usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Rampart: Protecting Web Applications from CPU-
Exhaustion Denial-of-Service Attacks

Wei Meng, Chinese University of Hong Kong; Chenxiong Qian, Georgia Institute of
Technology; Shuang Hao, University of Texas at Dallas; Kevin Borgolte, Giovanni Vigna,
and Christopher Kruegel, University of California, Santa Barbara;

Wenke Lee, Georgia Institute of Technology

https://www.usenix.org/conference/usenixsecurity18/presentation/meng

This paper is included in the Proceedings of the

27th USENIX Security Symposium.
August 15-17, 2018 - Baltimore, MD, USA
ISBN 978-1-931971-46-1

Open access to the Proceedings of the
27th USENIX Security Symposium
is sponsored by USENIX.

Rampart: Protecting Web Applications from CPU-Exhaustion
Denial-of-Service Attacks

Wei Meng', Chenxiong Qian¥, Shuang Hao*, Kevin Borgolte®
Giovanni Vigna®, Christopher Kruegel®, Wenke Lee*
T Chinese University of Hong Kong, *Georgia Institute of Technology
*University of Texas at Dallas, $ University of California, Santa Barbara

Abstract

Denial-of-Service (DoS) attacks pose a severe threat to
the availability of web applications. Traditionally, attack-
ers have employed botnets or amplification techniques to
send a significant amount of requests to exhaust a tar-
get web server’s resources, and, consequently, prevent it
from responding to legitimate requests. However, more
recently, highly sophisticated DoS attacks have emerged,
in which a single, carefully crafted request results in sig-
nificant resource consumption and ties up a web applica-
tion’s back-end components for a non-negligible amount
of time. Unfortunately, these attacks require only few re-
quests to overwhelm an application, which makes them
difficult to detect by state-of-the-art detection systems.

In this paper, we present RAMPART, which is a defense
that protects web applications from sophisticated CPU-
exhaustion DoS attacks. RamparT detects and stops so-
phisticated CPU-exhaustion DoS attacks using statistical
methods and function-level program profiling. Further-
more, it synthesizes and deploys filters to block subse-
quent attacks, and it adaptively updates them to minimize
any potentially negative impact on legitimate users.

We implemented RAMPART as an extension to the PHP
Zend engine. RaMPART has negligible performance over-
head and it can be deployed for any PHP application
without having to modify the application’s source code.
To evaluate RampaRT’s effectiveness and efficiency, we
demonstrate that it protects two of the most popular web
applications, WordPress and Drupal, from real-world and
synthetic CPU-exhaustion DoS attacks, and we also show
that RAMPART preserves web server performance with low
false positive rate and low false negative rate.

1 Introduction

Denial-of-Service (DoS) attacks are a class of attacks that
aim to deteriorate the target system’s availability and per-
formance. They prevent the system from handling some

or even all requests from legitimate users, by overwhelm-
ing its available resources, e.g., network bandwidth, disk
space, memory, or CPU time. Consequently, users might
experience long delays when interacting with the victim
system, or they might be completely unable to access it.
Auvailability and performance are essential to high-profile
web servers, such as those operated by banks, news orga-
nizations, and governments, however, which are regular
targets of DoS attacks [9, 21].

To degrade the performance of web servers, a common
practice is to launch Distributed DoS attacks (DDoS) that
flood the target system with numerous requests. Specif-
ically, among other attacks, attackers might command
thousands of computers (or more) to send attack traffic,
or they might spoof the victim’s IP address to launch re-
flected attacks [29, 34]. Fortunately for defenders, these
attacks incur comparatively high cost for the attackers
(e.g., acquiring a large-size botnet to mount the attack)
and they can often already be detected by state-of-the-art
network-level defense mechanisms [23-25, 30, 31].

Unfortunately, sophisticated DoS attacks gained signif-
icant traction recently. In sophisticated attacks, attack-
ers use low-bandwidth, highly targeted, and application-
specific traffic to overwhelm a target system [8, 12, 14,
22]. Different from traditional DDoS attacks that rely on
flooding a victim system with an extensive amount of traf-
fic, sophisticated DoS attacks require less resources and
utilize a lower volume of intensive requests to attack the
victim system’s availability. Specifically, attackers target
expensive or slow execution paths of the victim system.
For example, an intensive attack might request the system
to calculate computationally-expensive hashes for mil-
lions of times by specifying an unusually high iteration
count for the bcrypt function. Particularly problematic
is that sophisticated DoS attacks are difficult to detect by
state-of-the-art defenses, such as source address filtering
or traceback mechanisms, because they were designed to
mitigate large-scale network-layer DDoS attacks [18, 23—
25, 30, 31, 36, 37].

USENIX Association

27th USENIX Security Symposium 393

In this paper, we design and implement a defense mech-
anism, RAMPART, to protect a web application’s back end
from sophisticated DoS attacks. RAMPART aims to miti-
gate attacks that overwhelm the available CPU resources
(CPU time) of a web server through low-rate application-
layer attack traffic, which we call CPU-exhaustion DoS
attacks. Therefore, we design RAMPART to accurately and
efficiently detect and stop suspicious intensive attacks
that may cause CPU exhaustion, and to be capable to
block future attacks, without negatively affecting the ap-
plication’s availability for legitimate users.

Developing such a defense is challenging. First, attack
requests can blend in well with normal requests: Simi-
lar to requests sent by legitimate users, they also arrive at
a low rate. Moreover, attack requests are generally well-
formed, and, thus, do not cause the application to crash or
throw an exception except for possibly resource exhaus-
tion exceptions (e.g., a stack overflow exception). In turn,
it is difficult to differentiate these two kinds of requests,
i.e., it is non-trivial to block only attack requests without
also incorrectly blocking legitimate requests. Since a le-
gitimate request can be mistakenly labeled as suspicious,
the defense system has to quickly detect and revoke any
false positive filter that blocks legitimate requests, to not
reduce the application’s availability unnecessarily.

To address these challenges, we leverage statistical
methods and fine-grained context-sensitive program pro-
filing, which allows us to accurately detect and attribute
CPU-exhaustion DoS attacks. Specifically, RAMPART ac-
tively monitors all requests to precisely model the re-
source usage of a web application at the function-level.
It then dynamically builds and updates statistical execu-
tion models of each function by monitoring the runtime
of the function called under different contexts. Upon
arrival of a new request, the request is then constantly
checked against the statistical models to detect suspicious
deviation in execution time at runtime. RAMPART low-
ers the priority of a request that it labeled as suspicious
by aborting or temporarily suspending the application in-
stance that is serving it, depending on the server’s load.
To prevent pollution attacks against the statistical models,
RawmPART collects only profiling measurements of normal
requests that do not cause a CPU-exhaustion DoS and that
do not deviate much from the norm observed in the past.
It also enforces a rate limit by network address.

RamparT can deploy filters to prevent future suspi-
cious requests from over-consuming the server’s CPU
time. It employs an exploratory algorithm to tackle the
problems of false positive requests and false positive fil-
ters. Specifically, when a true positive attack request is
detected, a filtering rule is deployed to block similar sus-
picious requests, which might include legitimate requests
(false positives). RAMPART dynamically removes the de-
ployed filter once the attack ends, to recover service for

any legitimate users who might have been affected by the
filter. Similarly, a false positive filter might be created
if a legitimate request was incorrectly identified as suspi-
cious. To not negatively impact an application’s availabil-
ity for future legitimate requests, RamparT periodically
evaluates (explores) all generated filter policies and deac-
tivates false positive filters. In turn, this algorithm allows
RamPART to rapidly and intelligently discover false posi-
tive rules, while simultaneously thwarting true attacks.

We design RamMpART as a general defense against CPU-
exhaustion DoS attacks. Importantly, to be protected by
RAMPART, it is not necessary to modify a web application
or its source code in any way. To emphasize the practical-
ity of RaMPART, we implemented a prototype of RAMPART
for PHP, which remains the most popular server-side pro-
gramming language today [5]. Moreover, we thoroughly
evaluated our prototype implementation, and we find that
it incurs negligible performance overhead of less than
an additional 3 ms for processing a request, i.e., roughly
0.1% of the median website load times [33].

Finally, we demonstrate that RampART can effectively
preserve the availability and performance of real-world,
non-trivial web applications when they are victim of
CPU-exhaustion DoS attacks. We focus on two of the
most popular open-source content management systems:
Drupal and WordPress. For example, when launching
known attacks without RAMPART’s protection, then the av-
erage CPU usage increases from 32.21% to 95.05% for at-
tacks on Drupal and from 42.21% to 94.14% for attacks
on WordPress. However, if protected by RamparT, then
the average CPU usage remains comparatively stable at
no more than 39.62% for Drupal and 51.40% for Word-
Press. Last, we demonstrate RAMPART’s ability to protect
the two applications from unknown vulnerabilities.

We make the following technical contributions:

* We present RAMPART, which is a defense that detects
and mitigates sophisticated CPU-exhaustion DoS at-
tacks against web applications by using statistical
models and function-level program profiling.

* We implement RamparRT as an extension for the
PHP Zend engine. Our prototype has negligible per-
formance overhead and it can be readily deployed
for 83% of websites worldwide without requiring
source code modifications.

* We develop algorithms to reduce the false positive
rate when detecting attacks and to mitigate any neg-
ative impact of a false positive. In turn, RAMPART
has a low false positive rate of less than 1%.

* We thoroughly evaluate RamparT with both real-
world and synthetic vulnerabilities in two popu-
lar web applications, and we demonstrate that it
effectively mitigates the impact of low-rate CPU-
exhaustion DoS attacks and preserves application
availability and server performance.

