two neighboring windows share a common segment of length \(w - 1\). In [Han et al. 1999], a sequence is divided into non-overlapping windows. In both papers, a pattern is frequent if it appears in at least a certain number of windows. With this definition, it is shown that the Apriori property applies. By segmenting a sequence into windows and counting the number of windows in which a pattern occurs greatly simplifies the design of the mining algorithm. The drawback is that patterns that span multiple windows cannot be discovered, and that in some cases, a suitable window width is difficult to determine. Our model does not have those restrictions.

Yang et al. studied asynchronous periodic patterns in time series data [Yang et al. 2000]. In their model, shifts in the occurrence of patterns are permitted to filter out random noises. They also consider a range of periods instead of the pre-specified ones as used in [Han et al. 1999], although there is still a limit on the maximum length of a period. In their model, the Apriori property holds for patterns of the same period.

3. PROBLEM DEFINITION

In this section we give a formal definition of the periodic pattern mining problem. To simplify our discussion, let us first define a number of notations and terms.

A sequence from which we extract frequent patterns is called a subject sequence. Let \(\Sigma\) be the alphabet of all possible characters that occur in a subject sequence. For example, \(\Sigma = \{A, C, G, T\}\) for DNA sequences; for protein sequences, \(\Sigma\) is the set of 20 amino acids.

A wild-card (denoted by a single dot, ‘.’) is a special symbol that matches any
character in \(\sum \). A gap is a sequence of wild-cards. The size of a gap refers to the number of wild-cards in it. For example, the size of ‘.....’ is 5. We use \(g(N) \) to represent a gap of size \(N \); we use \(g(N, M) \) to represent a gap whose size is within the range \([N, M]\). The range \([N, M]\) is called a gap requirement.

A pattern is a sequence of characters and gaps that begins and ends with characters. We define the length of a pattern \(P \), denoted by \(|P|\), as the number of characters in \(P \). For example, if \(P = A.T.C \), then \(|P| = 3 \). Note that the wild-card symbols are not counted towards the pattern’s length.

Given a pattern \(P \), a substring \(Q \) of \(P \) if \(Q \) itself is also a pattern (i.e., \(Q \) also starts and ends with characters). If \(|P| \geq 2 \), its sub-pattern containing the first \(|P| - 1 \) characters is called the prefix of \(P \). Similarly, the sub-pattern of \(P \) that contains the last \(|P| - 1 \) characters is called the suffix of \(P \). We use prefix\((P)\) and suffix\((P)\) to represent the prefix and suffix of \(P \), respectively. For example, prefix\((A.T.C)\) = \(A.T \) and suffix\((A.T.C)\) = \(“T.C” \).

Given a subject sequence \(S \) (a pattern \(P \)), we use \(S[i] \) \((P[i]) \) to represent the \(i \)-th character of \(S \) \((P) \). For example, if \(S = ACGTA \), then \(S[1] = A, S[2] = C \), etc. If \(P = A.T.C \), then \(P[1] = A, P[2] = T \).

For our problem of mining periodic patterns from a sequence, we are interested in patterns of the following form:

\[
a_1g(N, M)a_2g(N, M) \ldots a_{l-1}g(N, M)a_l
\] (1)

where \(a_i \in \sum \) for \(1 \leq i \leq l \), and \(N, M \) are two user supplied numbers that specify the minimum and maximum gap sizes between two successive characters in a pattern, respectively. If the gap size requirement is understood, as a shorthand, we express a pattern \(P \) by simply specifying the characters it contains (i.e., \(a_1a_2 \ldots a_l \)). For example, if \(N = 8 \) and \(M = 10 \), the pattern written as \(ATC \) refers to the pattern \(Ag(8, 10)Tg(8, 10)C \). Since the mining problem is defined with specified values of \(N \) and \(M \), in the following discussion, we use the shorthand notation for patterns, unless otherwise stated.

Given a sequence \(S \) of length \(L \), an offset sequence of length \(l \) is a sequence of integers \([c_1, \ldots , c_l] \), such that \(1 \leq c_j \leq L \) for all \(j \), and \(c_{j+1} - c_j - 1 \in [N, M] \) for all \(1 \leq j \leq l - 1 \). Essentially, an offset sequence is simply a sequence of positions of \(S \) that satisfies the gap requirement.

Our goal is to determine frequently occurring patterns given a subject sequence \(S \). Hence, we need to define the term frequency and how often a pattern \(P \) occurs before we consider it frequent in \(S \). We define frequency of a pattern \(P \) by the probability of observing \(P \) if we randomly pick \(|P|\) positions of \(S \) that satisfy the gap requirement (i.e., a random offset sequence). Also, a pattern \(P \) is considered frequent, if its frequency exceeds a certain user-specified threshold value, \(\rho_s \).

Given a sequence \(S \), a pattern \(P \), and an offset sequence \([c_1, \ldots , c_{|P|}] \), we say that \(P \) matches \(S \) w.r.t. the offset sequence if \(S[c_j] = P[j] \) for all \(1 \leq j \leq |P| \). We define the support of \(P \) w.r.t. \(S \) (denoted by \(sup(P) \)) as the number of distinct offset sequences with respect to which \(P \) matches \(S \). For example, if \(S = AAGCC \), \(P = AC \), and gap requirement is \([2, 3]\), then \(P \) matches \(S \) w.r.t. the offset sequence \([1, 4]\) since \(S[1] = P[1] \) and \(S[4] = P[2] \). Similarly, \(P \) matches \(S \) w.r.t. the offset sequences \([1, 5]\) and \([2, 5]\). So \(sup(P) = 3 \). A straightforward way to compute \(P \)'s support is to enumerate all possible offset sequences, check the contents of \(S \)
with respect to all those offset sequences, and determine the fraction of the offset sequences with respect to which \(P \) matches \(S \). If the fraction exceeds the required threshold \(\rho_s \), \(P \) is frequent; otherwise \(P \) is infrequent.

To determine whether a pattern \(P \) of length \(l \) is frequent in a sequence \(S \), we need two numbers: (1) \(N_l \), the number of offset sequences of length \(l \) in \(S \) and (2) \(\text{sup}(P) \). If the support ratio, \(\text{sup}(P)/N_l \), is larger than \(\rho_s \), \(P \) is a frequent pattern.

In the following section, we derive a formula for computing \(N_l \). In Section 5, we derive algorithms for computing all patterns \(P \) that satisfy the frequency requirement.

4. MATHEMATICAL ANALYSIS

In this section we derive a recurrence equation for determining the value of \(N_l \). We also prove several important theorems that allow us to formulate efficient algorithms for solving the periodic pattern mining problem. For reference, Table I shows the various symbols and their definitions we use in this section.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>A subject sequence</td>
</tr>
<tr>
<td>(P)</td>
<td>A pattern</td>
</tr>
<tr>
<td>(N)</td>
<td>The minimum gap between 2 successive characters in a pattern</td>
</tr>
<tr>
<td>(M)</td>
<td>The maximum gap between 2 successive characters in a pattern</td>
</tr>
<tr>
<td>(L)</td>
<td>Length of (S); (L =</td>
</tr>
<tr>
<td>(l)</td>
<td>Length of (P); (l =</td>
</tr>
<tr>
<td>(W)</td>
<td>Flexibility of a gap; (W = M - N + 1)</td>
</tr>
<tr>
<td>(\text{minspan}(l))</td>
<td>The minimum span of a length-(l) pattern</td>
</tr>
<tr>
<td>(\text{maxspan}(l))</td>
<td>The maximum span of a length-(l) pattern</td>
</tr>
<tr>
<td>(l_1)</td>
<td>The length of a longest pattern whose maximum span is (\leq</td>
</tr>
<tr>
<td>(l_2)</td>
<td>The length of a longest pattern whose minimum span is (\leq</td>
</tr>
</tbody>
</table>

\[
l_1 = \left\lfloor \frac{L + M}{M + 1} \right\rfloor \\
l_2 = \left\lfloor \frac{L + N}{N + 1} \right\rfloor
\]

Table I. Notations

We use the variable \(W \) to denote the flexibility of the gap requirement. For example, if the gap requirement is \([4, 6]\), then the flexibility is \(6 - 4 + 1 = 3 \). That is to say, if the first character of a pattern \(P \) matches the sequence \(S \) at a certain position, say \(j \) (i.e., \(P[1] = S[j] \)), then there are three possible positions of \(S \) for \(P[2] \) to match against, namely, \(S[j + 5], S[j + 6] \) and \(S[j + 7] \). Also, the larger the flexibility, the larger the number of offset sequences that satisfy the gap requirement, and so, the larger the value of \(N_l \).
We use $\text{minspan}(l)$ to denote the minimum span of a length-l pattern P. As an example, with a gap requirement of $[3,4]$, a length-3 pattern spans at least 9 positions of the subject sequence. This is obtained by taking the smallest gap of 3 positions between the first and the second characters of P, and 3 positions between the second and the third. (Figure 1 illustrates the concept.) Since a length-l pattern has l characters and $l-1$ gaps and the minimum gap size is N, the minimum span is thus equal to $(l-1)N+l$. Similarly, we can determine the maximum span of a length-l pattern (denoted by $\text{maxspan}(l)$), which is equal to $(l-1)M+l$.

Given a length-L sequence S, we use the symbol l_1 to denote the length of the longest patterns whose maximum span does not exceed L. The number l_1 can be obtained by solving $\text{maxspan}(l_1) = (l_1-1)M+l_1 \leq L$, which gives $l_1 = \left\lfloor \frac{L+M}{M+N+1} \right\rfloor$. Similarly, l_2 denotes the length of the longest patterns whose minimum span does not exceed L. We have $l_2 = \left\lfloor \frac{L+N}{N+1} \right\rfloor$. Since $M \geq N$, we have $l_2 \geq l_1$.

4.1 Determining N_l

Given a pattern length l, a subject sequence length L, and a gap requirement $[N,M]$, we would like to calculate N_l, the number of distinct length-l offset sequences. Here, we first summarize the result. We consider three cases:

(1) For $l > l_2$, $N_l = 0$.
(2) For $l \leq l_1$, $N_l = \left\lfloor L - (l-1)(\frac{M+N}{2} + 1) \right\rfloor W^{l-1}$.
(3) For $l_1 < l \leq l_2$, N_l can be determined by a recursive formula.

