Outline

1. Pumping Lemma?
 - Adversary Argument
 - Explanation
 - Examples

2. Regular or not?
 - General Method
 - Examples

3. Minimization of FA
 - Example
Pumping Lemma

L is regular \Rightarrow $(\exists n)(\forall z)\left(z \in L, |z| \geq n \Rightarrow (\exists u, v, w)(z = uvw, |uv| \leq n, |v| \geq 1) \text{ and } (\forall i)uv^iw \in L \right)$

\Leftrightarrow

Adversary Argument

L is not regular \Leftarrow $(\forall n)(\exists z)\left(z \in L, |z| \geq n, (\forall u, v, w)((z = uvw, |uv| \leq n, |v| \geq 1) \Rightarrow (\exists i)uv^iw \notin L) \right)$
Using the adversary argument, we can verify a non-regular language L by the following game:

Game Proof

- the adversary pick an arbitrary n to challenge us for a string z.
- we construct a special string z in L with length greater than or equal to n.
- the adversary arbitrarily break z into u, v and w, where v is not empty and uv’s length less or equal to n.
- if we can always choose a i to show him that $uv^i w$ is not in L, then we win.
Palindromes over \(\{a, b\} \)

\[\{ww^R|w \in \{a, b\}^*\} \]

- The adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
Palindromes over \(\{a, b\} \)

\[\{ww^R | w \in \{a, b\}^* \} \]

- ⭐ the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- ✳️? How to choose \(z \) in \(L \)? The following moves will mess with the first \(n \) symbols of our \(z \), and we have to make sure the outcome is not in \(L \).
Palindromes over \(\{a, b\} \)

\[\{ww^R \mid w \in \{a, b\}^*\} \]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- we choose \(z = a^n bba^n \)
Palindromes over \(\{a, b\} \)

\[\{ww^R | w \in \{a, b\}^*\} \]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- we choose \(z = a^n bba^n \)
- the adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
Palindromes over \(\{a, b\} \)

\[\{ww^R | w \in \{a, b\}^*\} \]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- we choose \(z = a^n bba^n \)
- the adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
- \(u, v \) only contain \(a \); \(w \) contains a trailing substring \(bba^n \), and maybe some leading \(a \)'s. If we set \(i = 0 \) (pump \(v \) out), then \(uv^i w = uw \) will have less leading \(a \)'s than its trailing \(a \)'s, so \(uw \) is not a palindrome.

Zhao Qiao qzhao@cse.cuhk.edu.hk Examples on Pumping Lemma and Minimization of DFA
Palindromes over \(\{a, b\} \)

\[\{ww^R | w \in \{a, b\}^*\} \]

- The adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- We choose \(z = a^n bba^n \).
- The adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
- \(u, v \) only contain \(a \); \(w \) contains a trailing substring \(bba^n \), and maybe some leading \(a \)'s. If we set \(i = 0 \) (pump \(v \) out), then \(uv^i w = uw \) will have less leading \(a \)'s than its trailing \(a \)'s, so \(uw \) is not a palindrome.
- In fact, we can choose any \(i \) other than 1.
Twin strings over over \(\{a, b\} \)

\[
\{ww \mid w \in \{a, b\}^*\}
\]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
Twin strings over over \(\{a, b\} \)

\[\{ww | w \in \{a, b\}^*\} \]

- The adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- We choose \(z = a^nba^n b \)
Twin strings over over \{a, b\}

\[\{ww | w \in \{a, b\}^*\} \]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- we choose \(z = a^n b a^n b \)
- the adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
Twin strings over over \(\{a, b\} \)

\[\{ww \mid w \in \{a, b\}^*\} \]

- the adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- we choose \(z = a^nba^n b \)
- the adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
- \(u, v \) only contain \(a \); \(w \) contains a trailing substring \(ba^n b \), and maybe some leading \(a \)'s. If we set \(i = 0 \) (pump \(v \) out), then \(uv^i w = uw \) will have less leading \(a \)'s before the first \(b \) than its \(a \)'s between 2 \(b \)'s, so \(uw \) is not a twin string.
Twin strings over over \(\{a, b\} \)

\(\{ww \mid w \in \{a, b\}^*\} \)