394 27th USENIX Security Symposium

USENIX Association

2 Rampart

In this section, we discuss the design of RAMPART,
our defense mechanism to detect and mitigate sophis-
ticated application-layer CPU-exhaustion DoS attacks
(Section 2.1). Precisely, RamparT performs context-
sensitive function-level profiling to learn precise execu-
tion models for each endpoint of an application (Sec-
tion 2.2). Whenever the server is overwhelmed, the sys-
tem terminates or suspends anomalous prolonged appli-
cation instances that it suspects to be suffering from an
attack (i.e., instances it suspects are attempting to serve
an attack request), to reduce the server’s workload (Sec-
tion 2.3). RamparT employs a probabilistic algorithm to
limit the false positive rate when stopping attacks (Sec-
tion 2.4) and it constructs filtering rules to adaptively
block future attacks using an exploratory algorithm (Sec-
tion 2.5). Finally, we discuss how to optimize the perfor-
mance of RaMPART (Section 2.6) and we detail our proto-
type implementation (Section 2.7).

2.1 Threat Model and Challenges

Threat Model. We consider a remote attacker that can
send arbitrary HTTP(S) requests to a server serving a web
application that is vulnerable to CPU-exhaustion DoS at-
tacks. The attacker can exploit the vulnerability by send-
ing carefully crafted requests that will consume a signif-
icant amount of the web server’s CPU time. Her goal is
to occupy all available CPU resources (cores) by send-
ing multiple requests in parallel at a low rate. Attack re-
quests are well-formed, and, thus, they cannot be easily
distinguished from legitimate requests through statistical
features, such as the size, or the values of the payload.
She can also send legitimate requests to hide her attack
among legitimate traffic. She does not, however, send nu-
merous attack requests within a very short time window,
i.e., flooding the target server, because volumetric attacks
with a high attack rate can be easily detected by comple-
mentary network-based defenses, and a low attack rate is
already sufficient to overwhelm the web server. There-
fore, remote attackers who flood the web server with nu-
merous requests at a time are outside the scope of our
threat model.

To detect and stop low-rate CPU-exhaustion DoS at-
tacks efficiently, we have to address five core challenges:

Detection. Different from conventional DDoS at-
tacks, low-rate application-layer DoS attacks are difficult
to detect because they do not overwhelm a web server
with large number of concurrent requests. In turn, ex-
isting state-of-the-art network-layer defense mechanisms
[18, 23-25, 30, 31, 36, 37] cannot detect these sophisti-
cated DoS attacks.

Attribution. It is not straight-forward how to attribute
an attack to its corresponding request(s). In fact, it is par-
ticularly difficult because attack requests exercise legiti-
mate functionality of the web application and they do not
crash the application. Indeed, they do not even hijack the
application’s control flow.

Prevention. Developing a mitigation strategy that ef-
fectively stops the attacks while not negatively impacting
the application’s availability to normal users is not triv-
ial. For example, simplistic URL-based requests filtering
techniques are ill-suited because attackers send requests
to endpoints that normal users may also visit. Relying
on hand-crafted features and payload values is similarly
problematic because they do not scale across applications
or attacks, and because real attack payloads can depend
on other parameters and they may even vary per user or
time for some (unknown) vulnerabilities [1].

False Positives. Naturally, any defense mechanism rely-
ing on statistical properties may have false positives, i.e.,
legitimate requests that are blocked by a filter, or requests
that might incorrectly be identified as attack requests, and,
hence, might cause a false positive filter to be deployed.
Considering the nature of low-rate application-layer DoS
attacks, minimizing the false positive rate and the impact
of false positive filters is a major challenge.

Performance. Lastly, our defense mechanism must not
introduce significant performance overhead to the pro-
tected application. In particular, users must not notice any
performance degradation when the application is running
at normal load.

2.2 Web Application CPU Usage Modeling

RaMPART monitors and learns profiles (models) of a web
application to establish the resources it normally requires.
We use the models as reference to detect suspicious re-
quests (Section 2.3). Web application commonly provide
multiple endpoints for interaction. Users can request each
of those endpoints under different contexts (e.g., anony-
mous or authenticated), and each requires different and
diverse processing resources. Therefore, a profile at the
application-level or request-level is not suitable to differ-
entiate attack requests from normal requests.

To precisely model the resource usage of a web ap-
plication in different states, RAMPART employs context-
sensitive function-level program profiling. Specifically,
RampART records the CPU time spent in a function (in-
cluding time spent by the operating system’s kernel on
behalf of the function) instead of its wall clock time,
because an application instance can be interrupted and
rescheduled by the operating system before the function
returns. RAMPART associates the measured execution
time with a unique ID, representing the application’s cur-

USENIX Association

27th USENIX Security Symposium 395

rent execution state. The ID is obtained from the calling
context of the function and its name. In particular, we
encode the execution state (ID) by calculating the hash
value of the application’s past states and the name of the
function being invoked. We compute the state when a
function c is invoked by its parent function p as follows:
STATE(c) = HASH(STATE(p), ¢).

As a result, the ID of a function frame depends on all
of its parent callers. To keep track of previous application
states, RAMPART maintains a shadow call stack, where
each function frame stores the application state when it
is called. We push a covering main function to the bot-
tom of the call stack to measure the total CPU time spent
in an endpoint. We employ the name of an endpoint (e.g.,
/login) as the initial state to differentiate functions with
the same name (e.g., main) for different endpoints.

When calculating the ID, we do not consider sibling
functions, because a varying numbers of sibling functions
may have returned, and they represent a similar state in
the program. In addition, executed sibling functions may
not necessarily influence the execution of pending func-
tions. For example, suppose that a parent function p calls
achild function s for a random number of times at runtime
in a loop, before calling another child function c. If we
consider the previous sibling function s, we might have to
maintain hundreds or thousands of records for different
instances of it, even though they consume very similar
amounts of resources. Moreover, we would have differ-
ent IDs for ¢ for each run of the program. Similarly, we
do not use the argument values to encode the state of a
function frame because they can also be dynamic.

2.3 CPU-Exhaustion DoS Attack Detection

A straw-man approach to detect CPU-exhaustion DoS at-
tacks is to set a global timeout in the web application
because a key characteristic of such attacks is that their
requests take considerable time and consume numerous
CPU cycles of the victim server. However, legitimate re-
quests can also time out and could be mistakenly identi-
fied as attack attempts. For example, a user may upload a
large file that could take a long time to transfer or process.

Instead of such a straw-man approach, RAMPART mon-
itors the CPU usage of a web server to detect CPU-
exhaustion DoS attacks, which works because attackers
want to occupy as many CPU cores as possible, so that the
victim server is less responsive. Compared with a (global)
timeout, abnormally high CPU usage is a more accurate
indicator. RAMPART continuously monitors the CPU us-
age of the server in a fixed interval 7', and computes the
average CPU usage rg over the last S observations, where
S is a parameter that a system administrator configures
to control the detection sensitivity. If rg is greater than a
pre-defined threshold Rcpy (e.g., 90%), RAMPART raises

an alarm, thus, indicating that the server is overloaded,
and likely victim to a CPU-exhaustion DoS attack.

Intuitively, the requests that consumed the most CPU
time can be identified as the culprits that caused the CPU-
exhaustion. However, this can quickly lead to false neg-
atives. Considering a similar upload example to before,
i.e., a few users are uploading large files while a real at-
tack is being launched. If the upload requests consumed
slightly more CPU time than the attack requests, then
these legitimate requests would be incorrectly detected as
the responsible request (false positives) and the real attack
requests would evade detection (false negative), although
they might always take this long to process.

Instead, RamparT leverages the function execution
models it learned (Section 2.2) to detect suspicious re-
quests that are statistically different from the histori-
cal profile. RamPART periodically (e.g., every 250 ms)
checks the CPU time spent in functions that have not re-
turned yet, then it compares the time with the correspond-
ing records in the profiling database, and, finally, it identi-
fies one request as suspicious using the following method:

Let 7, and T,,,4, be the minimum and maximum time-
out thresholds. T¢ is the CPU time of a function f in the
stack; ¢ and o are the mean and standard deviation of
Tc with the ID staTe(f) in the database; & is a parameter
that represents the distance from the mean. We rely on the
Chebyshev inequality (Equation 1) to estimate how likely
one observation differs from the mean without assuming
any underlying distributions. In particular, the probabil-
ity of a random variable (X) that is k-standard deviations
away from the mean is no more than 1/k?.

1
P(|X—,u|>ko)§p (1
Te > min(max(U +k X &, Tin) s Tnax))

Thus, RamparT labels a request as suspicious if T¢ of
function f is more than ko away from the mean (Equa-
tion 2). RAMPART can then terminate the application in-
stances that serve such prolonged suspicious requests to
release the occupied resources only when the web server
is overloaded. Otherwise, it repeats the same process un-
til all functions have returned. The minimum threshold
T nin prevents RAMPART from reporting a request as suspi-
cious if a deeper function with very short execution time
(e.g., hundreds of microseconds) times out.

The above method effectively detects suspicious re-
quests for which the required CPU time deviates signif-
icantly from what RamparT observed previously. When
serving attack requests, then 7y will be significantly
higher for some frames in the call stack compared to le-
gitimate requests. On the contrary, when serving the file-
uploading requests and if T¢ for all functions will be close

396 27th USENIX Security Symposium

USENIX Association

to the means, then these requests will not be marked as
suspicious (the requests always take this long to process).
If they are not close the means, however, then RAMPART
aborts these requests if the server is overwhelmed, be-
cause they are indistinguishable from attack requests.

A limitation of RAMPART is that it requires at least one
observation of a function call before it can rely on the
function to determine if a request is suspicious. In prac-
tice, this training phase can be completed automatically
by using a fuzzer, a crawler program to traverse the web
application, or an existing test harness. In fact, developers
can easily collect training data when testing their applica-
tions before deploying them to production. To reduce de-
tection variance, we recommend letting RAMPART make
at least N observations (e.g., we use N =5, Section 4) for
each endpoint. Although RampParT might have not col-
lected execution profiles for all states (function calls) of
a web application, it knows the execution profile of each
endpoint and it can start detecting attack requests.

Another limitation is that an attacker could pollute the
profiling records of an application state she selects by
gradually increasing the CPU time. We make such pol-
lution harder by sampling requests to be written into the
profiling database at random. Additionally, we restrict
the number of samples that can be selected from a single
network address or network prefix each day. To further
increase the difficulty for an attacker to pollute or drift
profiling records, one can consider strategies that assign
higher importance (weight) to older measurement records
when computing the mean and standard deviation (Equa-
tion 2).