Case 1 ($l > l_2$): The minimum span of a length-l pattern exceeds the subject sequence’s length. Hence, there are no length-l offset sequences.

Case 2 ($l \leq l_1$): The maximum span of a length-l pattern is less than or equal to the subject sequence’s length. In this case, we find that N_l grows exponentially with respect to l. Also, the larger is the flexibility of the gap requirement (W), the larger is N_l. Let us consider an example to illustrate how big N_l is. In one of the experiments we performed, we used a DNA sequence fragment that consists of 1,000 characters (i.e., $L = 1,000$), a gap requirement of $N = 9$ and $M = 12$, and $W = 4$. The number of length-10 offset sequences N_{10} is about 235 million.\(^3\)

Case 3 ($l_1 < l \leq l_2$): The boundary cases in which the span of a length-l pattern may or may not exceed the subject sequence’s length. In this case, instead of a closed-form formula, we provide a computable recursive formula for N_l.

The analysis for deriving N_l for the cases is rather lengthy. We put it in the Appendix (Section 9).

\(^3\)A typical helix turn of some organism is about 10 to 11 characters. We use a slightly larger gap requirement so that most patterns of interest are considered.
4.2 Determining Frequent Patterns

Like many other data mining problems, our objective is to discover frequent patterns from data under a definition of “frequent”. A common difficulty shared by most mining problems is that the number of patterns is huge. So a straightforward method of enumerating all possible patterns and counting their supports is not feasible. Traditional mining algorithms achieve efficiency by various pruning techniques that aim at drastically reducing the number of patterns that need to be checked. One very important property that enables effective pruning is the \textit{Apriori} property, which states that “the support of a pattern cannot exceed the support of any of its sub-patterns.” The \textit{Apriori} property is shown to hold under many data mining problems and models. The well-known \textit{Apriori} algorithm [R. Agrawal and Swami 1993] is a classic example that uses the \textit{Apriori} property. In \textit{Apriori}, an itemset X cannot be frequent if any proper subset of X is not frequent, and in which case, X is pruned.

For our mining problem, the \textit{Apriori} property, however, does not hold. As a simple example, consider the sequence $S = \text{ACTTT}$, the pattern $P_1 = \text{AT}$ and its sub-pattern $P_2 = \text{A}$. If the gap requirement is $[1,3]$, we see that $\text{sup}(P_1) = 3$ (corresponding to the offset sequences $\{[1,3],[1,4],[1,5]\}$) while $\text{sup}(P_2) = 1$ (corresponding to the offset sequence $\{[1]\}$). Hence, the support of a pattern can exceed the support of its sub-pattern.

To achieve pruning, we derive an \textit{apriori-like} property. Theorems 1 and 2 summarize the property.

\textbf{Theorem 1.} Given a length-l pattern P and a length-$(l - d)$ sub-pattern $Q = P[i]P[i+1] \ldots P[i + l - d - 1]$ of P, where $1 \leq i \leq d + 1$, we have $\text{sup}(Q) \geq \text{sup}(P)/W^d$.

\textbf{Proof:} Consider Figure 2 which shows a pattern P and a subpattern Q such that Q is the same as a segment of P that starts at the i-th character. Let U be the set of all length-l offset sequences with respect to which P matches S. We have $\text{sup}(P) = |U|$. We partition U into R subsets U_1, \ldots, U_R such that two offset sequences $A = [c_{a1}, \ldots, c_{al}]$ and $B = [c_{b1}, \ldots, c_{bl}]$ are in the same subset U_j if and only if $c_{ak} = c_{bk} \forall i \leq k \leq i + l - d - 1$. We see that each U_j corresponds to a unique offset sequence with respect to which Q matches S. Therefore, $\text{sup}(Q) \geq R$. Since the offset sequences in a given U_j only differ in the first $i - 1$ offsets and the last $d - i + 1$ offsets (see Figure 2), the cardinality of each U_j cannot exceed $W^i + (d - i + 1)$ or W^d. Hence, R, the number of subsets U_j’s must be at least equal to $|U|/W^d$. Therefore,

$$\text{sup}(Q) \geq R \geq |U|/W^d = \text{sup}(P)/W^d.$$
Theorem 1 is an important one in that it allows us to prune a large number of candidate patterns from consideration. In particular, if a length-\(l\) pattern \(P\) is frequent, then by definition, we have \(\text{sup}(P)/N_l \geq \rho_s\). Now, consider a length-(\(l-d\)) sub-pattern \(Q\) of \(P\). Theorem 1 requires that
\[
\frac{\text{sup}(Q)}{N_{l-d}} \geq \frac{\text{sup}(P)}{N_{l-d}} \geq \frac{N_l}{N_{l-d}W^d \rho_s} = \lambda_{l,d} \cdot \rho_s,
\]
where \(\lambda_{l,d} = \frac{N_l}{N_{l-d}W^d}\). That is, the support ratio of \(Q\) also has to attain a certain value.

One can also verify the following transitivity property of \(\lambda\):
\[
\lambda_{l,d_1+d_2} = \lambda_{l,d_1} \cdot \lambda_{l-d_1,d_2} \forall d_1, d_2, 0 \leq d_1 \leq l \text{ and } 0 \leq d_2 \leq l \text{ and } 0 \leq d_1 + d_2 \leq l.
\]

As an example, if \(l \leq l_1\), then by Equation 2 and the value of \(N_l\) stated in Section 4.1, one can easily show that,
\[
\frac{\text{sup}(Q)}{N_{l-d}} \geq \frac{N_l}{N_{l-d}W^d \rho_s} = \frac{L - (l - 1)(\frac{M+N}{2} + 1)}{L - (l - d - 1)(\frac{M+N}{2} + 1)} \rho_s.
\]

Here \(\lambda_{l,d} = \frac{N_l}{N_{l-d}W^d} = \frac{L - (l - 1)(\frac{M+N}{2} + 1)}{L - (l - d - 1)(\frac{M+N}{2} + 1)}\).

For a long subject sequence (i.e., large \(L\)), a small pattern length (i.e., small \(l\)), and a small \(d\), the fraction \(\lambda_{l,d}\) is very close to 1. Therefore, if a length-\(l\) pattern \(P\) is frequent (i.e., its support ratio exceeds \(\rho_s\)), Theorem 1 implies that any length-(\(l-d\)) sub-pattern \(Q\) of \(P\) has to have its support ratio exceed \(\lambda_{l,d} \cdot \rho_s\), or almost \(\rho_s\) as well. Hence, we obtain a property that is very close to the \textit{apriori} property. One can derive an efficient pruning algorithm based on that observation.

In the proof of Theorem 1, we bound the cardinality of the set \(U_j\) by \(W^d\). The bound is obtained by considering the extreme case that given an offset sequence \(A = [c_{a_1}, \ldots, c_{a_{i-1}}, d_{a_1}, \ldots, c_{a_i}] \in U_j\), any perturbation of the first \(i-1\) offsets and the last \(d-i+1\) offsets (as long as the gap requirement is still satisfied) results in another offset sequence in \(U_j\). In other words, any such perturbation gives us an offset sequence w.r.t. which \(P\) matches \(S\). That is to say, no matter how we change the first \(i-1\) offsets \([c_{a_1}, \ldots, c_{a_{i-1}}]\), we observe the same sequence of characters \(S[c_{a_1}] = P[1], \ldots, S[c_{a_{i-1}}] = P[i-1]\), and the same can be said for the last \(d-i+1\) offsets. The bound is obviously too loose.

We now consider a method of tightening the bound. Given a small value \(m\), we consider all length-(\(m+1\)) offset sequences of the form \([(r), (r+g^1), \ldots, (r+g^1 + \ldots + g^m)]\), where each \(g^j \in [N+1, M+1]\). Let us inspect \(S\) according to those offset sequences and use \(K_r\) to denote the frequency count of the most frequently occurring patterns observed. We repeat the exercise for each value of \(1 \leq r \leq L\). Finally, we take \(e_m = \max_{1 \leq r \leq L} K_r\). We illustrate the idea with a simple example. Suppose \(S = \text{ACGTCCGT}\), the gap requirement is [1, 2], and \(m = 2\). We first calculate \(K_1\). There are 4 possible length-(\(m+1\)) (or length-3) offset sequences whose first element is at position 1 of \(S\): [1, 3, 5], [1, 3, 6], [1, 4, 6] and [1, 4, 7], and...
they correspond to the patterns AGC, AGC, ATC, and ATG, respectively. We see that AGC is the most frequently occurring pattern and its count is 2, so $K_1 = 2$. For K_2, the relevant offset sequences are $[2, 4, 6], [2, 4, 7], [2, 5, 7]$ and $[2, 5, 8]$. Since these 4 offset sequences give 4 different patterns CTC, CTG, CCG and CCT, by definition, $K_2 = 1$. Other K_r values are calculated similarly. The results are shown in Table II. Finally we get $e_m = \max_{r=1}^{8} K_r = 2$. Semantically, for any offset r, the value e_m tells us how many times at most we will see the same character sequence in S under the offset sequence $[r, r + g^1, \ldots, r + g^l + \ldots + g^m]$ however we perturb the last m offsets in the sequence. Therefore, we can use e_m to replace W_m as a better bound since $\frac{W_m}{e_m} \geq 1$. In the above example, $\frac{W_m}{e_m} = \frac{2^2}{2} = 2$. In typical DNA sequences, we find that the ratio $\frac{W_m}{e_m}$ becomes larger as m increases.

To illustrate how the value e_m is used, let us re-visit Theorem 1 again and consider the following example. Suppose the sub-pattern Q is taken from the first $l - 8$ characters of P (i.e., $Q = P[1]P[2] \ldots P[l-8]$). If we follow the proof of Theorem 1 again, we see that all offset sequences $A = [a_1, \ldots, a_{l-8}, a_{l-7}, \ldots, a_l]$ in U_j only differ in the last 8 offsets. Now, suppose we have determined the value of e_m for the case $m = 3$. We know that, however we perturb the offsets $a_{l-8}, a_{l-7}, \ldots, a_{l-5}$, the maximum number of times that we see the same character sequence (namely, $P[l-7], P[l-6]$ and $P[l-5]$) over those three offsets is e_3. The same is true for the offsets $a_{l-4}, a_{l-3}, a_{l-2}$. And finally, there are at most W^2 ways for us to perturb the offsets a_{l-1} and a_l. Hence, $|U_j| \leq e_3^3 W^2$. This bound could be much smaller than W^8, which is used in Theorem 1. With this discussion, the following theorem can be easily proved.

