CSC2100B Data Structures
Analysis

Irwin King

king@cse.cuhk.edu.hk
http://www.cse.cuhk.edu.hk/~king

Department of Computer Science & Engineering
The Chinese University of Hong Kong
Algorithm

• An **algorithm** is a clearly specified set of simple instructions to be followed to solve a problem.

• How to estimate the time required for a program.

• How to reduce the running time of a program from days or years to fractions of a second.

• What is the storage complexity of the program.

• How to deal with trade-offs.
Running Time

• There are two contradictory goals:
 • We would like an algorithm that is easy to understand, code, and debug.
 • We would like an algorithm that makes efficient use of the computer's resources, especially, one that runs as fast as possible.
Function Comparison

• Given two functions, $f(N)$ and $g(N)$, what does it mean when we say that $f(N) < g(N)$?

• Should this hold for all N?

• We need to compare their relative rates of growth.
Example

http://science.slc.edu/~jmarshall/courses/2002/spring/cs50/BigO/index.html
Why Use Bounds

• The idea is to establish a **relative order** among functions.

• We are more concerned about the **relative rates of growth** of functions.

• For example, which function is greater, 1,000N or N^2?

• The turning point is $N = 1,000$ where N^2 will be greater for larger N.
First Definition

• It says that there is some point \(n_0 \) past which \(c \ f(N) \) is always at least as large as \(T(N) \).

• In our case, \(T(N) = 1000N \), \(f(N) = N^2 \), \(n_0 = 1,000 \), and \(c = 1 \).

• We could also use \(n_0 = 10 \), and \(c = 100 \).

• So we can say that \(1000N = O(N^2) \).

• It is an upper bound on \(T(N) \).
Other Definitions

- The second definition says that the growth rate of $T(N)$ is greater than or equal to that of $g(N)$.
- The third definition says that the growth rate of $T(N)$ equals the growth rate of $h(N)$.
- The fourth definition says that the growth rate of $T(N)$ is less than the growth rate of $p(N)$.
Big-O Notation

• If \(f(n) \) and \(g(n) \) are functions defined for positive integers, then to write \(f(n) \) is \(O(g(n)) \).

• \(f(n) \) is big-O of \(g(n) \) means that there exists a constant \(c \) such that \(|f(x)| \leq c|g(n)| \) for all sufficiently large positive integers \(n \).

• Under these conditions we also say that “\(f(n) \) has order at most \(g(n) \)” or “\(f(n) \) grows no more rapidly than \(g(n) \)”.

CSCI2100B Data Structures, The Chinese University of Hong Kong, Irwin King, All rights reserved.
Examples

• $f(n) = 100n$ then $f(n) = O(n)$.

• $f(n) = 4n + 200$ then $f(n) = O(n)$.

• $f(n) = n^2$ then $f(n) = O(n^2)$.

• $f(n) = 3n^2 - 100$ then $f(n) = O(n^2)$.
Rules

- If $T_1(N) = O(f(N))$ and $T_2(N) = O(g(N))$, then
 - $T_1(N) + T_2(N) = \max(O(f(N)), O(g(N)))$,
 - $T_1(N) \times T_2(N) = O(f(N)) \times g(N))$,
- If $T(N)$ is a polynomial of degree k, then $T(N) = (N^k)$.
- $\log^k N = O(N)$ for any constant k.
- This tells us that logarithms grow very slowly.
Watch Out!

- It is bad to include constants or low-order terms inside a Big-Oh notation.
- Do not say $T(N) = O(2N^2)$ or $T(N) = O(N^2 + N)$.
- In both cases, $T(N) = O(N^2)$.
Observations

• If $f(n)$ is a polynomial in n with degree r, then $f(n)$ is $O(n^r)$, but $f(n)$ is not $O(n^s)$ for any power s less than r.

• Any logarithm of n grows more slowly (as n increases) than any positive power of n.

 • Hence $\log n$ is $O(n^k)$ for any $k > 0$, but n^k is never $O(\log n)$ for any power $k > 0$.
Common Orders

• **O(1)** means computing time that is bounded by a constant (not dependent on n)

• **O(n)** means that the time is directly proportional to n, and is called **linear time**.

