
Scalable Name Lookup in NDN Using Effective
Name Component Encoding

Yi Wang, Keqiang He, Huichen Dai, Wei Meng, Junchen Jiang, Bin Liu†
Tsinghua National Laboratory for Information Science and Technology,

Department of Computer Science and Technology, Tsinghua University, Beijing, China, 100084

{yiwang09, hkq09, dhc10, mw08, jyc07}@mails.tsinghua.edu.cn, liub@tsinghua.edu.cn

Yan Chen
Northwestern University

Evanston, IL USA, 60208

ychen@northwestern.edu

Abstract—Name-based route lookup is a key function for
Named Data Networking (NDN). The NDN names are hierar-
chical and have variable and unbounded lengths, which are
much longer than IPv4/6 address, making fast name lookup a
challenging issue. In this paper, we propose an effective Name
Component Encoding (NCE) solution with the following two
techniques: (1) A code allocation mechanism is developed to
achieve memory-efficient encoding for name components; (2) We
apply an improved State Transition Arrays to accelerate the
longest name prefix matching and design a fast and incremental
update mechanism which satisfies the special requirements of
NDN forwarding process, namely to insert, modify, and delete
name prefixes frequently. Furthermore, we analyze the memory
consumption and time complexity of NCE. Experimental results
on a name set containing 3,000,000 names demonstrate that
compared with the character trie NCE reduces overall 30%
memory. Besides, NCE performs a few millions lookups per
second (on an Intel 2.8 GHz CPU), a speedup of over 7 times
compared with the character trie. Our evaluation results also
show that NCE can scale up to accommodate the potential future
growth of the name sets.

Index Terms—Named Data Networking; Name Prefix Longest
Matching; Name Component Encoding;

I. INTRODUCTION

Named Data Networking (NDN) [1] is proposed recently as

a clean-slate network architecture for future Internet, which no

longer concentrates on “where” the information is located, but

“what” the information (content) is needed. NDN uses names

to identify every piece of contents instead of IP addresses for

hardware devices attached to IP network.

NDN forwards packets by names, which implies a substan-

tial re-engineering of forwarding and its lookup mechanism.

We highlight the challenges as follows:

1) Bounded processing time and high throughput. ND-

N names, unlike fixed-length IP addresses, may have

variable lengths without an externally imposed upper

bound. This makes line-speed name lookup extremely

challenging as arbitrarily long name will cost a lookup

time linear to its length, rather than a fixed time using

traditional tree-based or hash-based method.

†Corresponding author: liub@tsinghua.edu.cn.
This paper is supported by NSFC (61073171, 60873250), Tsinghua Uni-

versity Initiative Scientific Research Program, the Specialized Research Fund
for the Doctoral Program of Higher Education of China(20100002110051),
Ningbo Natural Science Foundation (2010A610121), and China Postdoctoral
Science Foundation (20110490387).

2) Longest name prefix matching. NDN names, unlike

today’s classless IP addresses, have hierarchical structure

and coarser granularity, consisting of a series of delim-

ited components. NDN’s longest prefix matching differs

from that of IP in the way that NDN must match a prefix

at the end of a component, rather than at any digit in IP.

Therefore, traditional prefix matching algorithms will be

far less efficient in NDN name lookup.

3) High update rate. NDN name lookup is accompanied

with more frequent updates than the Forwarding In-

formation Base (FIB) in today’s router, for the reason

that, besides routing refreshing, NDN name table update

is also conducted dynamically no matter when a new

content is inserted or an old content is replaced. As

this information is designed to be stored together with

forwarding information in NDN router, the name lookup

must support fast insertion and deletion with reasonably

low overhead.

Traditionally, character trie is used to represent name prefix-

es. The character trie-based longest prefix matching algorithms

often have O(nm) time complexity in the average case (n
means the number of decomposed name components and m
represents the number of children per node), which cannot sat-

isfy the need of high speed lookup. Besides, the tree structured

implementation is memory-inefficient. An alternative solution

is hashing the name as a whole to an identifier for memory

compression. However, this method cannot be applied to the

longest prefix matching since it takes the whole name as a key.