Theorem 2. Given a length-l pattern P and a length-$(l - d)$ sub-pattern $Q = P[1] \ldots P[l-d]$ of P such that $s = \lfloor d/m \rfloor$ and $t = d - sm$, we have $\sup(Q) \geq \frac{\sup(P)}{e_m W^{s}}$.

From Theorem 2, we know that if a length-l pattern P is frequent, then the length-$(l - d)$ sub-pattern Q of P such that $Q = P[1] \ldots P[l-d]$ must have its support ratio lower-bounded by:

$$
\frac{\sup(Q)}{N_{l-d}} \geq \frac{\sup(P)}{e_m W^{s} N_{l-d}} \\
= \frac{N_l}{N_{l-d} e_m W^{s} \rho_s} \\
= \frac{W^{d-t}}{e_m} \cdot \lambda_{l,d} \cdot \rho_s \\
= \left(\frac{W^{m}}{e_m}\right)^{s} \cdot \lambda_{l,d} \cdot \rho_s \\
= N_{l,d}^s \cdot \rho_s,
$$

(5)
where \(s = \lfloor d/m \rfloor, t = d - sm, \) and \(\lambda'_{l,d} = (W_m)^s \cdot \lambda_{l,d}. \)

5. ALGORITHMS

In the previous section we discuss why pruning is an important issue in typical mining problems. In this section we propose efficient algorithms that apply pruning techniques.

5.1 MPP

Consider Equation 4 in Section 4 again. We note that if a length-\(l \) pattern \(P \) is frequent w.r.t. the support threshold \(\rho_s \), then any length-(\(l - d \)) sub-pattern \(Q \) of \(P \) must have a support ratio not less than \(\lambda_{l,d} \cdot \rho_s \). This leads to the following apriori-like mining algorithm. We call our algorithm **MPP** (Mining Periodic Patterns).

We use \(C_i \) to represent the set of candidate patterns of length \(i \), \(L_i \) to represent the set of frequent length-\(i \) patterns, and \(\hat{L}_i \) to represent a superset of \(L_i \) which is used for candidate generation.

First, let us assume that the user has a rough idea about the length of the longest frequent patterns in the subject sequence \(S \). Let \(n \) represent such a length. We will discuss how \(n \) can be automatically estimated later in this paper. **MPP** guarantees that all frequent patterns of length less than or equal to \(n \) are returned. For the longer frequent patterns, **MPP** will take a best-effort approach, i.e., it will return as many of those frequent patterns as it could.

To obtain all frequent patterns of length less than or equal to \(n \), Equation 4 suggests that we obtain all length-1 patterns whose support ratios are not less than \(\lambda_{n,n-1} \cdot \rho_s \). (Other length-1 patterns would not be the constituents of any longer frequent patterns of interest.) From those patterns, we join them to obtain a set of length-2 candidate patterns. We examine the subject sequence and collect all those candidate patterns whose support ratios are not less than \(\lambda_{n,n-2} \cdot \rho_s \). We then join those patterns collected to form a set of length-3 candidate patterns and so on. In general, during the \(i \)-th iteration, the algorithm computes \(\hat{L}_i \) as the set of length-\(i \) patterns whose support ratios are not less than \(\lambda_{n,n-i} \cdot \rho_s \). Obviously, \(L_i \subset \hat{L}_i \). In the \((i+1)\)-st iteration, patterns in \(\hat{L}_i \) are joined to form the candidate set \(C_{i+1} \). Patterns in \(C_{i+1} \) whose support ratios are not less than \(\lambda_{n,n-(i+1)} \cdot \rho_s \) are collected in \(\hat{L}_{i+1} \). The process repeats until either (1) **MPP** generates an empty candidate set, or (2) when \(i = n + 1 \).

For the second case (i.e., \(i = n + 1 \)), **MPP** would have returned all frequent patterns of lengths less than or equal to \(n \). To find other longer frequent patterns, **MPP** reverts to a basic Apriori-like method. That is, during each iteration \(i > n \), **MPP** generates candidate set \(C_i \) based on \(L_{i-1} \). It then checks the patterns in \(C_i \) and collects those whose support ratios are not less than \(\rho_s \) in \(L_i \). The process repeats until **MPP** generates an empty candidate set. Note that in this candidate pattern generation process, a length-(\(n + k \)) pattern \(P \) (where \(k > 0 \)) is generated (and potentially is returned by the algorithm as a frequent pattern) only if there is a length-\(n \) sub-pattern \(Q \) of \(P \) whose support ratio is not less than \(\rho_s \). From Equation 4, however, we see that a length-(\(n + k \)) pattern can be frequent if all of its length-\(n \) sub-patterns have their support ratios reach \(\lambda_{n+k,k} \cdot \rho_s \), which is less than \(\rho_s \). In other words, there could be length-(\(n + k \)) frequent patterns that are
not generated and are thus missed. As a result, MPP can only guarantee that all frequent patterns of lengths less than or equal to \(n \) are discovered.

There are a few issues concerning MPP as outlined above:

—First, if the user does not have a good idea about how long frequent patterns are, he may choose an arbitrarily large \(n \). In that case, pruning is not effective. For example, consider the case when MPP is determining \(L_4 \). The pruning condition requires that every length-4 candidate sequence with a support ratio not less than \(\lambda_{n,n-4} \cdot \rho_s \) be included in \(L_4 \). If \(n \) is very large, \(\lambda_{n,n-4} \) is very small, and few candidates can be removed.

—Second, for DNA sequences, the size of the alphabet (e.g., \(|\{A, C, T, G\}|\)) is small. The number of combinations of short patterns is thus very small. Hence, short patterns are likely frequent. For example, in our experiment, we find that patterns of lengths one or two are always frequent. These patterns are thus uninteresting.

—Third, given a length-\(i \) candidate pattern \(P \), checking its support might require us to examine the subject sequence \(S \) with respect to every length-\(i \) offset sequences. As we have discussed in Section 4, the number of length-\(i \) offset sequences equals \(N_i \), a very large number even for a moderate value of \(i \).

For the first issue, if \(n > l_1 \), MPP restricts \(n \) to \(l_1 \). That is to say, MPP will only guarantee the extraction of all frequent patterns whose lengths are less than or equal to \(l_1 \). We remark that even without a theoretical guarantee that all patterns longer than \(l_1 \) are found, the drawback, in practice, may not be detrimental. Incidentally, in all of the experiments we performed on DNA sequences, very long frequent patterns do not occur.

For the second issue, MPP starts with length-3 patterns, assuming that shorter ones are uninteresting. MPP does not count their supports and saves a bit of computation.

For the third issue, MPP uses an index structure called partial index list (PIL) to avoid examining all offset sequences when counting a pattern’s support count.

Given a subject sequence \(S \) and a length-\(l \) pattern \(P \), PIL(\(P \)) is a list of \((x, y)\) pairs where all \(x \)'s are of distinct values. If the pair \((x, y)\) is in PIL(\(P \)), then there are exactly \(y \) offset sequences of the form \([x, c_2, \ldots, c_l]\) with respect to which \(P \) matches \(S \) (i.e., \(P[1] = S[x], \ldots, P[l] = S[c_l] \)). For example, if \(S = AACCGTT \), \(P = ACT \), \([N, M] = [1, 2] \), then PIL(\(P \)) = \{(1, 3), (2, 2)\}. This is because \(P \) matches \(S \) with respect to three offset sequences with the first offset equals 1 (namely, \([1, 3, 6], [1, 4, 6], [1, 4, 7] \)) and two offset sequences with the first offset equals 2 (namely, \([2, 4, 6], [2, 4, 7] \)).

There are two properties of PIL(\(P \)):

1. Given PIL(\(P \)), one can easily compute \(sup(P) \), which is just the sum of all \(y \)'s in the list. Using our previous example, since PIL(\(P \)) = \{(1, 3), (2, 2)\}, we have \(sup(P) = 3 + 2 = 5 \).

2. For a pattern \(P \), let prefix(\(P \)) = \(Q_1 \), suffix(\(P \)) = \(Q_2 \). PIL(\(P \)) can be computed from PIL(\(Q_1 \)) and PIL(\(Q_2 \)) using the following simple procedure.
∀(x, y) ∈ PIL(Q₁)

∀(x’, y’) ∈ PIL(Q₂) s.t. x’ − x − 1 ∈ [N, M]

t = t + y'

∀(t > 0), insert (x, t) in PIL(P)

Figure 3 shows the algorithm MPP. The algorithm basically follows our previous discussion. For generating length-(i + 1) candidates, MPP considers every pair of length-i patterns P₁ and P₂ in Lᵢ. If suffix(P₁) = prefix(P₂), then the candidate pattern P₁[1]P₂ is put into Cᵢ₊₁. For example, P₁ = ACG and P₂ = CGT generate ACGT. MPP also calculates the PIL list of the candidate using PIL(P₁) and PIL(P₂). The PIL list of the candidate pattern allows us to determine its support count and therefore whether the candidate should be added to the set Lᵢ₊₁ or not. Finally, all patterns in all Lᵢ’s with support ratios not less than ρₛ are returned to the user.