2.4 Probabilistic Request Termination

RAMPART marks a request as suspicious when a function
consumes significantly more CPU time than it normally
does. It stops serving such suspicious requests when the
server is overloaded, due to a real attack or a surge in
visitor traffic. While this approach stops real attacks, it
can also negatively impact normal users. For example,
a user may make requests that RAMPART falsely detects
as an attack because they take slightly more time than the
threshold that RamparT calculated (Equation 2). Such re-
quests, together with real attack requests, would then be
terminated by RamparT until the CPU usage is reduced
below chu.

To reduce the impact of false positives, RAMPART can
rely on a probabilistic algorithm to determine if a sus-
picious request should be dropped. The observation is
that suspicious user requests usually do not consume as
much CPU time as attack requests. Instead of aborting
all suspicious requests immediately, RAMPART can be le-
nient initially and allow some requests to require slightly
more time at a lower priority. Periodically, RAMPART

Algorithm 1 Probabilistic Algorithm

1. procedure INIT

2. c—0, 0+ 1,81

3. T, < 10 ms, s < 5 ms, Repy — 75%
4. o <—STpDEV()

5. i +Max(T,, 0)

6. TimMeR(CHECK, 1)

7. procedure CHECK

8. cc+1

9. r < UsaGEqy” ()

10. if r > Rcpy then

11. p(cxw+rxp)

12. if Ranpom(0,100) < p then
13. ABORTREQUEST()

14. else

15. SUSPENDREQUEST(s)

then checks whether these requests have timed out and be-
comes stricter as the execution time of a timed-out func-
tion increases. In other words, a suspicious request that is
fast is likely to be completely processed before it would
be killed. On the contrary, a slow suspicious request is
probably an attack (a true positive) and will be aborted
eventually.

We also consider the server workload when determin-
ing the probability to abort a suspicious request. Specifi-
cally, the probability increases with the average CPU us-
age so that less CPU time is allocated to slow suspicious
requests. RamPaRT suspends the allowed suspicious re-
quests temporarily to free CPU time for other requests,
i.e., allowed suspicious requests have lower priority.

RampARrT’s algorithm to decide whether a request
should be aborted or suspended is shown in Algorithm 1.
The IniT procedure is executed at a function timeout event.
Repuy is the (upper) CPU usage threshold. o is the stan-
dard deviation of CPU time of the function frame. 7T,
is the minimum interval that RamMpPART periodically eval-
uates if the suspicious request should be suspended or
aborted. A CPU timer that expires at every interval i is
set in line 6. The number of timeouts for a timer is c. @
and f correspond to the weights of the counter and CPU
usage. RAMPART suspends suspicious requests for the du-
ration of s (wall clock time).

The CHEck procedure is called after INtT and whenever
the evaluation timer expires. If the web server’s average
CPU usage r is greater than Rcpy, then we calculate the
probability p (in percent), and abort the request proba-
bilistically (if it is larger than a random value, line 12).
Otherwise, the request is suspended. In either case, the
web server can serve other normal requests first.

USENIX Association

27th USENIX Security Symposium 397

2.5 CPU-Exhaustion DoS Attack Blocking

RamPART can detect and stop CPU-exhaustion DoS at-
tacks already, but the above design of RAMPART does
not prevent such attacks from affecting the victim server.
RamparT lets an attack request be served until it has
consumed a significant amount of CPU time. For ex-
ample, we demonstrate in Section 4.1.1 that attackers
can still occupy the web server’s CPU and cause CPU-
exhaustion DoS by continuously sending such requests.
Thus, RamparT needs to block follow-up attack requests
to further mitigate CPU-exhaustion DoS attacks.

We face two challenges in designing a prevention strat-
egy. First, it is difficult to extract features to properly
distinguish attack requests from legitimate requests. Ac-
cording to our threat model (Section 2.1), the two kinds
of requests can be very similar. The only reliable in-
formation RamparT has learned about an attacker is the
network address (which can be spoofed) and the end-
points that are used to exploit the vulnerability. There-
fore, RamMpART builds filtering policies using the source
IP (network) address, the requested URI, and the request
parameters (e.g., the query string and post data, i.e., keys
and values of PHP’s GET and POST arrays) of an attack
request. RamparT then immediately rejects a follow-up
request matching any filter without further processing it.

An attacker cannot evade the filter by supplying decoy
parameters because each parameter is matched indepen-
dently. She can, however, try to evade using spoofed IP
addresses. However, IP address spoofing is an orthogo-
nal problem because:

1. RampaARrT is a host-based defense system;

2. IP address spoofing is commonly used in reflected
DDoS attacks, which are out of scope of our work;

3. Defenses exist against network-based attacks (e.g.,
ingress filtering, unicast reverse path forward-
ing) [17].

Second, a filter should be deployed neither perpetually
nor ephemerally. False positives cannot be completely
eliminated due to randomness in web applications. On
the one hand, a user could be blocked forever by a persis-
tent filter, unless she switches to a different IP address not
used by an attacker. On the other hand, if the lifespan of
a filter is too short, then an attacker can wait and launch
another round of attacks.

To address the above challenge, we design an ex-
ploratory algorithm to adaptively adjust the lifespan of
a filter, instead of setting a fixed lifespan. Specifically,
each filter is assigned with a primary lifespan when it is
first created. A matching request is immediately dropped
during the filter’s primary lifespan. The filter transitions
into an inactive state with a secondary lifespan when

its primary lifespan expires. During the secondary lifes-
pan, RamMpART lets the application serve one matched re-
quest at a time to explore the result of removing the filter.
RamPART aborts this request if a CPU-exhaustion DoS
attack attempt is detected, and it renews the filter with
a longer primary lifespan to penalize the attacker. Oth-
erwise, the filter is removed because it might have been
created as a false positive or the attacks have stopped.

We present the exploratory algorithm in Algorithm 2.
The INtT-RULE procedure is invoked when a filtering rule
is first created. T, and Ty are the rule’s default primary
and secondary lifespans (in seconds), which are set the
server’s administrator. The primary lifespan expires at
time foxpiry. Ii’ch and RCpU are the upper and lower
CPU usage thresholds. Together with parameter o and
B, they control if RampaART should explore a matched re-
quest (line 13-16). exploring represents RAMPART’s ex-
ploration state and is initialized to false.

RawmparrT calls the CHECK-RULE procedure when a new
request arrives. RampParT drops all incoming requests
(line 10) that match the rule (line 8) if it is still active
(line 9). After it transitions into the inactive state (line
11), RampART may start an exploration if no one is active
(line 12). Other matching requests received during explo-
ration are dropped (line 22). Ramparr decides if it should
explore a request (line 12-15) with a probability depend-
ing on the current average server CPU usage r, and the
parameters Repu, Repu, o, and B (line 5-6). During ex-
ploration (line 16-20), the request is aborted immediately
if it is detected as suspicious (line 17). The counter c is
incremented by one to set a larger new primary lifespan
(line 18-19). The rule is deleted if the secondary lifespan
has expired (line 24).

This algorithm controls the upper bound of the rate that
one attacker can cause CPU-exhaustion DoS on a web
server with a unique combination of the fields in a filter.
In particular, in any 7}, + T; window, an attacker can cause
at most two attacks, which RamparT immediately detects
and stops. She cannot evade detection by sending benign
requests to hide attacks, because the rule would not be de-
stroyed unless the attacker sends only one attack request
in a T, +T; window. She is further penalized for sending
an attack request during the filter’s second lifespan with a
growing primary lifespan. Therefore, an optimal attacker
can cause only one successful attack in every T), + T in-
terval (other attacks are quickly stopped).

In turn, our algorithm allows RAMPART to recover the
service’s availability for a false positive user as soon as
the server has sufficient resources. RAMPART is unlikely
to detect a false positive user request it explores as sus-
picious again, because the server load is expected to be
lower than the upper CPU usage threshold that is used
to detect attacks. Otherwise, requests for one endpoint
by a user leading to a false positive would temporarily

398 27th USENIX Security Symposium

USENIX Association

Algorithm 2 Exploratory Algorithm

1. procedure INIT-RULE
Ty < 60, T; < 300, ¢ < 1

[\S)

3. exploring < false

4. Texpiry <= CURRENTTIME() + T)

5. Repy 25%, Repy < 15%

o e ot

7. procedure CHECK-RULE

8. if ISRULEMATCHED(rule, request) then

9. if CURRENTTIME() < Zexpiry then

10. DropPREQUEST(request)

11. else if CURRENTTIME() < Zexpiry + Ty then
12. if exploring = false then

13. r USAGES\};U()

15. if Ranpom(0, 100) < p then

16. exploring < true

17. if ISATTACKDETECTED(request) then
18. c+—c+1

19. texpiry <~ CURRENTTIME() +¢ X T),
20. exploring < false

21. else

22. DRrOPREQUEST(request)

23. else

24, DeLETERULE(rule)

be refused as the server is overloaded and it assigns the
suspicious requests a lower priority. The user can still ac-
cess other parts of the application as long as they do not
depend on the blocked one.

2.6 Performance Optimizations

RAMPART is an in-line dynamic analysis system and,
hence, may incur significant performance overhead. Next,
we discuss how we optimized its performance.

First, RaMPART needs to make two system calls to mea-
sure the CPU time of a function call: one before the ac-
tual function call and one after it. Here, the system call
overhead can be magnitudes larger than the raw execution
time when profiling some built-in functions, e.g., arith-
metic functions. Therefore, we want to avoid unnecessary
system calls while profiling applications at a fine gran-
ularity. One might consider the unprivileged RTDSC(P)
instruction of x86 processors to query the Time Stamp
Counter (TSC) efficiently. Unfortunately, TSC is a global
counter and shared among all processes running on the
same processor, including unrelated processes, which is
why we cannot use it as per-process CPU counter. In-

stead, we disable profiling for built-in functions, as they
take almost constant or negligible time. The execution
time of some functions, e.g., string manipulation, how-
ever, does strictly depend on its input and we need to take
them into account. Fortunately, their execution time is
included when RampaRrT profiles their parent functions,
thus, we do not measure them separately.