An improved hash-based approach decomposes the name to

components and encodes each component to an identifier using

hash functions directly. This method is memory-efficient and

suitable for the longest prefix matching. Nevertheless, false

positive caused by hash collision leads to potential lookup

failure. In other words, some name prefixes will be hijacked by

others which have the same identifier sequence. False positive

will destroy the accuracy of routing and the integrity of the

router function.

Thus, in this paper, we propose a Name Component Encod-

ing (NCE) approach, which effectively reduces the memory

cost and accelerates name lookup in NDN. Especially, we

make the following contributions:

1) We propose an effective name component encoding

2012 32nd IEEE International Conference on Distributed Computing Systems

1063-6927/12 $26.00 © 2012 IEEE

DOI 10.1109/ICDCS.2012.35

688

mechanism to cut down the number of component codes

and each component’s code length without loss of the

correctness of longest name prefix matching. Mean-

while, the component encoding mechanism separates

the encoding process with the longest prefix matching,

makes it possible to use parallel processing technique

to accelerate name lookup. In addition, this approach

limits the name lookup time to the upper bound of

the maximum time between the component encoding

process and the longest encoded name prefix matching.

2) We develop the State Transition Arrays (STA) to imple-

ment both the Component Character Trie and Encoded

Name Prefix Trie. State Transition Arrays could reduce

the memory cost while guaranteeing high lookup speed.

Besides, we propose algorithms based on STA to support

fast incremental construction, update, remove and mod-

ify. Further, both the memory cost and time complexity

are analyzed theoretically.

3) Experiments on three datasets are carried out to vali-

date the correctness of the proposed Name Component

Encoding solution. We test Name Component Encoding

in terms of memory compression, average lookup time,

speedup as well as average packet delay and compare

it with the traditional character trie method. The experi-

mental results on 3,000,000 names set demonstrate that

NCE could achieve memory compression ratio greater

than 30%, and it can perform 1.3 million lookups per

second on an Intel 2.8 GHz CPU which can process 2.1

million IP lookups per second. Besides, NCE can handle

more than 20,000 updates per second in the worst case.

Furthermore, average length of a name is shortened from

166 bits to 43 bits. The results also show that NCE could

not only be used for small name sets, but also serve for

larger name sets.

The rest of this paper is organized as follows. The back-

ground of packet forwarding process in NDN is introduced in

Section II. Section III describes longest name prefix lookup

problems caused by NDN names. To solve the problem,

Section IV proposes the Name Component Encoding solution.

In Section V, we analyze the memory cost and time complexity

theoretically. Section VI evaluates NCE in terms of memory

compression, lookup time, speedup and average packet delay

on three different datasets. Section VII is the related work and

we conclude this paper in Section VIII.

II. PACKET FORWARDING IN NDN

A. NDN Background

NDN, formerly known as CCN [2], is a novel network

architecture proposed by [1] recently. Different from current

network practice, it concentrates on the content itself (“what”),

rather than “where” information is located. Despite of its

novelty, NDN operations can be grounded in current practice,

routing and forwarding of NDN network are semantically the

same as that of IP network. What differs is that, every piece

of content in NDN network is assigned a name, and NDN

Fig. 1. Packet Forwarding Process in an NDN Router

routes and forwards packets by these names, rather than IP

addresses.

Names used in a NDN network are dependent on appli-

cations and are opaque to the network. An NDN name is

hierarchically structured and composed of explicitly delimited

components, while the delimiters, usually slash (‘/’) or dot

(‘.’), are not part of the name. For example, a map service

provided by Google has the name /com/google/maps, and com,

google and maps are three components of the name. The

hierarchical structure, like that of IP address, enables name

aggregation and allows fast name lookup by longest prefix

match, and aggregation in turn is essential to the scalability

of routing and forwarding systems. Applications can use this

hierarchical structure to represent the relationships between

data, and evolve the naming scheme to best fit their demands

independently from the network. In this paper, we utilize the

hierarchically reversed domain names as NDN names.