Algorithm MPP(S, ρₛ, N, M, n)

calculate W, l₁, l₂

if n > l₁, n = l₁

for i = 3 to n

calculate Nᵢ, λₙ,n−i

for i = n + 1 to l₂

calculate Nᵢ, and set λₙ,n−i = 1

C₃ = the set of all length-3 patterns

scan S to compute the PILs of all patterns in C₃

for each pattern P in C₃

get sup(P) from PIL(P)

if sup(P) ≥ ρₛN₃, put P into L₃

if sup(P) ≥ λₙ,n−3ρₛN₃, put P into L₃

i := 3

while (Lᵢ ≠ ∅)

Cᵢ₊₁ := Gen(Lᵢ)

∀P ∈ Cᵢ₊₁

compute PIL(P) to get sup(P)

if sup(P) ≥ ρₛNᵢ₊₁, put P into Lᵢ₊₁

if sup(P) ≥ λₙ,n−(i+1)ρₛNᵢ₊₁, put P into Lᵢ₊₁

i := i + 1

Return L₃ ∪ L₄ ∪ . . . ∪ Lᵢ−₁

Fig. 3. Algorithm MPP

Example 1 We illustrate the algorithm using an example. Suppose the subject sequence is

S = TT CCTCGCGAA GGCTCCTTTGATATT,

N = 1, M = 2, and ρₛ = 0.03. We have L = |S| = 28, W = M − N + 1 = 2, l₁ = ⌊L+M/W⌋ = 10, and l₂ = ⌊L+N/W⌋ = 14. Suppose the user input n (the estimated length of the longest frequent patterns) is equal to l₁, i.e, 10.

MPP starts by calculating the support count thresholds for determining which patterns should be collected in Lᵢ and Lᵢ. As shown in Figure 3, these threshold
values are equal to $\rho_s N_i$ (for L_i) and $\rho_s N_i \lambda_{10,10-i}$ (for \hat{L}_i) where

$$\lambda_{10,10-i} = \begin{cases}
\frac{N_{10}}{W_{10-i}}, & i \leq 10 \\
1, & i > 10
\end{cases}$$

Table III shows the threshold values.

<table>
<thead>
<tr>
<th>i</th>
<th>support count threshold for L_i</th>
<th>support count threshold for \hat{L}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>22</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table III. Support count thresholds for L_i and \hat{L}_i in MPP

After obtaining the threshold values, MPP scans the subject sequence once to obtain the PILs of all length-3 patterns and count their supports. The patterns whose supports are not less than 3 (support threshold for L_3, see Table III) are put into L_3 (first row of Table IV). There are 42 patterns whose supports are not less than 1 (support threshold for \hat{L}_3, see Table III), and they form \hat{L}_3. After that, MPP uses \hat{L}_3 to generate length-4 candidate patterns. Among the 116 candidates in C_4, 4 patterns are frequent, i.e., with support not less than 5, (see Table IV). In this iteration, 46 patterns are collected in \hat{L}_4. MPP then uses \hat{L}_4 to generate C_5 and computes L_5 and \hat{L}_5. It repeats the above process until \hat{L}_i is empty. The discovered frequent patterns are shown in Table IV. Although the longest frequent pattern discovered is of length 6, \hat{L}_i is not empty until $i = 8$.

<table>
<thead>
<tr>
<th>L_3</th>
<th>{AGC, AGT, CAG, CCA, CCC, CCG, CCT, CTA, CTG, GAG, GAT, TCC, TCT, TGA, TTT}</th>
</tr>
</thead>
<tbody>
<tr>
<td>L_4</td>
<td>{CCAG, CCCA, TCCC, TCCG}</td>
</tr>
<tr>
<td>L_5</td>
<td>{CCCAG, TCCCC}</td>
</tr>
<tr>
<td>L_6</td>
<td>{TCCCG}</td>
</tr>
</tbody>
</table>

Table IV. Frequent patterns discovered by MPP
5.2 MPPm

The efficiency of MPP relies on how effective pruning is. In this subsection we discuss how MPP can be refined to improve its pruning effectiveness and thus to achieve better efficiency.

Recall that given a value of n (the length of the longest frequent patterns the user is interested in obtaining), a candidate length-i pattern Q in the set \(C_i \) is pruned if its support ratio is less than \(\lambda_{n,n-i} \cdot \rho_s \). So, the larger the value \(\lambda_{n,n-i} \) is, the more effective is the pruning. By the definition of \(\lambda \), that implies a small \(n-i \), or equivalently, a small \(n \) and a large \(i \). While we don’t have many choices for \(i \) (the algorithm always starts with mining length-3 patterns, so \(i \) starts at 3), the above argument indicates that a reasonably small value of \(n \) can potentially speed up the algorithm. As an example, in our experiment, we use a DNA fragment of 1,000 characters, a gap requirement of \([9,12]\), and a support threshold \(\rho_s = 0.003\% \). The longest pattern mined has a length of 13. If the user has a good idea of how long frequent patterns are, and picks \(n = 13 \) as the algorithm’s input, our experiment shows that MPP could achieve good pruning and is efficient. The question is “what if the user does not know what \(n \) to pick?” We will come back to this question shortly.

In the derivation of Theorem 2, we discussed how to derive a tighter bound that leads to a more effective pruning strategy. Without repeating the details, the approach is to pick a small number \(m \) and analyze the subject sequence to obtain a number \(e_m \). From Theorem 2 and Equation 5, we know that if there is a length-\(k \) frequent pattern \(P \), then the sub-pattern \(Q \) of \(P \) that consists of the first \(k-d \) characters (i.e., \(Q = P[1] \ldots P[k-d] \)) must have its support ratio not less than \(\lambda_{k,d}' \cdot \rho_s \), where \(\lambda_{k,d}' = \left(\frac{W_m}{e_m} \right)^s \cdot \lambda_{k,d}, s = \lfloor \frac{d}{m} \rfloor \).

Now, let us consider the “pick-the-\(n \)” problem again. If the user does not have a good idea of \(n \), our approach is to find a reasonable value automatically. The idea is to count the supports of all length-3 patterns. Then, for every value of \(3 < k \leq l_1 \), we check and see if there is any length-3 pattern \(Q \) whose support is not less than \(\lambda_{k,k-3} \cdot N_3 \cdot \rho_s \). If no such \(Q \) exists, then by Theorem 2, we know that there are no length-\(k \) frequent patterns. Finally, the value of \(n \) is taken as the largest \(k \) such that length-\(k \) frequent patterns may exist. We thus modify MPP with the above procedure of automatically determining \(n \) applied. We call the modified algorithm MPPm (MPP modified).

To illustrate, let us consider Example 1 in Section 5.1. Assume MPPm is applied with \(m = 7 \) to the subject sequence

\[
S = TTCCCTCCGCGAAGGCTCCTTTGATATTA.
\]

MPPm first calculates \(e_7 \) and obtains \(e_7 = 12 \). Also, the largest support count of length-3 patterns is found to be 6.

MPPm then checks whether there exist frequent patterns of length-\(k \) (for \(3 < k \leq l_1 = 10 \)). By comparing \(\lambda_{k,k-3} \cdot N_3 \cdot \rho_s \) (shown in Table V) with the largest support count 6, MPPm concludes that the length of the longest frequent patterns (with length \(\leq l_1 \)) is not longer than 9.

It then calculates the support count thresholds for collecting \(L_i \) and \(\hat{L}_i \). They are \(\rho_s \cdot N_i \) and \(\rho_s \cdot N_i \cdot \lambda_{9,9-i} \), respectively. The values are shown in Table VI. Comparing
Table V. Value of $\lambda'_{k,k-3} \cdot N_3 \cdot \rho_s$ in MPPm

<table>
<thead>
<tr>
<th>k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lambda'_{k,k-3} \cdot N_3 \cdot \rho_s$</td>
<td>2.46</td>
<td>2.16</td>
<td>1.86</td>
<td>1.56</td>
<td>1.26</td>
<td>0.96</td>
<td>7.04 (> 6)</td>
</tr>
</tbody>
</table>

Table VI with Table III, we see that the thresholds for \hat{L}_i are larger than those in MPP. So MPPm could prune more candidates and thus is more efficient.

<table>
<thead>
<tr>
<th>i</th>
<th>support count threshold for L_i</th>
<th>support count threshold for \hat{L}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>31</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table VI. Support count thresholds for L_i and \hat{L}_i in MPPm

5.3 MPPo

In this section, we optimize MPPm and describe another algorithm called MPPo (MPPm with Optimizations).

Recall that MPPm makes use of Theorem 2 to automatically estimate n (the length of the longest frequent patterns). Theorem 2 implies that if a length-l pattern P is frequent, then its length-$(l-d)$ subpattern $Q = P[1] \ldots P[l-d]$ should have its support no less than $\lambda'_{l-d} \cdot \rho_s \cdot N_{l-d}$. Note that in the above statement, Q is not just any subpattern of P, but of form $Q = P[1] \ldots P[l-d]$. Here we discuss how to obtain a support lower bound for any subpattern Q of P by extracting information from the subject sequence S. The information we need is as follows.

1. Instead of calculating e_m for a fixed value of m, we compute e_m values for all $m \leq t$, where t is a user specified integer. For example, if $t = 8$, we calculate e_m values for $1 \leq m \leq 8$.

2. According to the definition of e_m, given a length-$(m+1)$ pattern P, if its first character $P[1]$ maps to a fixed offset in the subject sequence S, then we could observe P in S at most e_m times by altering the offset sequences mapped to its last m characters (i.e., $P[2] \ldots P[m+1]$). Similarly, if $P[m+1]$ maps to a fixed offset in S, there is also an upper bound on how many times P could be observed in S by altering the offset sequences mapped to its first m characters (i.e., $P[1] \ldots P[m]$). We call this upper bound re_m (reverse e_m).
The calculation of \(r_m \) is similar to that of \(e_m \). We compute \(r_m \) values for all \(m \leq t \) as well.

\[
\begin{align*}
\sup(Q_1) & \leq \sup(Q) \times e_4 \\
\sup(Q_2) & \leq \sup(Q_1) \times e_3 \\
\sup(P) & \leq \sup(Q_2) \times r_2
\end{align*}
\]

If \(P \) is frequent, then from the above equations, we get

\[
\sup(Q) \geq \frac{\sup(P)}{e_4 \cdot e_3 \cdot r_2} \geq \frac{\rho_s N_i}{e_4 \cdot e_3 \cdot r_2}.
\]

Here \(\frac{\rho_s N_i}{e_4 \cdot e_3 \cdot r_2} \) is a support requirement on subpattern \(Q \).

In general, if \(P \) is frequent, then for any subpattern \(Q \) of \(P \), we can determine a lower bound of \(\sup(Q) \) using \(e_m \) values and \(r_m \) values.