• **O(n^2)** means **quadratic** time.

• **O(n^3)** means **cubic** time.

• **O(2^n)** means **exponential** time.

• **O(log n)** means **logarithmic** time.

• **O(log^2 n)** means **log-squared** time.
Algorithm Analyses

• On a list of length n, sequential search has running time \(O(n) \).

• On a ordered list of length n, binary search has running time \(O(\log n) \).

• The sum of the sum of integer index of a loop from 1 to \(n \) is \(O(n^2) \), i.e., \(1 + 2 + 3 + \ldots + n \).

• For \(i = 1 \) to \(n \)
 • For \(j = i \) to \(n \)
Recurrence Relations

• Recurrence relations are useful in certain counting problems.

• A recurrence relation relates the n-th element of a sequence to its predecessors.

• Recurrence relations arise naturally in the analysis of recursive algorithms.
Sequences and Recurrence Relations

• A (numerical) sequence is an ordered list of number.
 • 2, 4, 6, 8, … (positive even numbers)
 • 0, 1, 1, 2, 3, 5, 8, … (the Fibonacci numbers)
 • 0, 1, 3, 6, 10, 15, … (numbers of key comparisons in selection sort)
Definitions

• A recurrence relation for the sequence $a_0, a_1, ...$ is an equation that relates a_n to certain of its predecessors $a_0, a_1, ..., a_{n-1}$.

• Initial conditions for the sequence $a_0, a_1, ...$ are explicitly given values for a finite number of the terms of the sequence.
Example

• A person invests $1,000 at 12% compounded annually. If A_n represents the amount at the end of n years, find a recurrence relation and initial conditions that define the sequence A_n.

• At the end of $n-1$ years, the amount is A_{n-1}. After one more year, we will have the amount A_{n-1} plus the interest. Thus $A_n = A_{n-1} + (0.12)A_{n-1} = (1.12)A_{n-1}$, $n \geq 1$.

• To apply this recurrence relation for $n = 1$, we need to know the value of A_0 which is 1,000.
Solving Recurrence Relations

- **Iteration** - we use the recurrence relation to write the n-th term a_n in terms of certain of its predecessors a_{n-1}, \ldots, a_0.

- We then successively use the recurrence relation to replace each of a_{n-1}, \ldots by certain of their predecessors.

- We continue until an explicit formula is obtained.
Some Definitions of Linear Second-order recurrences with constant coefficients

- **kth-order**
 - Elements $x(n)$ and $x(n-k)$ are k positions apart in the unknown sequence.

- **Linear**
 - It is a linear combination of the unknown terms of the sequence.

- **Constant coefficients**
 - The assumption that a, b, and c are some fixed numbers.

- **Homogeneous**
 - If $f(x) = 0$ for every n.
Solving Recurrence Relations

• **Linear homogeneous** recurrence relations with constant coefficients - a linear homogeneous recurrence relation of order k with constant coefficients is a recurrence relation of the form

$$a_0 = c_0, a_1 = c_1, \ldots, a_{k-1} = c_{k-1},$$

• Notice that a linear homogeneous recurrence relation of order K with constant coefficients, together with the k initial conditions

$$a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k}, c, \geq 0$$

• uniquely defines a sequence a_0, a_1, \ldots
Example

- **Nonlinear**
 - \(a_n = 3 \ a_{n-1} \ a_{n-2} \).

- **Inhomogeneous**
 - \(a_n - a_{n-1} = 2_n. \)

- **Homogeneous recurrence relation with nonconstant coefficients**
 - \(a_n = 3 \ n \ a_{n-1}. \)
Iteration Example

- We can solve the recurrence relation $a_n = a_{n-1} + 3$ subject to the initial condition $a_1 = 2$, by iteration.
 - $a_{n-1} = a_{n-2} + 3$.
 - $a_n = a_{n-1} + 3 = a_{n-2} + 3 + 3 = a_{n-2} + 2 \times 3$.
 - $a_{n-2} = a_{n-3} + 3$.
 - $a_n = a_{n-2} + 2 \times 3 = a_{n-3} + 3 + 2 \times 3 = a_{n-3} + 3 \times 3$.
 - $a_n = a_{n-k} + k \times 3 = 2 + 3(n - 1)$.
Iteration Example

- In general, to solve $a_n = a_{n-1} + k$, $a_1 = c$, one obtains $a_n = c + k(n-1)$.