We also introduce a parameter Max_Prof_Depth to
control the overall profiling granularity. It specifies the
maximum number of function frames that RAMPART pro-
files. If Max_Prof_Depth is set to 1, then only the cov-
ering main function is profiled. If Max_Prof_Depth is
large, more functions are profiled, which may be inef-
ficient as the measured CPU time is inclusive. Practi-
cally, Ramparr still blocks CPU-exhaustion DoS effec-
tively with low overhead when trading some profiling pre-
cision for performance (Section 3 and Section 4).

Second, some overhead may be the result of input
and output operations on past measurements. To im-
prove write performance, RAMPART writes measurements
in batch after each request has been completely pro-
cessed. To further mitigate contention, RAmMpART offloads
database operations to a dedicated daemon that regularly
processes the measurement data.

RamparT also sets a wall clock timer to periodically
query for historical profiling records of function frames
that have not yet returned. To improve performance here,
RaMPART can clear the timer after the first query to avoid
interrupts because it knows when the request will be
marked as suspicious. Thus, RaAMPART can wait until then
or until the request was processed, whichever comes first.

Finally, RAMPART can optionally sample one measure-
ment every X requests, and, in turn, avoid the system calls
to write out measurements for X — 1 requests. The first
set of system calls remain required to measure the elapsed
CPU time in case of an attack. Sampling also helps to de-
fend against pollution attacks (Section 2.3).

2.7 Implementation

We implemented a prototype of RAMPART as an exten-
sion to the PHP Zend engine in roughly 2,000 lines of
C code. The Rampart PHP extension is loaded in each
PHP process and thread for function profiling and to
monitor CPU usage. We use the function getrusage
provided by Linux to measure the CPU time of a func-
tion spent by both the user code and the system calls.
The daemon for processing the profiling results is imple-
mented in 400 lines of Python code. We implemented
Rawmpart for PHP because it remains the most popular
server-side programming language today with a market
share of 83% [5]. RamparT is language-agnostic, and
it can be implemented for other server-side programming
languages as it does not rely on any language-specific fea-
tures.

USENIX Association

27th USENIX Security Symposium 399

3 Performance Evaluation

RampART is an in-line defense and therefore introduces
some performance overhead during normal execution,
which we evaluate in this section. We also investigate the
performance degradation when a web application is the
victim of a CPU-exhaustion DoS attack. For our evalua-
tion, we protect two open-source web applications: Dru-
pal 7.13 and WordPress 3.9.0. We evaluate RAMPART on
these specific applications and versions because of their
popularity and because they contain known real-world
CPU-exhaustion DoS vulnerabilities. Following, we first
describe our experiment settings and the baseline perfor-
mance of the two applications (Section 3.1), then we eval-
uate the performance overhead introduced by RaMpART
(Section 3.2), and, last, we look at the performance degra-
dation caused by sophisticated DoS attacks with and with-
out Rampart (Section 3.3).

3.1 Setup and Baseline Performance

For our experiments, we use two machines, one being
web server and one being the client. Both machines are
running Debian Stretch (Linux Kernel 4.9.0). The web
server runs Apache 2.4.25 with PHP 7.0.19-1 on an Intel
Xeon X3450 quad-core CPU with 2.67 GHz and 16 GB
RAM. The client is an Intel Xeon W3565 quad-core CPU
with 3.2 GHz and 16 GB RAM. Both machines are on
the same local area network (LAN) to eliminate any ran-
domness that might result from sending requests over the
Internet.

We created 256 user accounts after a fresh installa-
tion of each application, and we saved the application
database to disk so that we can recover the state for re-
producibility. Afterward, we used some accounts to in-
teract with the two applications. We used OWASP Zed
Attack Proxy (ZAP) as a network proxy to capture the in-
teractions between the clients (users) and the applications.
We also crawled all the endpoints of each web application
with ZAP’s spider program, and we stored the correspond
requests for replay. We then removed requests for static
files (e.g., JavaScript, Cascading Style Sheets, etc.) and
we merged the remaining requests (generated by humans
and the spider program) into the user trace for each ap-
plication. Based on this user trace, we developed a traffic
generator that can replay the trace’s requests sequentially.
It mimics multiple parallel users (replaying multiple in-
teractions in parallel), of whom each is assigned one user
account.

To evaluate overall server performance, we measure
performance of each web application with various traf-
fic loads (number of users). After each round of exper-
iments, we reset the application to its initial state. We
repeated each experiment five times to report average per-

formance metrics (N = 5). Importantly, the traffic gener-
ator sends two consecutive requests with a 0.1 s pause
in-between to simulate a large number of concurrent con-
nections. In practice, however, the interval between con-
secutive requests sent by a legitimate user are much larger.
For each request, we record the timestamps when it was
sent (Tyq) and when the corresponding response was
received (T,,4), and we compute the request processing
time (RPT = T,,q — Tstqrt). Throughout the experiments,
we also monitor the server’s CPU usage.

The baseline performance of the server running the two
applications is shown in Table 1. Naturally, the average
server CPU usage increases as the traffic load increases.
With modest loads of no more than 32 user instances, the
average RPT (ARPT) of WordPress did not vary much.
However, both applications exhibited significant perfor-
mance degradation in their ARPT once load became heav-
ier (64 user instances and higher). For a fair evaluation,
we use 32 user sessions in the remaining experiments.

3.2 Performance Overhead

Based on the same parameters, we measure the overhead
that our prototype implementation may incur. We re-
port ARPT and average CPU usage in Table 2 for vari-
ous values of Max_Prof_Depth, which is RamMpART’s pa-
rameter to control how many function frames are pro-
filed. Unsurprisingly, if more function frames are pro-
filed (higher Max_Prof_Depth), then performance de-
grades more. Specifically, for Drupal, the parameter does
not negatively affect the ARPT, but its increase correlates
with higher CPU usage. For WordPress, the server per-
formance remains close to its baseline performance (Ta-
ble 1) while Max_Prof_Depth was less than five, but per-
formance degrades when more function frames are pro-
filed.

To investigate how Max_Prof_Depth might influence
server performance, we recorded the number of profiled
function frames and the time spent processing the mea-
surement results by our analysis daemon. For each anal-
ysis iteration, our single-threaded analysis daemon sam-
pled up to 100 measurement files because it could not pro-
cess all files in real time if Max_Prof_Depth was greater
than nine. The time to process 100 measurements, the av-
erage number of unique profiled function frames, and the
average number of profiled function frames are shown in
Table 2. The daemon’s performance decreases and it can
handle less files per second as more functions are profiled,
which is the case because more measurement data is be-
ing generated by RaMPART per received request that the
daemon must analyze.

We find that Max_Prof_Depth = 5 results in a rea-
sonable performance for both applications. For Drupal,
Rawmpart’s CPU overhead is 3.31% and we do not ob-

400 27th USENIX Security Symposium

USENIX Association

User Instances

Application Benchmark 8 16 32 64 96 128
ARPT (ms) 2775 361.8 398.1 5024 607.3 7175
Drupal
CPU (%) 1947 2483 3221 47.18 5997 70.53
ARPT (ms) 20.8 21.7 22.5 38.9 85.6 1447
‘WordPress
CPU (%) 1347 22.63 4221 73.03 86.72 90.11

Table 1: Server performance under different user traffic loads.

—~ -—- CPU Usage —— User Requests
® 100
~ 200 <«
) =2
24 2ho
< Es
=
= 0 S
ay
o 0
-—- 5" percentile —— Mean -—- 95" Percentile
2 Iy
£’ i\ AN A
& f N - ‘ /'\" _IA - A NI N oot - ’, Y
5 PR H N ‘\’ ~d VTS S RN s St s \‘,/\~‘»__‘ A
7] NI - i
D O ——————————
0 20 40 60 80 100
Time (s)

Figure 1: CPU usage and request processing time (RPT) over time for 32 users sending requests every 0.1 seconds to Drupal.

serve any overhead in Drupal’s request processing time.
For WordPress, the CPU overhead is 5.65% and RAMPART
introduces an additional 0.2 ms (0.83%) for the request
processing time on average. Overall, WordPress incurs
slightly higher overhead than Drupal because more func-
tions are profiled (Table 2).

Finally, we investigate the RPT of Drupal with 32 con-
current user instances with Rampart enabled (Figure 1).
The bottom of the figure shows the 5th percentile, mean,
and 95™ percentile of the RPTs for requests sent for each
one second interval. The x-axis is the time elapsed since
the start of experiment and the y-axis is the RPT. The
number of in-flight requests (RIF) in each one-second
window are shown in a green solid line, and the aver-
age server CPU usage is shown in a blue dashed line
in the top figure. Evidently, CPU usage remains mod-
est throughout the experiment. Following, we show how
a only few attack requests can quickly exhaust the CPU
(Section 3.3), and how RaMpART preserves server perfor-
mance (Section 4).

3.3 DoS Attack Performance Degradation

We measure the performance degradation of the server
when a CPU-exhaustion DoS attack was launched against
a web application. Specifically, we evaluate two kinds at-
tacks for both web applications: XML-RPC for both Drupal
and WordPress (CVE-2014-5266 [4]), PHPass for Dru-
pal (CVE-2014-9016 [2]) and Wordpress (CVE-2014-
9034 [3]). The XML-RPC attacks allow remote attackers
to cause a CPU-exhaustion DoS by sending a large XML
document containing a significant number of elements.
The PHPass attacks allow remote attackers to cause a

CPU-exhaustion DoS by supplying a long password that
is improperly handled by the password hashing functions.
We also evaluated several other CVEs (e.g., CVE-2012-
1588, CVE-2013-2173, and CVE-2014-5019), which can
similarly cause CPU-exhaustion DoS, which we omit due
to space limitations.