- The adversary pick an arbitrary \(n \) to challenge us for a string \(z \).
- We choose \(z = a^n ba^n b \)
- The adversary arbitrarily break \(z \) into \(u, v \) and \(w \), where \(v \) is not empty and \(uv \)'s length less than or equal to \(n \).
- \(u, v \) only contain \(a \); \(w \) contains a trailing substring \(ba^n b \), and maybe some leading \(a \)'s. If we set \(i = 0 \) (pump \(v \) out), then \(uv^i w = uw \) will have less leading \(a \)'s before the first \(b \) than its \(a \)'s between 2 \(b \)'s, so \(uw \) is not a twin string.
- Can we choose other \(i \)'s to win?
To prove a language to be regular, we can use regular expression, DFA, NFA or ε-NFA to construct it directly.
To prove a language to be regular, we can use regular expression, DFA, NFA or ε-NFA to construct it directly.

We can also use the closure properties of regular languages: union, concatenation, Kleene closure, complement, intersection, substitution (quotient).
To prove a language to be regular, we can use regular expression, DFA, NFA or ε-NFA to construct it directly.

We can also use the closure properties of regular languages: union, concatenation, Kleene closure, complement, intersection, substitution (quotient).

To prove a language to be non-regular, we can use pumping lemma and the closure properties of regular languages.
L is a regular language over \{a,b,c\}, decide whether the following languages are regular.

<table>
<thead>
<tr>
<th>Problems</th>
<th>Hints</th>
</tr>
</thead>
<tbody>
<tr>
<td>{w</td>
<td>w ∈ L, a ∉ w}</td>
</tr>
</tbody>
</table>
L is a regular language over \{a,b,c\}, decide whether the following languages are regular.

Problems

- a \{w | w \in L, a \notin w \}

Hints

- a concatenation & complement
Q1

L is a regular language over \{a,b,c\}, Decide whether the following languages are regular.

Problems

a \(\{w \mid w \in L, a \notin w\} \)

b \(\{waw \mid w \in L\} \)

Hints

a concatenation & complement
L is a regular language over \{a,b,c\}, decide whether the following languages are regular.

Problems

a \(\{ w | w \in L, a \notin w \} \)

b \(\{ waw | w \in L \} \)

Hints

a concatenation & complement

b like palindromes → pumping lemma
L is a regular language over \{a,b,c\}, decide whether the following languages are regular.

Problems

- a \(\{w | w \in L, a \notin w\} \)
- b \(\{waw | w \in L\} \)
- c \(\{uv | u \in L, v \notin L\} \)

Hints

- a concatenation & complement
- b like palindromes → pumping lemma
L is a regular language over \{a,b,c\}, decide whether the following languages are regular.

Problems

a \(\{w \mid w \in L, \text{ } a \notin w\}\)
b \(\{waw \mid w \in L\}\)
c \(\{uv \mid u \in L, v \notin L\}\)

Hints

a concatenation & complement
b like palindromes → pumping lemma
c concatenation & complement
Prove that the following languages are non-regular.

Problems

a. all strings over \{a, b\} with the same number of a’s and b’s.

Hints
Prove that the following languages are non-regular.

Problems

- all strings over \{a, b\} with the same number of a’s and b’s.

Hints

- \(a^n b^n\)
Prove that the following languages are non-regular.

Problems

a. all strings over \{a, b\} with the same number of a’s and b’s.

b. all strings over (,) in which the parentheses are paired.

Hints

a. \(a^n b^n\)
Prove that the following languages are non-regular.

Problems

a. all strings over \{a, b\} with the same number of a’s and b’s.

b. all strings over (,) in which the parentheses are paired.

Hints

a. \(a^n b^n\)

b. \((n)^n\)
Prove that the following languages are non-regular.

Problems

a) all strings over \{a, b\} with the same number of a’s and b’s.

b) all strings over (,) in which the parentheses are paired.

c) all strings over \{a, b\} in which the number of a’s is a perfect cube.

Hints

a) \(a^n b^n\)

b) \((n)^n \)
Prove that the following languages are non-regular.

Problems

- a. all strings over \{a, b\} with the same number of a’s and b’s.
- b. all strings over (,) in which the parentheses are paired.
- c. all strings over \{a, b\} in which the number of a’s is a perfect cube.