With a lower bound on all subpatterns, it is possible to pick a smaller \(n \) for the mining algorithm. For a pattern \(P \) of length \(k \), we first count the support lower bounds of all its length-3 subpatterns. We then record the largest lower bound \(\max_{\text{lb}} \). After that, we check whether there exists a length-3 pattern whose support is no less than \(\max_{\text{lb}} \). If yes, there may exist frequent length-\(k \) patterns. Otherwise, all length-\(k \) patterns are infrequent. Since we use the maximal support lower bound of all length-3 subpatterns to pick \(n \), instead of the lower bound of \(P[1]P[2]P[3] \) used by \(\text{MPPm} \), it is likely that a smaller \(n \) will be found.

The lower bound of all subpatterns could also be utilized to get smaller \(\hat{L}_i \) sets. In \(\text{MPP} \) and \(\text{MPPm} \), \(\hat{L}_i \) is the set of all length-\(i \) patterns whose supports are no less than \(N_n \rho_s / W^{n-i} \) (according to Theorem 1), where \(n \) is the length of the longest frequent patterns. With \(e_m \) and \(r_m \) values, for a frequent length-\(j \) pattern \(P \), we could find the lower bounds of all its subpatterns of length \(i \). We use \(\min_{\text{lb}}^{i,j} \) to represent the minimum lower bound among them. It is obvious that any length-\(j \) frequent pattern could be composed from length-\(i \) patterns whose supports are no less than \(\min_{\text{lb}}^{i,j} \). We set \(\hat{L}_i \) to be the set of all length-\(i \) patterns whose supports are no less than

\[
\min_{j=i+1}^n \min_{\text{lb}}^{i,j}.
\]

From the example at the beginning of this subsection on how to compute a support lower bound of any subpattern \(Q \) of \(P \), we know that

\[
\min_{j=i+1}^n \min_{\text{lb}}^{i,j} \geq N_n \rho_s / W^{n-i}.
\]

Therefore, with the same value of \(n \), this definition of \(\hat{L}_i \) is a subset of that used by \(\text{MPP} \) and \(\text{MPPm} \). A smaller \(\hat{L}_i \) leads to fewer candidates generated and thus less work in support counting.
We could also increase the support requirement of a subpattern Q in another way. We illustrate the idea with a simple example. Suppose $|P| = 7$, $Q = P[1]P[2]P[3]$, $m = 4$. Previously, we bound $\text{sup}(Q)$ by

$$\text{sup}(Q) \geq \frac{\text{sup}(P)}{e^m \max_{r=1}^L K_r},$$

where L is the length of the subject sequence S.

We note that the first possible offset positions of $P[3]$ (the last character in Q) in S is not 1, but $\minspan(3)$. The reason is that $P[3]$ is the third character of Q. Also, the last possible offset position of $P[3]$ in S is not L, but $L + 1 - \minspan(5)$, because $P[3]$ is the first character of a length-5 subpattern $P[3] \ldots P[7]$. Therefore, we could use

$$\frac{\text{sup}(P)}{\max_{r=\minspan(5)}^{L+1} K_r}$$

instead of $\frac{\text{sup}(P)}{\max_{r=1}^L K_r}$ as a tighter lower bound for $\text{sup}(Q)$.

We design MPPo using the above-mentioned methods in tightening the bounds. With a smaller n and smaller \hat{L}_i sets, MPPo could reduce the mining time. On the other hand, a longer pre-processing time is required to count e_m, $r e_m$, and the support threshold for \hat{L}_i, i.e. $\min_{j=i+1}^n \min_{b=1}^{l_j}$. So its performance depends on which factor outweights the other.

To illustrate, let us consider Example 1 in Section 5.1 again. Suppose $t = 7$. MPPo first counts the values of e_m and $r e_m$ (shown in Table VII).

<table>
<thead>
<tr>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
<th>e_4</th>
<th>e_5</th>
<th>e_6</th>
<th>e_7</th>
<th>$r e_1$</th>
<th>$r e_2$</th>
<th>$r e_3$</th>
<th>$r e_4$</th>
<th>$r e_5$</th>
<th>$r e_6$</th>
<th>$r e_7$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>9</td>
<td>12</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>6</td>
<td>10</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

Table VII. e_m and $r e_m$ values for $2 \leq m \leq 7$

MPPo then checks whether there exist frequent patterns of length-k (for $3 < k \leq l_1 = 10$). According to our above analysis, MPPo discovers that if a length-k pattern is frequent, one of its length-3 subpatterns must have its support count not less than the value shown in Table VIII.

<table>
<thead>
<tr>
<th>k</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>support requirement</td>
<td>2.46</td>
<td>2.88</td>
<td>3.72</td>
<td>6.24 (> 6)</td>
<td>6.72 (> 6)</td>
<td>10.24 (> 6)</td>
<td>10.56 (> 6)</td>
</tr>
</tbody>
</table>

Table VIII. If a length-k pattern is frequent, the smallest support count value that one of its length-3 subpatterns must attain.

Since the largest support count of length-3 patterns is 6, it is obvious that the length of the longest frequent pattern (with length $\leq l_1$) is not longer than 6.

MPPo then applies the new optimization techniques to calculate the support count thresholds for computing \hat{L}_i. The resulting values are shown in Table IX. They are larger than the values used in the MPPm algorithm (Table VI). So MPPo is able to process smaller sets of C_i and \hat{L}_i compared to MPPm and MPP.
6. EXPERIMENT RESULTS AND ANALYSIS

To analyze the performance of the mining algorithms, we perform an extensive experimental study. This section shows some representative results and discusses some interesting properties of the algorithms.

The data used in the experiments is the Homo Sapiens (human) DNA sequence AX829174 downloaded from the National Center for Biotechnology Information website [NCBI]. The sequence consists of 10,011 characters. In the experiments, we randomly pick a length-L segment from AX829174 as the subject sequence for various values of L.

6.1 Performance of MPP and MPPm under Different Support Thresholds

As we have discussed, the difference between MPP and MPPm is that MPP relies on a user input, n, which specifies an estimate of the length of the longest frequent patterns in the subject sequence, while MPPm tries to determine the estimate automatically. It is thus interesting to see how the estimation accuracy affects the performance of the algorithms. In our first experiment, we run MPP and MPPm for various values of support threshold, ρ_s. We note that different values of ρ_s yield different sets of frequent patterns. Let us use $n_\rho(\rho_s)$ to denote the length of the longest frequent patterns under a certain value of ρ_s. For each ρ_s, we execute MPP twice, one with the user input $n = n_\rho(\rho_s)$ (i.e., the best case scenario where the user has a perfect estimate of n), and the other with $n = l_1$ (i.e., the worst case scenario where the user has no idea about n and uses the largest value).

Figure 4 shows the performance of the algorithms. In this experiment, the subject sequence length $L = 1,000$, the gap requirement is $[9, 12]$ and MPPm uses $m = 10$.

First, we observe from the figure that as the support threshold increases, the execution times of the algorithms decrease. This is because a larger ρ_s gives fewer frequent patterns to extract. Also, from Figure 4(a), we see that without a reasonable estimate of n, the performance of MPP (worst case) is very bad. MPPm, on the other hand, is much more efficient due to its ability to determine a much smaller n.

<table>
<thead>
<tr>
<th>i</th>
<th>support count threshold for L_i</th>
<th>support count threshold for \hat{L}_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>8</td>
<td>41</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>10</td>
<td>85</td>
<td>85</td>
</tr>
<tr>
<td>11</td>
<td>93</td>
<td>93</td>
</tr>
<tr>
<td>12</td>
<td>57</td>
<td>57</td>
</tr>
<tr>
<td>13</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table IX. Support count thresholds for L_i and \hat{L}_i in MPPm

$L = 1,000, \ [N, M] = [9, 12], \ m = 10$

Fig. 4. MPP_m vs. MPP (worst case) and MPP (best case)
As an example, when $\rho_s = 0.003\%$, the experiment result shows that the longest frequent pattern has a length of $n_s(0.003\%) = 13$. While MPP uses $n = l_1 = 77$, MPPm estimates a value of $n = 22$. As we have explained in the previous section, a small value of n enables a much better pruning condition when the algorithms are determining which candidate patterns in C_i should be collected in the set \hat{L}_i. It explains why MPPm is much more efficient than MPP under the worst case.

Figure 4(b) compares MPPm against MPP when the user has a perfect estimate of n. From the figure, we see that MPPm is less efficient than MPP (best case). There are two reasons why MPPm takes longer time to execute. First, determining the value e_m (so that MPPm can apply Theorem 2 to estimate a value of n) requires MPPm to check quite a number of length-m patterns in the subject sequence S (see the discussion preceding Theorem 2). This overhead is not required for MPP. Second, MPP (best case) uses a smaller (and accurate) n value than MPPm does. Pruning is thus more effective. The performance difference, however, is not as big as that between MPPm and MPP (worst case). For example, in the above experiments, MPPm is 1.5 to 3.7 times slower than MPP (best case), and it is 16 to 30 times faster than MPP (worst case).

6.2 Number of Candidates and Number of Patterns in \hat{L}_i and L_i

Our experiment result also shows that both MPP and MPPm are much more efficient than the straightforward way of enumerating all candidates. Since the Apriori property does not hold, the enumeration algorithm has to count all possible candidates. In our experiment settings, the number of candidates counted by the enumeration method is 4^i for C_i. On the other hand, both MPP and MPPm are able to prune a large number of candidates. Table X(a) shows the number of candidates processed by the enumeration algorithm, MPP (worst case), MPPm and MPP (best case) under support threshold 0.003%. The enumeration algorithm is impractical due to the large number of candidates it needs to process. The number of candidates MPP (worst case) has to deal with is also large, however, it is manageable. For MPPm, it counts much fewer candidates than MPP (worst case), which explains why MPPm is much faster than MPP (worst case). MPP (best case) processes even fewer candidates than MPPm. Therefore it has the shortest execution time.