We use our traffic generator to send attack traffic from
the client machine to the server. Each generated attack
payload takes Drupal and WordPress between 10 and
30 seconds to process. We then launch multiple attack-
ers concurrently via our traffic generator. For each at-
tacker session, the generator sends two consecutive re-
quests with five seconds break in-between. Assuming
that the RPT for an attack request is 25 seconds, then the
attack traffic rate with 30 attacker sessions is one attack
request per second. This rate is significantly lower than
that of a typical DDoS attack (tens of thousands of re-
quests per second or more). Indeed, such sophisticated
application-layer DoS attacks require significantly fewer
resources to be successful.

In our experiments, we configure the user traffic gen-
erator to run 32 user sessions (Section 3.2), and the at-
tack traffic generator to operate 8 or 16 attacker sessions.
We launch the attack traffic generator five seconds after
we started the user traffic generator. As in our baseline
performance experiments, we repeat each experiment five
times to measure the average performance metrics, i.e.,
the server’s CPU usage, the number of in-flight requests
each second (RIF), and the request processing time (RPT)
of user sessions and attacker sessions. RaMPART is dis-
abled for all of these experiments.

USENIX Association

27th USENIX Security Symposium 401

Max_Prof_Depth

Application = Benchmark 1 3 5 7 9 11 13
ARPT (ms) 397.6 389.0 400.9 393.0 413.6 412.6 410.9
CPU (%) 3453 34.80 35.62 36.32 38.52 40.94 44.20
Drupal Number of Unique Functions 12 76 567 1,421 2,473 4,019 5,405
Number of Functions 341 2,167 12,677 31,152 53,263 80,186 110,606
Processing Time (ms) 11.3 29.5 142.5 321.8 543.7 886.7 1,147.1
ARPT (ms) 23.7 23.7 235 24.6 29.1 36.4 41.6
CPU (%) 4425 43.12 49.08 56.56 61.60 69.37 68.41
‘WordPress Number of Unique Functions 17 199 846 3,186 7,909 13,337 17,410
Number of Functions 422 4479 15314 42957 89,080 136,910 170,904
Processing Time (ms) 11.4 46.1 169.1 572.8 1,470.2 2,653.7 3,529.0

Table 2: Web server performance and daemon statistics for RamparT with 32 users for different Max_Prof_Depth values.

< -—- CPU Usage —— Attacker Requests —— User Requests
& 100 200 .,
o = 2
&b %
7 £z
S s 22
0 =

oy
& 0

_ =—= 5" Percentile —— Mean -—- 95" Percentile

2

K A

L;‘ .1 ‘/ “v’\.,_/‘\'/“--_/\'/’

L OLet = sl N N N 2 S e Y T

2 -—=- 5" Percentile —— Mean -—- 95" Percentile

E Attack

2

g

R

b 0 20 40 60 80 100

Time (s)

Figure 2: CPU usage and RPT over time for 8 PHPass attackers on Drupal without RAMPART.

For each figure, the middle and bottom graphs show
the 5 percentile, mean, and 95" percentile of the RPT of
user requests (middle) and attack requests (bottom) that
were sent in each one second window. The green and
red solid lines in the top figure represent the RIF of user
sessions and attacker sessions, and the blue dashed line
shows the server’s CPU usage. A red solid vertical line
in each three graphs indicates when we started the attack.

Launching 8 PHPass attacker sessions attack against
Drupal (Figure 2), the server spends on average 42 sec-
onds on processing one attack request. The CPU remains
almost fully occupied once we launch the attack, except
for the five seconds break when we paused the attack. In
fact, the results show that an attacker sending only 0.17 re-
quests per second (8 / (42 + 5)) can already exhaust CPU
resources of a vulnerable server. Performance degrades
severely with 16 parallel attacker sessions, at which point
the CPU usage stays close to 100% throughout the ex-
periment. Corresponding to doubling the number of at-
tacker sessions, the server has to spend almost twice as
much time (82 seconds, or 1.95x) to serve each request,
likely because of the operating system’s process schedul-
ing. For 16 attackers, the required attack rate is 0.18 re-
quests per second (16 / (82 + 5)).

The results for the other three attacks, XML-RPC on Dru-
pal, PHPass on WordPress, and XML-RPC on WordPress,
are shown in Figure 3, Figure 4, and Figure 5.

The mean CPU usage and the ARPT for all the exper-
iments is summarized in Table 3. For Drupal, the two
attacks consume between 52.4% and 62.84% additional
CPU time and they cause a 36% slowdown in processing
user requests. The ARPT of WordPress is more sensitive
to both attacks, causing an increase of 40% to 118% in
ARPT and consuming between 41.65% and 51.93% ad-
ditional CPU time.

4 Mitigation Evaluation

For RAMPART to be an effective defense, it must success-
fully preserve the availability of a web application from
CPU-exhaustion DoS attacks. Therefore, we first inves-
tigate whether RAMPART can correctly detect and stop at-
tacks exploiting known real-world CPU-exhaustion DoS
vulnerabilities (Section 4.1). Next, we look at whether
RampaRrT can effectively protect web applications from
unknown CPU-exhaustion DoS attacks (Section 4.2).

402 27th USENIX Security Symposium

USENIX Association

—— User Requests

s 100 -—- CPU Usage —— Attacker Requests
§Q ~=m~g a%
% e P i %
=) T S
0
&
& 0
=== 5" Percentile —— Mean -—- 95" Percentile
z A
£ s A PR REVAY
A PR 4 - N/ A
i Fa 2 A L e NV TN TR VR o o e .
2 olomtans Zmat e =P T 2 Nt Ty
= -—- 5" percentile —— Mean -—~- 95" Percentile
=
] Attack
20
-
: A
£ 0
b 0 20 40 60 80 100
Time (s)
Figure 3: CPU usage and RPT over time for 8 XML-RPC attackers on Drupal without RAMPART.
=S -—- CPU Usage —— Attacker Requests —— User Requests
< 100 = 3 e »
% NN 200 57
5 o " (R
S = S
2 o0 0
Q
_ =—= 5" Percentile —— Mean -—=- 95" Percentile
Z
= \
= Y, -
20 ._/é‘f._~ —3 S
=)
2 -—=- 5" Percentile —— Mean -—- 95" Percentile
50
E Attack
o started
£
£ 0
b 0 10 20 30 40 50 60
Time (s)

Figure 4: CPU usage and RPT over time for 8 PHPass attackers on WordPress without RAMPART.

We also study if RAmPART may mistakenly mark a le-
gitimate request as an attack request, i.e., a false posi-
tive, and what the consequences are. For example, a user
may initiate slow requests that appear similar to attack re-
quests. Blocking such requests while an active attack is
occurring is acceptable because there is no good way to
differentiate such requests from the attack requests (Sec-
tion 2.1). However, it is unnecessary and undesirable to
constantly reject such legitimate requests when the appli-
cation is not under attack.

4.1 Mitigation of Known Attacks

We evaluate how RAMPART can mitigate attacks exploit-
ing the real-world vulnerabilities that we studied (Sec-
tion 3.3). We are particularly interested in understanding:

1. How well does RamMpART help preserve server per-
formance and availability when attacks occur?

2. How long stays an aborted attack request alive before
it is terminated by RAMpPART?

3. How many attack requests are not aborted by
RampaRT, i.e., what is the false negative rate (FNR)?

4. How many user requests are aborted, i.e., what is the
false positive rate (FPR)?

To answer these questions, we perform the following
experiments: First, we evaluate RAMPART’s ability to de-
tect attack requests in the stop-only experiments (Sec-
tion 4.1.1). Here, RampART uses the probabilistic algo-
rithm (Algorithm 1) to lower a suspicious request’s pri-
ority by either aborting or suspending it, but it does not
deploy any filters to block requests. In turn, RAMPART
checks all the requests sent by attackers. Next, we evalu-
ate whether RAMPART can preserve server performance
by stopping and filtering suspicious requests. In the
stop-and-filter experiments (Section 4.1.2), RamparT ad-
ditionally uses the exploratory algorithm (Algorithm 2)
to synthesize and deploy filters to block future attack re-
quests. Here, we set the primary lifespan (7},) to 10 sec-
onds and the secondary lifespan (7}) to 30 seconds. We
assign a unique local IP address to each user/attacker ses-
sion, so that RAMPART can distinguish the different in-
stances.

We evaluate two threshold values (50% and 75%) for
the CPU usage threshold Rcpu, which RAMPART uses to
determine if a server is under attack. We report the aver-
age request processing time (ARPT), average server CPU
usage, FPR, and FNR for user requests and attack requests
over five runs per configuration. The RPT of false posi-
tive requests that RAMPART aborted are not included in
the user ARPT.

USENIX Association

27th USENIX Security Symposium 403

—— User Requests

9 100 -—- CPU Usage —— Attacker Requests
S % =
2 e - u; E
=== 5" Percentile —— Mean -—- 95" Percentile
1 s
g A
R~ Ill \
§ 0 I LN e
=)
> -—- 5% percentile —— Mean -—- 95" Percentile
= —=
& 20 g Attack
o started
-
g 0
b 0 10 20 30 40 50 60

Time (s)

Figure 5: CPU usage and RPT over time for 8 XML-

RPC attackers on WordPress without RAMPART.

Attack
PHPass [Attackers] XML-RPC [Attackers]
No Attack
Application Benchmark 8 16 8 16
Draal ARPT (ms) 398.1 461.2(1.16x) 519.6 (1.31x) 4583 (1.15x) 541.7 (1.36x)
rupal

CPU (%) 3221 88.95 95.05 84.61 9491

ARPT (ms) 22.5 37.0 (1.64x) 49.0 (2.18x) 31.5 (1.40x) 41.7 (1.86x)
Wordpress

CPU (%) 42.21 89.71 94.14 83.86 92.09

Table 3: Average request processing time of requests and server CPU usage with Rampart’s defense turned off.

4.1.1 Stop-Only Experiments

We summarize the results of the stop-only experiments
in Table 4. We observed no false negative in our exper-
iments, i.e., all attack requests were detected and even-
tually aborted, which demonstrates that RaAmMpaRT accu-
rately detects CPU-exhaustion DoS attacks.