- We can solve the recurrence relation

 - $a_n = k \ a_{n-1}$, $a_0 = c$.

 - $a_n = k \ a_{n-1} = k(k \ a_{n-2}) = \ldots = k^n \ a_0 = c \ k^n$.
Linear Homogeneous Recurrence Example

\[a_n = 5 \ a_{n-1} - 6 \ a_{n-2}, \ a_0 = 7, \ a_1 = 16 \]

- Since the solution was of the form \(a_n = t^n \), thus for our first attempt at finding a solution of the second-order recurrence relation, we will search for a solution of the form \(a_n = t^n \).

- \(t_n = 5 \ t_{n-1} - 6 \ t_{n-2} \)

- \(t^2 - 5t + 6 = 0 \)
Example

• Solving the above we obtain, $t = 2, t = 3$.

• At this point, we have two solutions S and T given by

 \[S_n = 2^n, T_n = 3^n. \]

• We can verify that if S and T are solutions of the above, then $bS + dT$, where b and d are any numbers whatever, is also a solution of the above.
Example

• In our case, if we define the sequence U by the equation

 $U_n = b S_n + d T_n$

 $= b \ 2^n + d \ 3^n$

• To satisfy the initial conditions, we must have

 $7 = U_0 = b \ 2^0 + d \ 3^0 = b + d.$

 $16 = U_1 = b \ 2^1 + d \ 3^1 = 2b + 3d.$
Example

• Solving these equations for \(b \) and \(d \), we obtain
 • \(b = 5 \), \(d = 2 \).

• Therefore, the sequence \(U \) defined by
 • \(U_n = 5 \times 2^n + 2 \times 3^n \)
 satisfies the recurrence relation and the initial conditions.
Fibonacci Sequence

• The Fibonacci sequence is defined by the recurrence relation

• \(f_n = f_{n-1} + f_{n-2}, \) \(n \geq 3 \) and initial conditions

• \(f_1 = 1, \) \(f_2 = 2. \)

• We begin by using the quadratic formula to solve

• \(t^2 - t - 1 = 0. \)

• The solutions are

\[
t = \frac{1 \pm \sqrt{5}}{2}.
\]
Example

• Thus the solution is of the form

\[f_n = b \left(\frac{1 + \sqrt{5}}{2} \right)^n + d \left(\frac{1 - \sqrt{5}}{2} \right)^n. \]

• To satisfy the initial conditions, we must have

\[b \left(\frac{1 + \sqrt{5}}{2} \right) + d \left(\frac{1 - \sqrt{5}}{2} \right) = 1, \]

\[b \left(\frac{1 + \sqrt{5}}{2} \right)^2 + d \left(\frac{1 - \sqrt{5}}{2} \right)^2 = 2. \]
Tower of Hanoi

• Find an explicit formula for a_n, the minimum number of moves in which the n-disk Tower of Hanoi puzzle can be solved.

• $a_n = 2a_{n-1} + 1$, $a_1 = 1$.

• Applying the iterative method, we obtain

$$a_n = 2a_{n-1} + 1$$
$$= 2(2a_{n-2} + 1) + 1$$
$$= 2^2a_{n-2} + 2 + 1$$
$$= 2^2(2a_{n-3} + 1) + 2 + 1$$
$$= 2^3a_{n-3} + 2^2 + 2 + 1$$

M
$$= 2^{n-1}a_1 + 2^{n-2} + 2^{n-3} + ... + 2 + 1$$
$$= 2^{n-1} + 2^{n-2} + 2^{n-3} + ... + 2 + 1$$
$$= 2^n - 1$$
Common Recurrence Types

- Decrease-by-one
 - $T(n) = T(n-1) + f(n)$

- Decrease-by-a-constant-factor
 - $T(n) = T(n/b) + f(n)$

- Divide-and-conquer
 - $T(n) = aT(n/b) + f(n)$