Hints

- a. \(a^n b^n\)
- b. \((n)^n\)
- c. \(n < (n + 1)^3 - n^3\)
Prove that the following languages are non-regular.

Problems

a. all strings over \{a, b\} with the same number of a’s and b’s.
b. all strings over (,) in which the parentheses are paired.
c. all strings over \{a, b\} in which the number of a’s is a perfect cube.
d. all non-palindromes over \{a, b\}.

Hints

a. $a^n b^n$
b. $(^n)^n$
c. $n < (n + 1)^3 - n^3$
Prove that the following languages are non-regular.

Problems

a. all strings over \{a, b\} with the same number of a’s and b’s.
b. all strings over (,) in which the parentheses are paired.
c. all strings over \{a, b\} in which the number of a’s is a perfect cube.
d. all non-palindromes over \{a, b\}.

Hints

a. \(a^n b^n\)
b. \((^n)^n\)
c. \(n < (n + 1)^3 - n^3\)
d. closure property of complement
Minimization of FA

initial mark

mark final and non-final pair
Minimization of FA

Examples on Pumping Lemma and Minimization of DFA

\[\delta(a, 0) = c, \delta(b, 0) = f\]
Minimization of FA

Example

Pumping Lemma?

- **Regular or not?**
- **Minimization of FA**

Minimization of FA

Mark ac

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>cd,be</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>g</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>c</td>
<td>d</td>
<td>e</td>
<td>f</td>
</tr>
</tbody>
</table>

- $\delta(a, 0) = c$, $\delta(c, 0) = d$
- $\delta(a, 1) = b$, $\delta(c, 1) = e$

Examples on Pumping Lemma and Minimization of DFA

Zhao Qiao qzhao@cse.cuhk.edu.hk
Minimization of FA

δ(a, 0) = c, δ(d, 0) = d
δ(a, 1) = b, δ(d, 1) = e
Minimization of FA

\[\delta(a, 0) = c, \delta(e, 0) = f \]
Minimization of FA

Examples on Pumping Lemma and Minimization of DFA
Examples on Pumping Lemma and Minimization of DFA

Zhao Qiao qzhao@cse.cuhk.edu.hk Examples on Pumping Lemma and Minimization of DFA

Minimization of FA

mark bd

\[\delta(b, 0) = f, \delta(d, 0) = d \]
Minimization of FA

\[\delta(b, 0) = \delta(e, 0) = f \]
\[\delta(b, 1) = \delta(e, 1) = g \]
Minimization of FA

\[
\begin{align*}
\delta(d, 0) &= \delta(c, 0) = d \\
\delta(d, 1) &= \delta(c, 1) = e
\end{align*}
\]

Zhao Qiao qzhao@cse.cuhk.edu.hk

Examples on Pumping Lemma and Minimization of DFA
Minimization of FA

\[\delta(e, 0) = f, \delta(c, 0) = d \]
Minimization of FA

[Diagram of a DFA with labeled transitions and states:]

- Start state: a
- Transitions:
 - a: 0 -> c, 1 -> b
 - c: 0 -> d, 1 -> e
 - e: 0 -> f, 1 -> g
 - d: 0 -> d, 1 -> e
 - f: 0 -> f, 1 -> g

Mark de

<table>
<thead>
<tr>
<th></th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>c</td>
<td>cd, be</td>
<td>X</td>
<td>cd, be</td>
<td>X</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>X</td>
<td></td>
<td>-</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>e</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>f</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>g</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

δ(d, 0) = d, δ(e, 0) = f

Examples on Pumping Lemma and Minimization of DFA

Zhao Qiao qzhao@cse.cuhk.edu.hk
Minimization of FA

Examples on Pumping Lemma and Minimization of DFA

Zhao Qiao qzhao@cse.cuhk.edu.hk

mark fg

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td>X</td>
<td>cd,be</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td>cd,be</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>X</td>
<td></td>
<td>-</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>g</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>a</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\delta(f, 0) = d, \delta(g, 0) = f \]
Minimization of FA

merge non-distinguishable states

merge a,c,d and b,e

Zhao Qiao qzhao@cse.cuhk.edu.hk

Examples on Pumping Lemma and Minimization of DFA