However, some user requests were also aborted by
RaMmPART as false positives in the Drupal PHPass experi-
ment with 8 attacker sessions. Upon closer investigation
of the logs and traffic traces of Drupal, some requests
took the server more than several seconds to process, even
when it was not under attack (black spikes in Figure 1).
Some of those requests were marked as suspicious be-
cause several function frames deviated from their execu-
tion models. However, the overall impact was limited:

1. Not all such requests were aborted by RAMPART.
2. Requests of only a few users were aborted, although
all users sent the same requests.

This is the case because RAMPART only terminated appli-
cation instances serving a suspicious request when the
server was overloaded. Nevertheless, the FPR is always
less or equal to 0.33%, i.e., less than 18 out of 5,344 user
requests were mistakenly aborted by RAMPART.

At the same time, RAMPART helps to preserve server
performance and availability substantially, compared to
the attack results without RamparT (Table 3). The ARPT
for user requests (ARPT-U) during the PHPass attacks on
Drupal and WordPress are close to their baseline counter-
parts (Table 1). However, ARPT-U during the XML-RPC

attacks on the web applications did not improve signifi-
cantly. On the other hand, the ARPT for attack requests
(ARPT-A) is long, with attack requests being processed
for up to 2,294 ms (Drupal) and 787 ms (WordPress) be-
fore RampART aborted them. This explains why average
CPU usage did not drop back to the baseline (Table 1) but
remained slightly higher. We also observe that PHPass at-
tack requests consumed more CPU resource with a higher
CPU usage threshold Repy.

Finally, we look at 8 attacker sessions launching the
PHPass attack against Drupal with Rcpy set to 50% (Fig-
ure 6). The magenta dashed lines in the middle and bot-
tom graphs represent the number of aborted user requests
(middle) and attack requests (bottom). In the first 20 sec-
onds of the experiment, RAMPART quickly aborted all at-
tack requests because the server’s CPU usage was above
the threshold. Some requests were aborted even when
the CPU usage in the top figure appears to be lower than
the 50% threshold, which is because RAMPART monitors
CPU usage at a shorter interval (10 ms), while the CPU
data in the top figure was collected each second using the
mpstat command. When the server load decreased, the
attack requests could occupy the CPU for up to five sec-
onds until the CPU usage crossed the threshold again. In
turn, this behavior demonstrates the need for deploying
filters to block suspicious requests to prevent CPU usage
oscillation. Nevertheless, RamparT detects and blocks
attacks much earlier with a CPU threshold close to but
above the expected CPU usage during normal operation.

404 27th USENIX Security Symposium

USENIX Association

CPU Threshold for Attack

50%

75%

PHPass [Attackers]

XML-RPC [Attackers]

PHPass [Attackers] XML-RPC [Attackers]

Application Benchmark 8 16 8 16 8 16 8 16
ARPT-U (ms) 3923 3979 463.6 536.3 378.1 408.9 465.0 506.4
b i ARPT-A (ms) 2,093 1,988 988.6 1,089 2,294 2,017 1,175 1,368
rupa
CPU (%) 45.10 51.76 39.41 43.73 48.76 53.62 38.79 39.65
FPR (%) 0.10 0.15 0.00 0.00 0.02 0.33 0.00 0.00
ARPT-U (ms) 249 27.1 28.1 36.8 244 27.0 26.8 39.0
ARPT-A (ms) 4043 4724 546.2 7729 521.0 5152 5268 787.6
WordPress
CPU (%) 53.74 58.98 53.06 5527 56.09 60.30 50.64 54.61
FPR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 4: Server performance in the stop-only experiments.
°\E 100 -—- CPU Usage —— Attacker Requests —— User Requests »
& " A 2%
% ’-/ ~/ \V/ ~ ,’\‘ 1 .,n..—_‘\ ’_/\';-\'A\ UZ: %
é 0 * o =
= 2 —— Mean ---- Aborted User Requests
5 1
“ —— Mean ---- Aborted Attacker Requests
& Aftack Z
= \ 1\ &
8 0
<

Time (s)

Figure 6: CPU usage and RPT over time for 8 PHPass attackers on Drupal with RAMPART in the stop-only experiment.

4.1.2 Stop-and-Filter Experiments

We present the results of the stop-and-filter experiments
in Table 5. Analog to the stop-only experiments, we ob-
served no false negative in the stop-and-filter experiments.
However, the FPR increased compared to the stop-only
experiments because Rampart drops any request match-
ing a filter created from false positive requests until the
filter’s primary lifespan has expired. In fact, these events
are evident in the Drupal PHPass experiment with 8 at-
tacker sessions and Repy = 50% (orange dashed line in
Figure 7, which represents the number of requests that
were dropped because of a filter). Around the 35" sec-
ond and 39™ second, two user requests were detected and
aborted as false positives and two matching filters were
created. As a result, 16 additional requests from these
two users were also dropped in the following 7}, seconds.
The primary lifespan of the last rule then expired at the
49" second. RamparT then explored a matching request
(the blue dashed line) at around the 58 second according
to the exploratory algorithm (Algorithm 2) and it detected
that the filtering rule was a false positive. RAMPART’s
FPR in stop-and-filter mode is still negligible at less than
0.69%.

Although RamparT’s stop-and-filter mode blocked
some legitimate requests, it also immediately blocked
the majority of attack requests (86.5%) and entirely pre-
vented them from consuming any additional CPU time.
The remaining 21 attack requests (13.5%) were also all de-
tected as suspicious and aborted. In fact, 8 of the aborted
requests were the initial requests sent by the 8 attackers,
i.e., the earliest that any defense could have detected them
as suspicious. Rampart explored the remaining 13 re-
quests and eventually also detected them as suspicious.
Since the attackers sent requests at an interval of five sec-
onds, which is shorter than T;, RAMPART incremented the
primary lifespan of a filter as penalty each time an explor-
ing request was detected as suspicious.

Because Rampart blocked most of the attack requests
immediately, it preserved the web server’s performance
as if no attack had occurred (Table 5). In particular, the
average CPU usage and the ARPT of user requests are
much closer to their baseline (Table 1) compared to the
stop-only experiments (Table 4). The ARPT of attack re-
quests is an order of magnitude smaller. Overall, the re-
sults illustrate that RAMPART can effectively protect web
applications from known CPU-exhaustion DoS attacks
using the exploratory algorithm (Algorithm 2).

USENIX Association

27th USENIX Security Symposium 405

CPU Threshold for Attack

50%

75%

PHPass [Attackers]

XML-RPC [Attackers]

PHPass [Attackers] XML-RPC [Attackers]

Application Benchmark 8 16 8 16 8 16 8 16
ARPT-U (ms) 394.7 427.1 4234 460.4 400.9 418.6 4374 471.6
b ! ARPT-A (ms) 203.6 2283 148.1 1722 2589 166.6 160.4 181.0
rupa
CPU (%) 38.51 38.76 36.30 37.68 38.84 39.62 36.30 37.73
FPR (%) 0.60 0.00 0.25 0.00 0.69 0.00 0.15 0.00
ARPT-U (ms) 24.1 26.1 25.6 26.8 244 26.1 245 25.1
ARPT-A (ms) 142.1 2344 2059 2205 1528 2423 2263 180.2
WordPress
CPU (%) 45.92 51.40 49.89 50.74 49.15 5098 50.91 52.14
FPR (%) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Table 5: Server performance in the stop-and-filter experiments.
S -—- CPU Usage —— Attacker Requests —— User Requests
S 100 -
;ﬂ) ~ 200 E‘] %
=) S Ay OV VASERMER TGRS NSy S SR . il
& o0 = e 0 =F
&)
. —— Mean ---- Aborted User Requests Dropped User Requests ---- Exploring User Requests
< 9 2
2 u/_J\/\-/\ /\’\/-/ MMV\/\ s
% N -~ " g
% 0 NS AN 00 ¥
I —— Mean ---- Aborted Attacker Requests Dropped Attacker Requests ---- Exploring Attacker Requests
& t [Attack g
2 25| Shnea /\ s 2
2 ook AN bl & a7 N
by 20 40 60 80 100

Time (s)

Figure 7: CPU usage and RPT over time for 8 PHPass attackers on Drupal with RamMPART enabled in the stop-and-filter experiment.

The results for the remaining three experiments with
Repy = 50%, namely, XML-RPC on Drupal, PHPass on
WordPress, and XML-RPC on WordPress, are shown in Fig-
ure 8, Figure 9, and Figure 10.

4.2 Mitigation of Synthetic Attacks

Compared to static vulnerability analysis tools that look
for specific features in the source code, RAMPART does not
require an application’s source code, nor does it require
any knowledge about specific CPU-exhaustion DoS vul-
nerabilities. Instead, RAMPART is a generic defense that
automatically detects known and unknown application-
level CPU-exhaustion DoS attacks at runtime dynami-
cally.

We demonstrate RAMPART’s ability to detect and mit-
igate such attacks in web applications. Beyond the vul-
nerabilities that we explored, we automatically inserted
CPU-exhaustion DoS vulnerabilities into the source code
of the two web applications at random locations. We con-
figured RamparT to record all invoked functions when
serving a request for the two web applications, and we
then inserted a vulnerability (Listing 1) into a function
that was randomly chosen. The vulnerable code calcu-

lates the hash value of a variable $v by repeatedly invok-
ing the md5 function (line 11). The number of iteration
in the loop is controlled by the parameter $exp, which an
attacker can set through the dos-exp query parameter. In
our experiment, attacker requests set $exp to 24 to cause
CPU-exhaustion DoS (i.e., 22* md5 invocations).

For each application, we randomly chose 50 vulnerabil-
ities (requests) and launched 16 attacker sessions. We set
the average CPU threshold Rcpy to 75%. All 50 vulner-
abilities in WordPress were successfully exploited, while
only 21 vulnerabilities in Drupal could be exploited be-
cause the other 29 vulnerable functions were not invoked.
They could not be invoked because they require to be set
up by other requests beforehand, which we did not replay.