B. Packet Forwarding in NDN

Communications in NDN are driven by the data requesters,

i.e., the data consumers. A data requester sends out an Interest
packet with the desired content name, routers forward the

Interest packet by looking up its name in the Forwarding
Information Base (FIB), when the Interest packet reaches a

node that has the required data, a Data packet is sent back to

the requester. Fig. 1 illustrates the Interest and Data packets

forwarding process in an NDN router in a high-level. Next we

briefly describe the forwarding process and introduce a few

basic concepts.

Once the Interest reaches a router, the router first searches

the request name in the Content Store (CS), which caches the

data that has been forwarded by this router. If the desired Data

exists in the CS, the router directly returns the requested Data.

Otherwise, the name is checked against the Pending Interest
Table (PIT), where each entry contains the name of the Interest

and a set of interfaces from which the matching Interests

have been received. If the Interest name matches a PIT entry,

it means one Interest for this data has been forwarded to

upstream while the response Data does not arrive yet. If the

failure of CS and PIT lookup, the Interest is forwarded by

looking up its name in the FIB, and a new PIT entry is created

including the request name and interfaces.

When the Data packet arrives, the router finds the matching

entry in the PIT firstly, and forwards the Data packet to all

the interfaces listed in the matching PIT entry. Otherwise,the

689

router drops the Data packet when there is no matching PIT

entry. Then the router erases the corresponding PIT entry, and

caches the Data in the CS.

III. NAME PREFIX TRIE FOR NAME LOOKUP

Intuitively, three tables need three separate indexes, however

we can integrate the indexes of PIT, CS and FIB to a single

one and only one name lookup operation is actually per-

formed when a packet comes, thus improving the forwarding

efficiency. NDN names are composed of explicitly delimited

components. Hence they can be represented by Name Prefix

Trie (NPT). Therefore, we make use of the NPT to organize

the integrated index. NPT is shown in Fig. 2, each edge of

which stands for a name component, and a more illustrative

example is shown in 3. The Name Prefix Trie is of component

granularity, rather than character or bit granularity, since the

longest name prefix lookup of NDN names can only match

a complete component at once, i.e., no match happens in the

middle of a component. It should be pointed out that the Name

Prefix Trie is not necessarily a binary tree, which differs from

that of the IP address prefix tree. Each edge of the NPT stands

for a name component and each node stands for a lookup state.

Name prefix lookups always begin at the root.

When an Interest packet arrives, the longest prefix lookup

for the NDN name of this packet starts, it firstly checks

if NDN name’s first component matches one of the edges

originated from the root node, i.e., the level-1 edge. If so,

the transfer condition holds and then the lookup state trans-

fers from the root node to the pointed level-2 node. The

subsequent lookup process proceeds iteratively. When the

transfer condition fails to hold or the lookup state reaches

one of the leaf nodes, the lookup process terminates and

outputs the index that the last state corresponds to. For

example, in Fig. 2, the longest prefix lookup for NDN name

/com/parc/videos/USA/2011/B.mpg starts from the root node.

The first component com matches a level-1 edge of the NPT

and the lookup state transfers from root to the corresponding

child node. The second component parc matches a level-2 edge

and it returns an index which points to one specific entry in

FIB. When 6th component B.mpg does not match any level-6

edge, a new node needs to be inserted to the NPT, meanwhile

a corresponding entry is added to PIT. However, if the request

name is /com/parc/videos/USA/2011/A.mpg, this name could

be completely matched in NPT and the corresponding CS entry

index would be found. When a Data packet arrives, it will

perform the longest prefix lookup for the given NDN name as

stated above, too. Meanwhile it will modify NPT while both

PIT and CS must be updated.

NPT can be constructed as an Name Character Trie (NCT)

which needs a large amount of memory to store the states and

transitions. And one longest prefix matching needs O(mn) in

the average case, m is the average number of children per

node and n is the average length of names.