Table X(b) shows the sizes of \hat{L}_i for the algorithms. They follow a similar trend as that of candidate numbers. That is to say, MPP (worst case) has the largest \hat{L}_i, and MPPm has a much smaller \hat{L}_i, while the size of \hat{L}_i for MPP (best case) is even smaller. The rightmost column of Table X(b) shows $|L_i|$. We observe that the sizes of \hat{L}_i for MPPm and MPP (best case) are about the same as the size of L_i, which illustrates the efficiency of MPPm and MPP (best case).

The large difference between MPP (worst case) and MPP (best case) indicates that the efficiency of the MPP algorithm is dominated by the user input n, the estimated length of the longest frequent patterns.

4Recall that a pattern P is frequent if $\text{sup}(P) \geq N_l \rho_s$. Since N_l is exponentially large w.r.t. l, even a small ρ_s implies a fairly large support count of P.

<table>
<thead>
<tr>
<th>C_i</th>
<th>Enumeration Algorithm</th>
<th>MPP (worst case)</th>
<th>MPPm</th>
<th>MPP (best case)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>64</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>C_4</td>
<td>256</td>
<td>256</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>C_5</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>C_6</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
<td>4096</td>
</tr>
<tr>
<td>C_7</td>
<td>16384</td>
<td>16384</td>
<td>16384</td>
<td>16384</td>
</tr>
<tr>
<td>C_8</td>
<td>65536</td>
<td>65528</td>
<td>54588</td>
<td>50609</td>
</tr>
<tr>
<td>C_9</td>
<td>262144</td>
<td>231161</td>
<td>17464</td>
<td>12198</td>
</tr>
<tr>
<td>C_{10}</td>
<td>1048576</td>
<td>177140</td>
<td>2926</td>
<td>2262</td>
</tr>
<tr>
<td>C_{11}</td>
<td>4194304</td>
<td>37543</td>
<td>1057</td>
<td>783</td>
</tr>
<tr>
<td>C_{12}</td>
<td>16777216</td>
<td>16114</td>
<td>346</td>
<td>222</td>
</tr>
<tr>
<td>C_{13}</td>
<td>4^{13}</td>
<td>7552</td>
<td>42</td>
<td>26</td>
</tr>
<tr>
<td>C_{14}</td>
<td>4^{14}</td>
<td>2919</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>C_{15}</td>
<td>4^{15}</td>
<td>1009</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_{16}</td>
<td>4^{16}</td>
<td>356</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_{17}</td>
<td>4^{17}</td>
<td>43</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_{18}</td>
<td>4^{18}</td>
<td>8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C_{19}</td>
<td>4^{19}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>...</td>
<td>:</td>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>C_{77}</td>
<td>4^{77}</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(a) Number of candidates counted by different algorithms

| L_i | MPP (worst case) | MPPm | MPP (best case) | |L_i||
|-----|------------------|------|-----------------|---|
| L_3 | 64 | 64 | 64 | 64 |
| L_4 | 256 | 256 | 256 | 256|
| L_5 | 1024 | 1024 | 1024 | 1024|
| L_6 | 4096 | 4096 | 4096 | 4096|
| L_7 | 16384 | 14671| 13979 | 13374|
| L_8 | 60779 | 8854 | 6633 | 5678|
| L_9 | 72310 | 2130 | 1691 | 1514|
| L_{10}| 23914 | 900 | 683 | 623 |
| L_{11}| 11251 | 368 | 260 | 242 |
| L_{12}| 5904 | 91 | 59 | 55 |
| L_{13}| 2752 | 24 | 12 | 12 |
| L_{14}| 1086 | 0 | 0 | 0 |
| L_{15}| 450 | - | - | - |
| L_{16}| 104 | - | - | - |
| L_{17}| 8 | - | - | - |
| L_{18}| 0 | - | - | - |

(b) Size of L_i in different algorithms and size of |L_i|

Table X.
6.3 Performance of MPP under different user input n

To further illustrate the effect of the user input n, we execute MPP over different values of n. In this experiment $n_o(\rho_s) = 13$. Figure 5 shows the result. As expected, the worse is the estimate (a larger n), the slower is MPP. What is interesting about this figure is the execution time of MPP when $n = 10$, a value that is smaller than $n_o(\rho_s)$, the length of the longest frequent patterns in S, that is to say, when the user under-estimates $n_o(\rho_s)$. From the figure, we see that when $n = 10$ the execution time of MPP is smaller than the case when n equals the real maximum length $n_o(\rho_s)$.

6.3.1 Continuously Refine n. Recall that for a given user input n, MPP will find all frequent patterns of lengths less than or equal to n. For longer patterns, MPP takes a best-effort approach and tries to return those frequent patterns as many as possible. Therefore, if $n < n_o(\rho_s)$, not all frequent patterns are guaranteed to be found. The small execution time of MPP when $n = 10$ as shown in Figure 5, however, hints at an adaptive approach to determine a suitable n value. Specifically, if a user has no idea of a good n value, we could run MPP using a small n, let’s say 10. After MPP finishes execution, it will return all frequent patterns of length less than or equal to n plus a number of longer frequent patterns. We could note the longest pattern discovered, use its length to refine n and re-execute MPP. This process could continue until we cannot refine n further. We did this experiment with different starting n values. The result is shown in Figure 6.

We see that when the starting estimated value of n is less than $n_o(\rho_s)$ (i.e., 13), the running time is about 2 times that of MPP (best case). In these cases, MPP runs twice to finish the refining process. Since the cost of running MPP with a small n
is low, the total execution time is still smaller than that of MPPm (m=10). When \(n > 13 \), the trend is similar to that shown in Figure 5.

6.4 Performance of MPPm under different values of \(m \)

Algorithm MPPm derives a value \(e_m \) to estimate the length of the longest frequent patterns. In this set of experiment we study how the choice of \(m \) affects the performance of MPPm. Figure 7 shows the running time of MPPm under different values of \(m \).

We see that as \(m \) increases, the running time of MPPm decreases first then increases. The reason is that with a larger \(m \), the ratio \(W^m/e_m \) is larger. So MPPm could estimate a more accurate \(n \), and the running time reduces. When \(m \) continues to increase, the efforts of computing \(e_m \) becomes the major factor. Therefore, the total execution time increases.

6.5 Performance of MPPm under different values of \(W \)

In another experiment, we study the effect of the flexibility of the gap \(W \). We fix \(N = 9 \) and hence the gap requirement is \([9, W+8]\). Figure 8 shows the performance of MPPm when \(W \) changes from 2 to 8. From the figure, we see that as \(W \) increases, the execution time of MPPm drops initially then rises. This is due to the following two factors. First, a larger \(W \) implies a tighter bound computed from \(e_m \) and thus more pruning power. This reduces the running time. On the other hand, for a given \(l \), the number of length-\(l \) offset sequences, \(N_l \), is proportional to \(W^{l-1} \) (see ACM Journal Name, Vol. ?, No. ?, ? 20?).
Section 4.1). That is, the larger the value of W, the larger is N_l. Hence, the PIL lists with which the algorithm uses to count patterns’ supports are long. Therefore, more computational effort is needed. When $W \in [2,4]$, the first factor dominates the second one, so the net effect is a drop in running time. When W continues to increase, the second factor becomes dominant, so MPP_m requires more execution time.

6.6 Performance of MPP_m under different values of N

In the next experiment, we fix the gap flexibility W to 4 and vary the value of N. The gap requirement is thus $[N, N + 3]$. Figure 9 shows the performance of MPP_m as N varies from 8 to 12. From the figure, we see that the execution time of MPP_m increases with N. Recall that after MPP_m has estimated a value of n, it basically follows the logic of MPP. In particular, during the iteration in which MPP_m determines the set \hat{L}_i, a candidate pattern in C_i is removed if its support ratio is less than $\lambda_{n,n-i} \cdot \rho_s$. According to Equation 4, $\lambda_{n,n-i} = \frac{L-(n-1)(M+N+1)}{L-(i-1)(M+N+1)}$. One can verify that $\lambda_{n,n-i}$ is a decreasing function of N. Hence, the smaller the value of N, the larger $\lambda_{n,n-i}$ is, and more candidate patterns can be pruned. This leads to a more efficient algorithm.

6.7 Scalability of MPP_m with increasing sequence length

We study the scalability of MPP_m with respect to the length of the subject sequence (L). Figure 10 shows the execution time of MPP_m as L varies from 1,000 to 10,000.
characters. The result shows that MPP_m scales linearly with the sequence length.

6.8 MPP_o

In this subsection, we study the performance of algorithm MPP_o. In all the experiments, we set $t = 8$. That is to say, we count e_m and re_m values for $m \leq 8$.

6.8.1 Compare MPP_o with MPP (best case). Our first experiment compares the performance of MPP_o and MPP (best case) under different support thresholds and gap requirement W. Figures 11–13 show their running times under $W = 2, 4,$ and 6, respectively.

We see that when W is small ($W = 2$), MPP_o outperforms MPP (best case) (Figure 11). The reason is that MPP_o deals with smaller \hat{L}_i sets than MPP. Hence, it spends less effort on candidate generation. As an example, Table XI shows the sizes of C_i and \hat{L}_i processed by MPP_o and MPP (best case) in each iteration when $\rho_s = 0.002\%$. From the table, we see that the total number of candidates handled by MPP_o (119,548) is about $2/3$ of that of MPP (best case) (177,313). With fewer candidates to process, MPP_o is more efficient.

When W is moderate ($W = 4$), the performances of MPP_o and MPP (best case) are comparable (see Figure 12). The reason is that a larger W implies more pre-processing time for MPP_o to compute the values of e_m’s and re_m’s. When $W = 4$, the extra amount of time spent on pre-processing is about the same as the savings MPP_o obtains from smaller C_i and \hat{L}_i. As a result, MPP_o and MPP (best case) have similar performance.
When W increases to 6, the pre-processing cost of MPP_o overweights the resulting savings. Hence, in this case, MPP (best case) outperforms MPP_o (Figure 13). We remark that for a typical organism, the flexibility (W) should not be too large. In summary, in most cases, MPP_o has better or comparable performance compared to MPP (best case).