We report the results with and without RamparT (Ta-
ble 6). The average CPU usage threshold to determine if
RamparT successfully mitigated an attack against Drupal
is 45% and for WordPress it is 55%. RAMPART success-
fully mitigates all attacks with Rcpy = 50%. However,
some attack requests were incorrectly classified as benign.
These false negatives occurred for Drupal because the
server load was light (less than the 50% threshold) when
those requests arrived. Although Rampart did not abort
those requests, it flagged them as suspicious.

406 27th USENIX Security Symposium

USENIX Association

9 100 -—- CPU Usage —— Attacker Requests —— User Requests
b 200 = K
3 208
= oy ok
E 0 0 =12
@]

. —— Mean Dropped User Requests ---- Exploring User Requests

>

~ 2]

£2 53

% AN g

2 o= VA VA SN 0™

=2 —— Mean ---- Aborted Attacker Requests Dropped Attacker Requests ---- Exploring Attacker Requests

g Attack 2

21 . |started 5 8

2 A A]

ER) X 77Xy, A 0 ~

by 20 40 60 80 100

Time (s)

Figure 8: CPU usage and RPT over time for 8 XML-RPC attackers on Drupal with RAmMpART enabled in the stop-and-filter experiment.

10 20

40 50

s 100 -——- CPU Usage —— Attacker Requests —— User Requests
= -«
& 200 BF
3 Z B
=
é o 0 =17
. —— Mean
f 0.25
Ay
& /\
g 0.00
=]
= —— Mean ---- Aborted Attacker Requests Dropped Attacker Requests ---- Exploring Attacker Requests
E 0.5 Attack 2
& started 10 §
2 N L R g
é 0.0 4 3 . - e, &
<

Time (s)

Figure 9: CPU usage and RPT over time for 8 PHPass attackers on WordPress with RamparrT in the stop-and-filter experiment.

RAMPART
Application Benchmark Enabled Disabled
Successful Attacks 0 21
ARPT-U (ms) 436.5 519.7
ARPT-A (ms) 290.5 29,631
Drupal
CPU (%) 39.15 90.56
FPR (%) 0.03 N/A
FNR (%) 1.31 N/A
Successful Attacks 0 50
ARPT-U (ms) 25.8 38.9
ARPT-A (ms) 157.5 37,966
WordPress
CPU (%) 51.05 9291
FPR (%) 0 N/A
FNR (%) 0 N/A

Table 6: Web server performance in the synthetic attack exper-
iments with RAMPART being enabled and disabled.

Overall, the synthetic attacks experiments demonstrate
that RAMPART can detect and mitigate CPU-exhaustion
DoS attacks regardless of the location of the vulnerable
code, i.e., it can detect and mitigate attacks not only for
front-facing code, but it can also detect and mitigate at-
tacks for (third-party) library functions. Our prototype is
implemented as an extension to the PHP engine (and can
be similarly implemented for other languages), and, thus,

it can adapt to any change of an application’s source code
without requiring any manual interaction or reconfigura-
tion. RaMPART can automatically detect new vulnerabili-
ties that might be introduced by unintentional source code
modifications. On the contrary, a developer using a static
vulnerability detection tool would need to run it each time
she modifies the code. Considering RampaRrT’s effective-
ness and low overhead, RAMPART is a practical defense to
protect applications from CPU-exhaustion DoS attacks.

5 Related Work

We compare RampaRT to the most relevant work, i.e., so-
phisticated DoS vulnerability detection, program profil-
ing techniques, and anomaly detection.

DoS Vulnerability Detection. CPU-exhaustion DoS at-
tacks received significant attention from researchers over
the past years. Existing research focused on finding vul-
nerabilities (bugs) that can be exploited to launch sophis-
ticated DoS attacks. In turn, prevention of the attacks
is manual by fixing the detected bugs before an applica-
tion is deployed. Safer performs static taint analysis and
control-dependency analysis to identify loops and recur-
sive calls whose execution can be controlled by a remote
attacker [10]. Similarly, SaferPHP uses static taint anal-

USENIX Association

27th USENIX Security Symposium 407

-—- CPU Usage

—— Attacker Requests

—— User Requests

CPU Usage (%)

Attacker RPT (s)

Time (s)

200 5%
31
=
0 =12
. —— Mean
<
—
o
4 /_§
-
2
=)
—— Mean ---- Aborted Attacker Requests Dropped Attacker Requests ---- Exploring Attacker Requests
1 Aitack 5 8
S\ started]
/ \ ” =
9 N, 27N o
o g \ 277N //\NN_\/\ - 0
10 20 40 50

Figure 10: CPU usage and RPT over time for 8 XML-RPC attackers on WordPress with RAmPART in the stop-and-filter experiment.

1 <?php

2

3 $v = time() + 86400 4 30;

4 $exp = 0;

5

6 if(isset($_GET[1)) {
7 $exp = $_GET[1;

8 }

9

10 for($i = 0; $i < pow(2, $exp); $i++) {
11 $v = md5($v);

12 1}

13

14 ?>

Listing 1: Snippet of vulnerable PHP code.

ysis to find loops whose execution can be influenced by
network inputs [32]. It then uses symbolic execution to
detect whether the network inputs can trigger the loops to
run infinitely. Xiao et al. proposed Alnfer, which is an ap-
proach to detect workload-dependent performance bottle-
neck loops by inferring iteration counts of the loops using
complexity models [35]. Torpedo detects second-order
DoS vulnerabilities using taint analysis and symbolic ex-
ecution [26]. SlowFuzz is a dynamic testing tool that gen-
erates inputs triggering worst-case algorithmic behavior
for several well-known algorithms [27].

Although these systems can detect CPU-exhaustion
bugs before the applications are deployed, they com-
monly rely on additional manual analysis to confirm vul-
nerabilities or reduce false positives. They also incur ad-
ditional opportunity cost because developers need to run
them whenever the application’s code or any of its depen-
dencies are updated. Most important, they do not prevent
attacks after an application has been deployed.

Instead of using static program analysis, RAMPART dy-
namically monitors a web application’s state and deter-
mines automatically if the current state deviates signifi-
cantly from the expected state. In turn, RAMPART auto-
matically adapts to any change to the application or its li-

braries without requiring source code. RAMPART achieves
a low false positive rate by leveraging a probabilistic al-
gorithm and by updating the filtering rules intelligently
with an exploratory strategy, and it exhibits false nega-
tives only if an attack is not severe enough to consume
significant CPU resource.

Program Profiling. The program profiling implementa-
tion of RAMPART is inspired by prior work related to flow-
sensitive and context-sensitive profiling [6, 7, 13, 15, 16].
Here, a function’s execution time is counted in different
contexts based on the calling context tree. That is, they
accumulate all functions that are called on the current exe-
cution path, to distinguish the same function called under
different contexts. For RamparT, we adopt a similar pro-
filing strategy: We compute a hash value to encode the
current execution state. Correspondingly, we can profile
the running time of each called function in different con-
texts, and we can build a statistical execution model for
each function. Moreover, during profiling, we compare
the profiled functions to their statistical models, which
allows us to identify the request that caused the CPU-
exhaustion DoS attack, and which enables RAMPART to
block similar requests in the future.

Anomaly Detection. RamparT employs anomaly detec-
tion techniques to detect suspicious requests. The sim-
plest anomaly detection approach is to set a static thresh-
old for each feature, and to generate alerts when some or
all the feature values are below or above their thresholds.
Instead of a static threshold, RaMPART learns a dynamic
threshold for function execution time because it is im-
practical to determine a static threshold for each function
accurately and a priori, as their execution time can vary
greatly in different execution contexts. Prior work em-
ployed supervised learning algorithms to build anomaly
detection models [11, 19, 20, 28], which stands in contrast
to RamparT: We leverage anomaly detection models us-
ing statistical methods, but without requiring any labels
during training.

408 27th USENIX Security Symposium

USENIX Association

6 Conclusion

Sophisticated Denial-of-Service (DoS) attacks targeting
application-layer vulnerabilities can cause significant
harm by severely degrading the performance and avail-
ability of a victim server over a prolonged period with
only few carefully crafted requests.

In this paper, we present RamMParT, which is a system
that protects web applications from sophisticated DoS at-
tacks that would otherwise overwhelm the server’s avail-
able CPU resources through carefully crafted attack re-
quests. RamparT performs context-sensitive function-
level program profiling and learns statistical models from
historical observations, which it then employs to de-
tect and stop suspicious requests that could cause CPU-
exhaustion DoS. RamPART also adaptively synthesizes
and updates filtering rules to block future attack requests.
We thoroughly evaluated RamparT’s effectiveness and
performance on real-world vulnerabilities as well as syn-
thetic attacks for two popular web applications, Dru-
pal and WordPress. Our evaluation demonstrated that
RAMPART is robust against a varying number of attack-
ers and that it can effectively and efficiently protect web
applications from CPU-exhaustion DoS attacks with neg-
ligible performance overhead, low false positive rate, and
low false negative rate.

7 Acknowledgments

We thank the anonymous reviewers for their helpful sug-
gestions and feedback to improve the paper. This ma-
terial is based on research supported by DARPA un-
der agreement FA8750-15-2-0084, NSF under agree-
ment CNS-1704253, ONR under grants N00014-09-1-
1042, N0O0014-15-1-2162 and NO0014-17-1-2895, and
the DARPA Transparent Computing program under con-
tract DARPA-15-15-TCFP-006. The U.S. Government is
authorized to reproduce and distribute reprints for Gov-
ernmental purposes notwithstanding any copyright nota-
tion thereon. The views, findings, conclusions or recom-
mendations expressed in this material are those of the au-
thors and should not be interpreted as necessarily repre-
senting the official views, policies or endorsements, ei-
ther expressed or implied, of DARPA, NSF, ONR, or the
U.S. Government.

References

[1] CVE-2013-2173, Feb. 2013. URL https://nvd.nist.
gov/vuln/detail/CVE-2013-2173.

[2] CVE-2014-9016, Nov. 2014. URL https://nvd.nist.
gov/vuln/detail/CVE-2014-9016.