B. Michel et al. [3] and Z. Zhou et al. [4] apply hash

function to compress URL components, which has good

compression performance. But false positive arises from the

Fig. 2. Name Prefix Trie for CS, PIT and FIB indexes

hash collision, which causes the confusion of distinguishing

the real prefix with the false prefix. For example, suppose

/com/parc and /edu/cmu are both hashed to the same identifier

5612, and /com/parc is added to the hash table earlier than

/edu/cmu. When the lookup algorithm takes /edu/cmu as input,

it will return a pointer to /com/parc, and /edu/cmu will never be

found. The false positive will destroy the exactness of routing

and integrity of the router function.

Based on the observation that an NDN name set has

limited number of components, there is an opportunity to use

encoding based method to compress the memory and improve

the lookup performance. Applying encoding based method to

NPT, we should solve the following problems.

1) High-speed longest name prefix matching. Accelerating

the name lookup in NDN is the major objective of name

component encoding mechanism.

2) Fast component code lookup. When a packet arrives, the

corresponding code of the name’s components must be

looked up before starting the longest prefix matching.

The router’s throughput and packets’ delay are affected

by the speed of component code lookup process.

3) Low memory cost. An effective encoding based method

should reduce the total memory cost, which includes

two basic parts, the memory used to store names’ codes

lookup table and the storage used to implement NPT.

4) Good update performance. As we have described above,

NPT is updated frequently. Poor update performance

will become the potential bottleneck of the longest name

prefix matching.

IV. NAME COMPONENT ENCODING (NCE)

In this section, we propose the Name Component Encoding

(NCE) solution to solve the problems stated above. In NCE,

a memory efficient Code Allocation Mechanism (CAM) is

designed to shorten the bytes which represent a code by

reducing the total number of codes. Then we ameliorate the

State Transition Arrays (STA) techniques for trie structure to

compress memory size and accelerate longest prefix lookup.

At last, we present the algorithms of managing the STA to

satisfy the frequent name update in NDN.

In order to describe the CAM clearly, three definitions are

given first.

690

Fig. 3. Illustration of Code Allocation Mechanism

Definition 1: A component (edge) Ci belongs to a state

(node) Sj when Ci leaves Sj to another state in a trie.

Definition 2: Original Collision Set is a set of components,

and all the components belong to a given state Sj . Each

component in the set should be encoded with different codes

to avoid collision.

Definition 3: Merged Collision Set is a component set. Let

CSi, CSj be an Original Collision Set or a Merged Collision

Set. CSm = CSi

⊕
CSj means CSi, CSj are merged to

CSm by re-encoding the collision components.

In the rest part of this section, we introduce the four major

parts of NCE: 1) allocate a code to each name component

and transfer NPT to Encoded Name Prefix Trie (ENPT); 2)

construct STA to represent ENPT; 3) map a single name

component to its corresponding code; 4) manage STA to

support incremental insertion, removal and modification of

name prefixes.

A. Code Allocation Mechanism

As mentioned in Section III, names are represented by NPT.

For example, as shown in Fig. 3, the given 9 names can be

organized as an NPT with 14 nodes. Different components

(edges) leaving a given node should be encoded differently

and these components comprise an Original Collision Set

according to Definition 2. In Fig. 3, yahoo and google which

both belong to node 2 can be encoded as <yahoo,1> and

<google,2> respectively. The component set {yahoo,google}
is an Original Collision Set of state 2.

If the component codes are produced at the granularity of

Original Collision Set, that is, different Original Collision Sets

are encoded independently, the produced code depends on both

the component itself and its corresponding node. For example,

the level-2 components starting from node 2 and node 9

are {yahoo, google} and {google, sina, baidu}, respectively.

Suppose they are encoded as {<yahoo, 1>, <google, 2>}
and {<baidu, 1>, <sina, 2>, <google, 3>}. We can find

that the same component google is encoded differently in the

two Original Collision Set (google is encoded as 2 in the first

Original Collision Set and 3 in the second Original Collision

Set). So given a component without node information, we

cannot predict the corresponding code. Thus we need alterative

solutions.

yahoo is encoded as 1.