6.8.2 Compare MPP_o with MPP_m under Different Gap Requirement W. We then compare the performance of MPP_o and MPP_m under different values of W. Figure 14 shows the result. We see that when W is not large (say $W \in [2, 4]$), the performance of MPP_o is much better than MPP_m. The reason is that in this case, MPP_o could obtain a much tighter bound than MPP_m, which in turn results in more effective pruning power. On the other hand, MPP_o needs to gather more information from the subject sequence S, and the amount of calculation increases with the value of W. Therefore, when W is large ($W = 6$), the performance of MPP_o is not as good as that of MPP_m.

6.8.3 Compare MPP_o with MPP_m under Different Values of N. Figure 15 shows the performance of MPP_o and MPP_m when N changes. Unlike MPP_m, the running time of MPP_o stays relatively steady when N changes. Recall that for MPP_m, a larger N implies a smaller support threshold of L_i, and thus more processing time. For MPP_o, the support threshold of L_i is not directly related to the value of N. So the performance of MPP_o is relatively unaffected by the value of N.

\[\rho_s = 0.003\%, \ [N, M] = [9, 12], m = 10 \]

Fig. 10. Performance of \(\text{MPP}_m \) for various values of \(L \)

6.9 Summary
In summary, when the gap requirement \(W \) is not large, \(\text{MPP}_o \) is the most efficient algorithm. If \(W \) is large and a user has a good idea about the length of the longest frequent patterns in the subject sequence \(S \), \(\text{MPP} \) is the best choice. Otherwise we should choose \(\text{MPP}_m \).

7. A CASE STUDY
In this section we report a case study in which interesting patterns are mined using our algorithms. We applied \(\text{MPP}_m \) to mine a number of DNA sequences, including the whole genomes of the bacteria H. influenzae, H. pylori, M. genitalium and M. pneumoniae. We segmented the genomes into short fragments of 100 kilo-bases (kb), and ran \(\text{MPP}_o \) on each fragment using a gap size of \([10, 12]\) and a support threshold of 0.006\%. The length of the longest patterns discovered was 10 bases (characters). We observed a very interesting result: the bases ‘A’ and ‘T’ constitute much more to the periodic patterns than ‘C’ and ‘G’. For instance, there are 256 length-8 patterns that consist of only ‘A’s and ‘T’s. We found that all such patterns were frequent in some fragments of all four genomes. Some of these patterns were even frequent in every fragment examined. As an example, if we consider fragments from the bacterial genomes, then on average, about 250 of the 256 length-8 patterns that consist of only ‘A’s and ‘T’s were frequent in a given fragment. On the other hand, length-8 patterns that consist of more than one ‘C’ or ‘G’ were unlikely to be frequent. For example, there are \(4^8 = 65,536 \) possible length-8 patterns, among
which $2^8 = 256$ contain only ‘A’s and ‘T’s, and $8 \times 2 \times 2^7 = 2,048$ contain exactly one ‘C’ or ‘G’. So, the number of possible patterns that have more than one ‘C’ or ‘G’ is $65,536 - 256 - 2,048 = 63,232$. We found that among these patterns, on average, only 3.9 of them were frequent in a DNA fragment of the bacterial genomes. Also, none of these frequent patterns are common in all genomes.

The results are consistent with the findings of a previous study [Herzel et al. 1999], which shows the periodic occurrence of ‘A’ and ‘T’ in yeast and various bacteria and archaea with a period length of 10-11 base pairs. Our results complement its findings by showing that beyond the regularity that occurs between nucleotide pairs, the patterns actually last for quite a number of contiguous cycles. Also, some patterns are ubiquitous in the genomes, not restricting to any specific regions.

In a previous work that extensively studies ApA dinucleotide periodicity (the regular occurrence of base ‘A’ after another base ‘A’ separated by a fixed period) in various eubacteria, archaeabacteria, eukaryotes and organelles, it has been suggested that the periodic patterns are more prominent in eubacteria than in eukaryotes [Tomita et al. 1999]. For instance, the genome of H. sapiens (human) shows very weak periodicity, as compared to the eubacteria and some lower eukaryotes such as the baker yeast S. cerevisiae. We would like to verify whether the periodic patterns are really weakened in higher eukaryotes, or strong periodic patterns still exist, but they are composed of other bases or do not exhibit a rigorous periodicity with a fixed period length. We downloaded short pieces of the genomes of the eukaryotes H. sapiens, C. elegans and D. melanogaster, cut them into 100kb frag-
Table XI. Size of C_i and \hat{L}_i for MPPo and MPP (best case)

<table>
<thead>
<tr>
<th>i</th>
<th>C_i</th>
<th>L_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>5</td>
<td>1024</td>
<td>1024</td>
</tr>
<tr>
<td>6</td>
<td>4096</td>
<td>3952</td>
</tr>
<tr>
<td>7</td>
<td>15324</td>
<td>14769</td>
</tr>
<tr>
<td>8</td>
<td>30006</td>
<td>22967</td>
</tr>
<tr>
<td>9</td>
<td>29512</td>
<td>20808</td>
</tr>
<tr>
<td>10</td>
<td>17890</td>
<td>12125</td>
</tr>
<tr>
<td>11</td>
<td>9067</td>
<td>6205</td>
</tr>
<tr>
<td>12</td>
<td>5427</td>
<td>3072</td>
</tr>
<tr>
<td>13</td>
<td>2552</td>
<td>1613</td>
</tr>
<tr>
<td>14</td>
<td>1362</td>
<td>855</td>
</tr>
<tr>
<td>15</td>
<td>727</td>
<td>486</td>
</tr>
<tr>
<td>16</td>
<td>414</td>
<td>303</td>
</tr>
<tr>
<td>17</td>
<td>297</td>
<td>212</td>
</tr>
<tr>
<td>18</td>
<td>217</td>
<td>154</td>
</tr>
<tr>
<td>19</td>
<td>182</td>
<td>101</td>
</tr>
<tr>
<td>20</td>
<td>114</td>
<td>65</td>
</tr>
<tr>
<td>21</td>
<td>80</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>25</td>
<td>11</td>
</tr>
<tr>
<td>23</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>total</td>
<td>119548</td>
<td>87039</td>
</tr>
</tbody>
</table>

Table XI. Size of C_i and \hat{L}_i for MPPo and MPP (best case)

ments, and repeated the above experiments. To our surprise, all of the 256 length-8 patterns that consists of ‘A’ and ‘T’ only are still frequent in some fragments of all three sequences. This result may imply that the flexible gap requirement is able to tolerate some variations in the sequences, such as the insertion or deletion of a nucleotide within a period that affects the period length.

Besides, some patterns not detected in the bacterial genomes are observed in the eukaryote sequences, many of which consist of more ‘C’s and ‘G’s. For instance, the length-8 pattern composing of ‘G’s only is frequent in some fragments of all three sequences. In one of the fragments of H. sapiens, the pattern composing of 16 G’s only is also found to be frequent! All these suggest that the nucleotides involved in the periodic patterns in bacteria and eukaryotes are quite different.

Some former studies suggest two explanations for the dinucleotide oscillations [Tri- fonov 1998; Tomita et al. 1999; Herzel et al. 1999]: (1) they are related to the helical shape of the DNA. In particular, the repetition of specific base-pair stacks with this periodicity would cause uni-directional deflection of the DNA curvature; (2) the alternation of hydrophobic and hydrophilic amino acids in α-helices leads to a periodicity of about 3.5 amino acids in protein sequences, which corresponds to 10-11 bases in DNA sequences. Both explanations are still possible given the new findings. The new results also further suggest that in eukaryotes, the maintenance of the DNA curvature may involve more ‘C’s and ‘G’s than in bacteria. Also, to
verify the second explanation, it is useful to actually look for some proteins with a corresponding coding DNA sequence that exhibits the mined periodic patterns.

Finally, we have applied our algorithm on mining DNA sequences of many different species. We found that there are unique periodic patterns for each species. Some of these patterns are very interesting. For example, for C. elegans, we found periodic patterns that repeat themselves, such as ATATATATA, GTAGTAGTAGT, etc. As another example, a unique periodic pattern for H. sapiens consists of 17 ‘G’s. Biologists may find those patterns insightful.

8. CONCLUSION

This paper studied the problem of mining periodic patterns with a gap requirement from sequences. We formally defined the data-mining model and proved several important theorems that lead to the derivation of efficient algorithms. We proposed three algorithms, namely, MPP, MPPm and MPPo for solving the problem. Extensive experiments had been done to illustrate the various performance characteristics of the algorithms. We found that for cases when the gap requirement is not large, MPPo is the most efficient algorithm. On the other hand, if the gap requirement is large and if the user has a good estimate of the length of the longest frequent patterns, MPP is the best choice. However, if the user does not provide the estimate, MPPm is able to determine a reasonably good one. We applied MPPm on a number of real DNA sequences. Much of our mining result is consistent with findings from previous studies.
Fig. 13. Performance of MPPo and MPP (best case) when W=6

REFERENCES

$L = 1,000, N = 9, \rho_s = 0.003\%$, $m=8$ for MPP_m

![Graph](image)

Fig. 14. Performance of MPP_o and MPP_m under different values of W

$L = 1,000, W = 4, \rho_s = 0.003\%, m=8$ for MPPm

Fig. 15. Performance of MPPo and MPPm under different values of N

9. APPENDIX: DERIVING THE FORMULA FOR N_L

First, let $i = \maxspan(l) - L$. Consider all length-l offset sequences of the form $[c_1 = 1, c_2, \ldots, c_l]$ where $c_l \leq L$, i.e., those offset sequences with the first offset being ‘1’, the first position of the subject sequence S. Let us use $f(l,i)$ to denote the number of such offset sequences.

If $i \leq 0$, we have $\maxspan(l) \leq L$. So, if the first offset is 1, $c_l \leq L$ even if every gap takes on the maximum value M. Hence, we have W choices for each of the remaining $l - 1$ offsets, and $f(l,i) = W^{l-1}$. Also, if $i > (l - 1)(W - 1)$, we have $\maxspan(l) - L > (l - 1)(W - 1)$, or equivalently, $\minspan(l) > L$. In this case, the offset sequence exceeds the span of the subject sequence even if every gap takes on the minimum value. Therefore, $f(l,i) = 0$. Hence,

$$f(l,i) = W^{l-1} \quad (i \leq 0)$$

$$f(l,i) = 0 \quad (i > (l - 1)(W - 1))$$

The values of $f(l, i)$ for other values of i are related by the equation specified in the following theorem:

Theorem 3. $\sum_{i=1}^{(l-1)(W-1)} f(l, i) = \frac{1}{2}(W - 1)W^{l-1}$, for $l > 1$.