(3]

(4]

(5]

(6]

(7]

(8]

[9]

[10]

(11]

(12]

[13]

[14]

[15]

CVE-2014-9034, Nov. 2014. URL https:/nvd.nist.
gov/vuln/detail/CVE-2014-9034.

CVE-2014-5266, Aug. 2014. URL https:/nvd.nist.
gov/vuln/detail/CVE-2014-5266.

Usage Statistics and Market Share of PHP for
Websites, Nov. 2017. URL https://w3techs.com/
technologies/details/pl-php/all/all.

G. Ammons, T. Ball, and J. R. Larus. Exploit-
ing Hardware Performance Counters with Flow and
Context Sensitive Profiling. In Proceedings of the
1997 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Las
Vegas, NV, June 1997.

T. Ball. Efficiently Counting Program Events with
Support for On-line Queries. ACM Trans. Program.
Lang. Syst., 16(5):1399-1410, Sept. 1994.

U. Ben-Porat, A. Bremler-Barr, and H. Levy. Vul-
nerability of Network Mechanisms to Sophisticated
DDoS Attacks. IEEE Transactions on Computers,
62(5):1031-1043, May 2013.

British Broadcasting Company (BBC). Thai Gov-
ernment Websites Hit by Denial-of-Service Attack,
2015. URL http://www.bbc.com/news/world-asia-
34409343. BBC News.

R. Chang, G. Jiang, F. Ivancic, S. Sankara-
narayanan, and V. Shmatikov. Inputs of Coma:
Static Detection of Denial-of-Service Vulnerabili-
ties. In Proceedings of the 22nd IEEE Computer
Security Foundataions Symposium (CSF), Port Jef-
ferson, NY, 2009.

N. V. Chawla, N. Japkowicz, and A. Kotcz. Edi-
torial: Special Issue on Learning from Imbalanced
Data Sets. SIGKDD Explor. Newsl., 6(1):1-6, June
2004.

S. A. Crosby and D. S. Wallach. Denial of Service
via Algorithmic Complexity Attacks. In Proceed-
ings of the 12th USENIX Security Symposium (Se-
curity), Washington, DC, Aug. 2003.

S. L. Graham, P. B. Kessler, and M. K. Mckusick.
Gprof: A Call Graph Execution Profiler. In Pro-
ceedings of the 1982 SIGPLAN Symposium on Com-
piler Construction, Boston, MA, June 1982.

M. Guirguis, A. Bestavros, I. Matta, and Y. Zhang.
Reduction of Quality (RoQ) Attacks on Internet
End-Systems. In Proceedings of the 24th IEEE In-
ternational Conference on Computer Communica-
tions (INFOCOM), Miami, FL, Mar. 2005.

R. J. Hall. Call Path Profiling. In Proceedings of
the 14th International Conference on Software En-
gineering (ICSE), Melbourne, Australia, May 1992.

USENIX Association

27th USENIX Security Symposium 409

https://nvd.nist.gov/vuln/detail/CVE-2013-2173
https://nvd.nist.gov/vuln/detail/CVE-2013-2173
https://nvd.nist.gov/vuln/detail/CVE-2014-9016
https://nvd.nist.gov/vuln/detail/CVE-2014-9016
https://nvd.nist.gov/vuln/detail/CVE-2014-9034
https://nvd.nist.gov/vuln/detail/CVE-2014-9034
https://nvd.nist.gov/vuln/detail/CVE-2014-5266
https://nvd.nist.gov/vuln/detail/CVE-2014-5266
https://w3techs.com/technologies/details/pl-php/all/all
https://w3techs.com/technologies/details/pl-php/all/all
http://www.bbc.com/news/world-asia-34409343
http://www.bbc.com/news/world-asia-34409343

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

R.J. Hall and A.J. Goldberg. Call Path Profiling of
Monotonic Program Resources in UNIX. In Pro-
ceedings of the USENIX Summer 1993 Technical
Conference on Summer Technical Conference - Vol-
ume 1, Cincinnati, OH, June 1993.

Internet Society. Addressing the Chal-
lenge of IP Spoofing, Sept. 2015. URL
https://www.internetsociety.org/doc/addressing-
challenge-ip-spoofing.

J. Ioannidis and S. M. Bellovin. Implementing Push-
back: Router-Based Defense Against DDoS Attacks.
In Proceedings of the 9th Annual Network and Dis-
tributed System Security Symposium (NDSS), San
Diego, CA, Feb. 2002.

M. V. Joshi, R. C. Agarwal, and V. Kumar. Min-
ing Needle in a Haystack: Classifying Rare Classes
via Two-phase Rule Induction. In Proceedings of
the 2001 ACM SIGMOD/PODS Conference, Santa
Barbara, CA, May 2001.

M. V. Joshi, R. C. Agarwal, and V. Kumar. Predict-
ing Rare Classes: Can Boosting Make Any Weak
Learner Strong? In Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Edmonton, Al-
berta, Canada, July 2002.

T. Kitten. DDoS Attacks Against Banks Increas-
ing, 2015. URL http://www.bankinfosecurity.com/
ddos-a-8497.

A. Kuzmanovic and E. W. Knightly. Low-rate TCP-
targeted Denial of Service Attacks: The Shrew vs.
The Mice and Elephants. In Proceedings of the 14th
ACM SIGCOMM, Karlsruhe, Germany, Aug. 2003.

X. Liu, X. Yang, and Y. Lu. To Filter or to
Authorize: Network-Layer DoS Defense Against
Multimillion-node Botnets. In Proceedings of the
ACM SIGCOMM, Seattle, WA, Aug. 2008.

X. Liu, X. Yang, and Y. Xia. NetFence: Preventing
Internet Denial of Service from Inside Out. In Pro-
ceedings of the ACM SIGCOMM, New Delhi, India,
Aug. 2010.

D. Moore, G. M. Voelker, and S. Savage. Inferring
Internet Denial-of-Service Activity. In Proceedings
of the 10th USENIX Security Symposium (Security),
Washington, DC, Aug. 2001.

0. Olivo, I. Dillig, and C. Lin. Detecting and Ex-
ploiting Second Order Denial-of-Service Vulnera-
bilities in Web Applications. In Proceedings of the
22nd ACM Conference on Computer and Commu-
nications Security (CCS), Denver, Colorado, Oct.
2015.

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

T. Petsios, J. Zhao, A. D. Keromytis, and S. Jana.
SlowFuzz: Automated Domain-Independent Detec-
tion of Algorithmic Complexity Vulnerabilities. In
Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security (CCS), Denver,
Colorado, Oct. 2015.

C. Phua, D. Alahakoon, and V. Lee. Minority Re-
port in Fraud Detection: Classification of Skewed
Data. ACM SIGKDD Explorations Newsletter, 6(1):
50-59, June 2004.

C. Rossow. Amplification Hell: Revisiting Network
Protocols for DDoS Abuse. In Proceedings of the
2014 Annual Network and Distributed System Secu-
rity Symposium (NDSS), San Diego, CA, Feb. 2014.

S. Savage, D. Wetherall, A. Karlin, and T. Ander-
son. Practical Network Support for IP Traceback.
In Proceedings of the 11th ACM SIGCOMM, Stock-
holm, Sweden, Aug. 2000.

A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E.
Jones, F. Tchakountio, S. T. Kent, and W. T. Strayer.
Hash-Based IP Traceback. In Proceedings of the
12th ACM SIGCOMM, San Diego, CA, Aug. 2001.

S. Son and V. Shmatikov. SAFERPHP: Finding Se-
mantic Vulnerabilities in PHP Applications. In Pro-
ceedings of the ACM SIGPLAN 6th Workshop on
Programming Languages and Analysis for Security
(PLAS), San Jose, CA, June 2011.

J. Stevens. How Slow is Too Slow in 2016?, Feb.
2016. URL https://www.webdesignerdepot.com/
2016/02/how-slow-is-too-slow-in-2016/.

R. van Rijswijk-Deij, A. Sperotto, and A. Pras.
DNSSEC and Its Potential for DDoS Attacks: A
Comprehensive Measurement Study. In Proceed-
ings of the ACM Internet Measurement Conference
(IMC), Vancouver, Canada, Nov. 2014.

X. Xiao, S. Han, D. Zhang, and T. Xie. Context-
sensitive Delta Inference for Identifying Workload-
dependent Performance Bottlenecks. In Proceed-
ings of the 2013 International Symposium on
Software Testing and Analysis (ISSTA), Lugano,
Switzerland, July 2013.

A. Yaar, A. Perrig, and D. Song. Pi: A Path Identifi-
cation Mechanism to Defend against DDoS Attacks.
In Proceedings of the 24th IEEE Symposium on Se-
curity and Privacy (Oakland), Oakland, CA, May
2003.

A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless
Internet Flow Filter to Mitigate DDoS Flooding At-
tacks. In Proceedings of the 25th IEEE Symposium
on Security and Privacy (Oakland), Oakland, CA,
May 2004.

410

27th USENIX Security Symposium

USENIX Association

https://www.internetsociety.org/doc/addressing-challenge-ip-spoofing
https://www.internetsociety.org/doc/addressing-challenge-ip-spoofing
http://www.bankinfosecurity.com/ddos-a-8497
http://www.bankinfosecurity.com/ddos-a-8497
https://www.webdesignerdepot.com/2016/02/how-slow-is-too-slow-in-2016/
https://www.webdesignerdepot.com/2016/02/how-slow-is-too-slow-in-2016/

	Introduction
	Rampart
	Threat Model and Challenges
	Web Application CPU Usage Modeling
	CPU-Exhaustion DoS Attack Detection
	Probabilistic Request Termination
	CPU-Exhaustion DoS Attack Blocking
	Performance Optimizations
	Implementation

	Performance Evaluation
	Setup and Baseline Performance
	Performance Overhead
	DoS Attack Performance Degradation

	Mitigation Evaluation
	Mitigation of Known Attacks
	Stop-Only Experiments
	Stop-and-Filter Experiments

	Mitigation of Synthetic Attacks

	Related Work
	Conclusion
	Acknowledgments