One straightforward method is to assign unique codes to all

the components in NPT, which constitutes a Merged Collision

Set. However, there will be a large amount of codes and each

code is of great length.

Based on the fact that components of domains are sepa-

rated by special delimiters, we can get which level a given

component belongs to. The component code lookup process

could be carried out at each level. The Original Collision Sets

at the same level are merged to a Merged Collision Set. If a

specific component is assigned different codes in at least two

Original Collision Sets, we re-assign the component’s code

as the maximal code number of these Original Collision Sets

plus one (i.e., if the maximal code number of the two Original

Collision Sets is N , the component will be encoded as N+1).

Fig. 3 illustrates the procedure of merging Original Collision

Sets to a larger Merged Collision Set.

Please note that different components in a Merged Collision

Set may have the same code. For example, in Fig. 3, baidu
and yahoo are both encoded as 1 after the merging procedure.

This property will shorten the number of produced codes and

each code’s length. Besides, Theorem 1 proves that the Code

Allocation Mechanism keeps the correctness of name lookup.

Theorem 1: The Code Allocation Mechanism keeps the

correctness of the longest name prefix lookup.

Proof: Suppose two names A = Ca1..Cai..Cam and

B = Cb1..Cbi..Cbm′ are encoded to two code sequences

Ea1..Eai..Eam and Eb1..Ebi..Ebm′ . Two components Cai and

Cbi form the same level i (Cai �= Cbi) have the same code

Eai = Ebi. Let Sa1..Sai..Sam+1 and Sb1..Sbi..Sbm′+1 be

the lookup path of A and B. If and only if Sai = Sbi, the

same code Ei of Cai and Cbi causes collision. Because the

lookup path starts from the root of a trie, we can deduce that

Ej = Eaj = Ebj where j < i. Since there is only one Original

Collision Set in the first level, according to the definition of

Original Collision Set and Ea1 = Ea2, we can get Ca1 = Cb1

and S2 = Sa2 = Sb2. Ca2 and Cb2 are transited from the same

state S2 with the same label E2, so Ca2 and Cb2 belong to

the same Original Collision Set, i.e., Ca2 = Cb2. Recursive

derivation to the level-i, we can get that Cai and Cbi belong

to the same Original Collision Set. Since Eai = Ebi, we

get Cai = Cbi, which is in contradiction with the previous

assumption Cai �= Cbi.

We assign the produced codes to the corresponding com-

ponents (edges) in NPT and the new trie is called Encoded

691

Fig. 4. Illustration of State Transition Arrays for Encoded Name Prefix Trie

Name Prefix Trie. For example, the trie illustrated in Fig. 4 is

the corresponding ENPT of the NPT shown in Fig. 3. In the

next subsection, we will introduce the State Transition Arrays

mechanism for ENPT.

B. State Transition Arrays for Encoded Name Prefix Trie
(ENPT-STA)

As shown in Fig. 4, State Transition Arrays are used to

implement ENPT. There are three types of arrays: Base Array,

Transition Array, and Manage Array. Transition Array includes

three arrays which have different entry size. For convenience,

suppose all the arrays discussed in this paper are indexed from

one and we refer the i-th entry of array A as A:i.

The entry of Base Array is 4 bytes. Base:i represents state

i in ENPT. The first two bits of the Base entry mean in which

Transition Array the associated state’s information is stored.

00 means the information is stored in Transition1, 01 means

Transition2 and 10 means Transition4. The left bits represent

the offset value of the targeted array. Due to the fact that

components are encoded to variable-length codes, the entry

size of Transition1, Transition2 and Transtion4 is 5 bytes, 6

bytes and 8 bytes, respectively. A node’s transitions are stored

in three Transition Arrays according to the maximal code of

the transitions. When the maximal code is less than 28, all

transitions of the node can be stored in Transition1. If the

maximal code is equal or greater than 28 and less than 216,

the node’s transitions are store in Transition2. Otherwise, all

transitions of the node are store in Transition4. For example,

in Fig. 4, Base:7 is 0x80000001, that means the information

about state 7 of the ENPT is stored in Transition4 and

Transition4:1 records the information about state 7 since the

left bits of Base:7 equals to 1.