Proof:

For $l = 2$, let us consider the length-2 offset sequence [1, c_2]. Since the second offset (i.e., c_2) must be within bound (i.e., $\leq L$) and the gap must satisfy the gap requirement (i.e., $N \leq c_2 - 2 \leq M$), we have $N + 2 \leq c_2 \leq \min(M + 2, L)$. Since $i = \text{maxspan}(2) - L$, we have $i = (2 - 1)M + 2 - L$, or $M + 2 = L + i$. Therefore, for $1 \leq i \leq M - N = W - 1$, the number of possible values of c_2 is $L - (N + 2) + 1 = M + 2 - i - N - 1 = M - N + 1 - i = W - i$. Hence,

$$f(2, i) = W - i \quad \forall 1 \leq i \leq W - 1.$$

And thus

$$\sum_{i=1}^{(2-1)(W-1)} f(2, i) = (W - 1) + (W - 2) + \ldots + 2 + 1$$

$$= \frac{W(W - 1)}{2}$$

$$= \frac{2 - 1}{2}(W - 1)W^{2-1}$$

So, Theorem 3 is true for $l = 2$.

Suppose Theorem 3 is true for $l = k$ where $k \geq 2$. We consider the case for $l = k + 1$. Recall that $f(k + 1, i)$ refers to the number of distinct offset sequences of the form [1, c_2, c_3, c_{k+1}], where $c_{k+1} \leq L$. Due to the gap requirement, we have $c_2 = (N + 1) + j$ where $1 \leq j \leq W$ (see Figure 16). Now, let us fix the value of j (and hence c_2) and focus on the segment of the sequence $S[c_2 \ldots L]$. From Figure 16, we see that the number of distinct offset sequences is equal to the number of ways of selecting k offsets within the segment $S[c_2 \ldots L]$, which is of length $L - (N + j)$, such that the gap requirement is satisfied among the offsets and that the first offset is taken as c_2. Since $L = \text{maxspan}(k + 1) - i$, we have the length of the segment being $\text{maxspan}(k + 1) - i - (N + j) = kM + (k + 1) - i - (N + j) = (k - 1)M + k - (i - W + j) = \text{maxspan}(k) - (i - W + j)$. Hence, the number of
such selections is equal to \(f(k, i - W + j) \). This leads to the following recurrence equation:

\[
f(k + 1, i) = \sum_{j=1}^{W} f(k, i - W + j).
\]

(11)

Now,

\[
\sum_{i=1}^{(k+1-1)(W-1)} f(k + 1, i)
= \sum_{i=1}^{(k+1-1)(W-1)} \sum_{j=1}^{W} f(k, i - W + j)
= \sum_{i=1}^{W} \sum_{j=1}^{k(W-1)} f(k, i - W + j)
= \sum_{j=1}^{W} \sum_{i=1}^{k(W-1)-W+j} f(k, i) \quad \text{(replace the order of } i, j\text{)}
= \sum_{j=1}^{W} \sum_{m=1-W+j}^{W} f(k, m) \quad \text{(by } m = i - W + j\text{)}
\]

Splitting \(j \) into 3 parts: \(j = 1, 2 \leq j \leq W - 1 \) and \(j = W \), we have

\[
\sum_{i=1}^{(k+1-1)(W-1)} f(k + 1, i)
= \sum_{j=1}^{1} \sum_{m=1-W+j}^{k(W-1)-W+j} f(k, m) + \sum_{j=2}^{W-1} \sum_{m=1-W+j}^{k(W-1)-W+j} f(k, m)
+ \sum_{j=W}^{W} \sum_{m=1-W+j}^{k(W-1)-W+j} f(k, m)
\]

(12)

By Equation 9, we get

\[
\sum_{j=1}^{1} \sum_{m=1-W+j}^{k(W-1)-W+j} f(k, m)
= \sum_{m=2-W}^{k(W-1)-1} f(k, m)
= \sum_{m=2-W}^{0} f(k, m) + \sum_{m=1}^{(k-1)(W-1)} f(k, m)
\]
\[(k-1)(W-1) \]
\[= (W - 1)W^{k-1} + \sum_{m=1}^{W-1} f(k, m) \quad (13) \]

Since when \(2 \leq j \leq W - 1 \), we have \(1 - W + j \leq 0, (k - 1)(W - 1) + 1 \leq k(W - 1) - W + j \), by Equations 9 and 10,
\[
W-1 \sum_{j=2}^{W-1} f(k, m)
= \sum_{j=2}^{W-1} \sum_{m=1-W+j}^{0} f(k, m) + \sum_{j=2}^{W-1} \sum_{m=1}^{(k-1)(W-1)} f(k, m)
+ \sum_{j=2}^{W-1} \sum_{m=(k-1)(W-1)+1}^{k(W-1)-W+j} f(k, m)
= \sum_{j=2}^{W-1} (W - j)W^{k-1} + \sum_{j=2}^{W-1} \sum_{m=1}^{(k-1)(W-1)} f(k, m) + 0
= \frac{(W - 2)(W - 1)}{2} + (W - 2) \sum_{m=1}^{(k-1)(W-1)} f(k, m) \quad (14)\]

Also by Equation 10,
\[
= \sum_{j=W}^{W} \sum_{m=1-W+j}^{k(W-1)} f(k, m)
= \sum_{m=1}^{k(W-1)} f(k, m)
= \sum_{m=1}^{(k-1)(W-1)} f(k, m) + \sum_{m=(k-1)(W-1)+1}^{k(W-1)} f(k, m)
= \sum_{m=1}^{(k-1)(W-1)} f(k, m) + 0 \quad (15)\]

Combing Equations 12, 13, 14 and 15, we get
\[
\sum_{i=1}^{(k+1-1)(W-1)} f(k + 1, i)
= \sum_{j=1}^{1} \sum_{m=1-W+j}^{k(W-1)-W+j} f(k, m) + \sum_{j=2}^{W-1} \sum_{m=1-W+j}^{W-1} f(k, m) \quad (16)\]

\[
\sum_{j=W}^{W^{k(W-1)-W+j}} T_{j} + \sum_{m=1}^{W} f(k,m) = (W - 1)W^{k-1} + \sum_{m=1}^{(k-1)(W-1)} f(k,m)
\]

\[
+ \frac{(W - 2)(W - 1)}{2} W^{k-1} + (W - 2) \sum_{m=1}^{(k-1)(W-1)} f(k,m)
\]

\[
+ \sum_{m=1}^{(k-1)(W-1)} f(k,m)
\]

\[
= \frac{W(W - 1)}{2} W^{k-1} + W \sum_{m=1}^{(k-1)(W-1)} f(k,m)
\]

\[
= \frac{1}{2} (W - 1)W^{k}
\]

\[
+ \frac{k - 1}{2} (W - 1)W^{k} \quad \text{(by induction hypothesis)}
\]

\[
= \frac{k + 1}{2} (W - 1)W^{k+1-1}
\]

Hence, Theorem 3 is true for \(l = k + 1 \). By induction, Theorem 3 is true. \(\square \)

With Theorem 3, we are ready to determine \(N_l \). We consider three cases.

Case 1: \(l > l_2 \). In this case, \(\minspan(l) > L \). That is, the minimum span of any length-\(l \) pattern exceeds the length of the subject sequence. So, there are no length-\(l \) offset sequences, or \(N_l = 0 \).

Case 2: \(l \leq l_1 \). In this case, \(N_l \) is given by the following theorem.

Theorem 4. Given a sequence \(S \) of length \(L \) and a gap requirement \([N, M] \), if \(l \leq l_1 \), then \(N_l = [L - (l - 1)(\frac{M+N}{2} + 1)]W^{l-1} \).

Proof: Let \(n(i) \) represent the number of distinct length-\(l \) offset sequences of the form \([i, c_2, \ldots, c_l]\) (i.e., the first offset equals \(i \)). We have \(N_l = \sum_{i=1}^{L} n(i) \).

One can easily see that \(n(i) \) is equivalent to the number of distinct offset sequences over a length-\((L - (i - 1)) \) subject sequence with the first offset being \(1 \). Hence, \(n(i) = f(l, \maxspan(l) - (L - i + 1)) \).

Since \(l \leq l_1 \), we have \(\maxspan(l) \leq L \), so from Equations 9, 10 and Theorem 3,

\[
N_l = \sum_{i=1}^{L} n(i)
\]

\[
= \sum_{i=1}^{L} f(l, \maxspan(l) - (L - i + 1))
\]

\[
= \sum_{i=\maxspan(l)-L}^{\maxspan(l)-1} f(l, i)
\]

\[
\begin{align*}
N_l &= \sum_{i=maxspan(l)-L}^{maxspan(l)-minspan(l)} f(l, i) + \sum_{i=1}^{maxspan(l)-1} f(l, i) \\
&\quad + \sum_{i=maxspan(l)-minspan(l)+1}^{(l-1)(W-1)} f(l, i) \\
&= (L - maxspan(l))W_{l-1} + \frac{l-1}{2}(W - 1)W_{l-1} \\
&= \left[L - (l - 1)(\frac{M + N}{2} + 1) \right] W_{l-1}
\end{align*}
\]

Case 3: \(l_1 < l \leq l_2\). In this case, \(maxspan(l) > L\). From Equation 10 we have,

\[
N_l = \sum_{i=maxspan(l)-L}^{maxspan(l)-minspan(l)} f(l, i) + \sum_{i=maxspan(l)-minspan(l)+1}^{(l-1)(W-1)} f(l, i) \\
&\quad + \sum_{i=(l-1)(W-1)+1}^{maxspan(l)-1} 0 \\
&= (L - maxspan(l))W_{l-1} + \frac{l-1}{2}(W - 1)W_{l-1} \\
&= \left[L - (l - 1)(\frac{M + N}{2} + 1) \right] W_{l-1}
\]

Although not a closed-form formula, we can compute \(N_l\) using Equation 11.