Transition Array has two types of entries (denoted as indi-
cator and transition). Indicator records the state’s transition

number k (represented by the first number of the entry) and the

entry pointer (represented by the second number). If the state

points no entry in FIB, PIT or CS, the pointer is assigned to

0. The following k entries’ type is transition. The first number

of transition represents the component code produced by the

Code Allocation Mechanism and the second number represents

the next state. The transitions are sorted according to the first

number to support binary search. For instance, Transition4:1
is an indicator. The first number of this entry means there is

one transition leaving state 7. The second number of this entry

points to the 4th entry of FIB.

The entry in Manage Array indicates the free entries in

the Transition Arrays. The first two bits of a Manage entry

have the same meaning with Base Array. The odd-numbered

entry of Manage indicates the start position of a segment of

free entries, and the next even-numbered entry of Manage

indicates the end position of this segment. In Fig. 4, Manage:5
and Manager:6 mean that the entries from Transition1:8 to

Transition1:11 are free.

We take an example to illustrate how ENPT-STA works.

In Fig. 4, suppose the given name is /com/google with code

sequence /1/4. We will explain the lookup procedure step by

step.

1) Step 1, the lookup procedure starts from Base:1 which

corresponds to state 1 (root) of the ENPT.

2) Step 2, Base:1=0x00000001 means state 1 (root) infor-

mation is store in Transition1:1.

3) Step 3, Transition1:1 is an indicator. The first number

of this entry means there are two transitions from state 1

and the following 2 entries are transitions. After binary

searching in the follow two entries, code 1 is matched

with the first number in Transition1:2. Then it turns to

Base:2 since the second number of Transition1:2 is 2.

4) The lookup procedure proceeds iteratively. Finally code

sequence /1/4 is completely matched, and an entry index

which points to the 4th entry of FIB is returned.

C. State Transition Arrays for Component Character Trie
(CCT-STA)

A given name is firstly decomposed to several components.

Before the longest name prefix lookup, we need to look up

each component’s code first. The component entry includes the

corresponding code and a state list to which this component

belongs. The component set is constructed as a Component

Character Trie (CCT), which also can be implemented by STA.

The STA for CCT are similar to those of STA for ENPT. Fig. 5

shows an example of State Transition Arrays for CCT.

There are two types of arrays in STA. One is the Base Array

and the other is Transition Array. Transition Array includes

two types of entries : indicator and transition, which have the

same meaning with ENPT-STA. The component code lookup

process in CCT-STA is similar to the lookup in ENPT-STA.

692

Fig. 5. Example of State Transition Arrays for Component Character Trie

For example, in Fig. 5, if cn is the input component, the lookup

starts from Base:1, i.e., root of the Component Character

Trie. The first number of Transition:1 is 1, this means only

1 transition leaving the root. The first number of Transition:2

matches character c and it turns to Base:2 since the second

number is 2. It performs the above procedure and finally the

matching entry of cn is returned.

D. Management of the State Transition Arrays

The name insertion process is formally described in Al-

gorithm 1. Name represents the input name that will be

decomposed into k components, which are denoted as C1, C2,

· · ·, Ck. CCTi is the level-i CCT, and S represents the current

state in an ENPT-STA T . Given CCTi and the i-th component

Ci, lookup operation is performed to get Ci’s corresponding

code and the state list Lists to which Ci belongs. If the code

does exists and S ∈ Lists, it turns to the next state in ENPT-

STA. Otherwise, add Ci to CCTi and create a new state as

well as the corresponding transition to ENPT-STA.

The Decompose(name) function splits the input name
to components by recognizing the delimiters. The procedure

of looking up the component’s code is implemented by

LookupCode(CCTi, Ci), which returns a code Ei and a

state list Lists. It is probable that S has a component Cj

encoded to Ei when Ci �= Cj . So we must confirm whether

S ∈ Lists to guarantee the correctness. If S ∈ Lists, it

suggests Ci, Cj belong to the same state S, and we can get

Ci = Cj according to the definition of Original Collision

Set. The Addc(CCTi, S, Ci) function is used to insert a new

component Ci (belongs to S) to the level-i CCT, and the

AddS(T, S,Ei) function creates a new state (node) S′ to

ENPT-STA T which transfers from S with label Ei, and

returns S′ as current node S.

For example, in Fig. 4, /cn/google is inserted to the ENPT-

STA as a new name. It is decomposed to cn and google firstly.

Then we get the cn’s code E1 = 2 and a state list {1}. Because

the list {1} contains S = 1, we transfer to the next state S =
9 and look up next component google. The LookupCode()
function returns the code E2 = 2 and list {2}. However, S = 9
is not in list {2}, that we should add google to CCT2. At the

same time, we need to re-assign a code to google, since CCT2

already contains google’s code 2. Suppose the maximal code

in state 2 and state 3 are 2 and 3, respectively. Then we assign

E2 = 4 = 3 + 1 to google. At last, a new state A is created

and a transition from 9 to A with label E2 = 4 is inserted to

Algorithm 1 Insert a Name to ENPT-STA (INENPT)

1: procedure INENPT(name, T, CCT1, · · ·, CCTK)

2: S ← 1
3: (C1, C2, · · ·, Ck) ← Decompose(name)
4: for i ← 1 to k do � k is the number of components

5: (Ei, Lists)← LookupCode(CCTi, Ci)

6: if Ei �= NULL and S ∈ Lists then
7: S ← Transition(T, S,Ei)

8: else
9: CCTi ← AddC(CCTi, S, Ci)

10: (T, S) ← AddT (T, S,Ei)
11: end if
12: end for
13: end procedure

Algorithm 2 Bulidng ENPT-STA

1: procedure BENPT(name1, name2, · · ·, nameN)

2: (CCT1, CCT2, · · ·, CCTK) ← NULL, T ← NULL
3: for i ← 1 to N do � N is the number of Names

4: INENPT (namei, T, CCT1, · · ·, CCTK)
5: end for
6: return T,CCT1, · · ·, CCTk

7: end procedure

ENPT-STA.

We can build ENPT incrementally by inserting names one

by one as described in Algorithm 2. The delete process can

be implemented by setting the second number of correspond-

ing transition entry to 0. And the update process could be

implemented by modifying the Transition Array directly.

V. ANALYSIS

For convenience, we summarize the main notations used in

this section in TABLE I.

TABLE I
TABLE OF NOTATIONS

Nodes(A) calculates the number of nodes in A, which can be a trie or an array

Edges(A) calculates the number of edges in A, which can be a trie or an array

n the average length of a name

m the average number of children per node in ENPT

k the average number of components in a name

nc the average number of characters in a component

mc the average number of children per node in CCT

mt the average number of children per node in NCT

ms the average number of states which a component belongs to

P the number of parallel encoding modules

α the base memory size of a node

β the base memory size of an edge

A. Space Complexity Analysis

In a trie T , Nodes(T) = Edges(T) + 1. The memory size

of a trie can be calculated according to the following Equation,

Memory = Nodes(T) ∗ α+ Edges(T) ∗ β
= Nodes(T) ∗ (α+ β)− β (1)

For the traditional Name Character Trie, every node at least

needs a pointer to the edges list, a pointer to the matching entry

693

(CS, PIT, FIB entry), and a list of edges which includes a key

(character), and a pointer to the next trie node and a pointer to

its brother edge. Every pointer needs 4 bytes, a character needs

1 byte, and the total memory can be calculated by Equation 1.

Here α = 8 and β = 9, so the memory cost of a character trie

is 17 ∗Nodes(NCT)− 9.

NCT is constructed by the State Transition Arrays, one

entry in Base Array and one entry in the Transition Array

are needed to represent a node. And an edge needs one entry

in Transition array. Here, one Base Array entry needs 4 bytes

and one Transition Array entry occupies 5 bytes. Therefore,

we have α = 9 and β = 5, and the total memory is

14 ∗Nodes(NCT)− 5.

We use one Base Array and three Transition Arrays to

organize the ENPT. If the state’s transitions are stored in

Transition1, we get α = 9, β = 5. Similarly, α = 10, β =
6 for Transition2 and α = 12, β = 8 for Transition4.

We use Equation 1 to calculate the total memory. Thus,

the memory cost of ENPT is 14 ∗ Nodes(Transition1) +
16 ∗ Nodes(Transition2) + 20 ∗ Nodes(Transition4) −
19, where Nodes(Transition1) + Nodes(Transition2) +
Nodes(Transition4) = Nodes(ENPT).

In summary, compared with NCT, NCE utilizes the follow-

ing three parts to reduce storage overhead.

1) NCE uses State Transition Arrays to construct the NCT,

and the memory cost can be reduced at least by 1 −
14∗Num(nodes)−5
17∗Num(nodes)−9 ≈ 17.64%.

2) Code Allocation Mechanism reduces the number of

components by merging the Original Collision Set at

the same level.

3) NCE stores the transitions in different sizes of Transition

Arrays. Compared with the method that uses Transition4
only, it can reduce the memory overhead further.

B. Time Complexity Analysis

In NCE, the longest name prefix matching contains two

steps, (1) finds the components’ corresponding codes in CCT-

STA and (2) looks up codes in ENPT-STA. The basic lookup

process of a component in CCT-STA has O(nc log(mc))
complexity in the average case, since binary search can be

proceeded to find the matching key in the node’s transitions

which have been sorted. Similarly, a longest prefix matching

in ENPT-STA needs O(k log(m)). So, a name lookup has

O(knc log(mc) + k log(m)) complexity when the lookup

is proceeded serially. If there are P parallel code lookup

modules, the complexity can be reduced to O(knc log(mc)
P +

k log(m)) = O(n log(mc)
P + k log(m)) (Since components are

decomposed from a name, we get n = knc).

In a character trie, the average lookup performance is

O(nmt). Compared with character trie, NCE can gains
n log(mc)+Pk log(m)

Pnmt
speedup for longest name prefix lookup.

In the worst case, all transitions of a state in Transition

Array should be moved to new entries when a new transition

is inserted, and states which contain the inserted component

need to update the component’s code. Therefore, the insertion

procedure of CCT-STA has O(ncmc +ms) complexity in the

worst case. And the worst insertion performance of ENPT-

STA is O(kncmc+km+kms) = O(nmc+km+kms). But

in the average case, the complexity of insertion procedure is

O(n log(mc) + k log(m) + k log(ms)). As described above,

deletion and modification operation have the same perfor-

mance of lookup, O(n logmc + k log(m)).
As described in Algorithm 2, the building procedure of

ENPT-STA invokes insertion operation (Algorithm 1) to com-

plete the work. So, a set with N names needs O(N(nmc +
km + kms)) to build ENPT-STA in the worst case, or

O(N(n log(mc)+k log(m)+k log(ms))) in the average case.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of NCE and

compare it with the NCT in terms of memory compression,

building time, lookup speedup, update time, and average

packet delay.

TABLE II
NUMBER OF DOMAINS WITH DIFFERENT COMPONENTS’ NUMBER

Number of Components 1 2 3 4 5 6 7

DMOZ 0 10 170,709 2,325,677 454,953 48,702 4,193

Blacklist 0 0 1,334 1,449,493 272,693 322,689 3,772

ALEXA 0 0 177 870,108 117,468 10,646 1,328

Number of Components 8 9 10 11 12 13 14

DMOZ 132 10 2 0 0 0 0

Blacklist 458 311 51 12 2 24 47

ALEXA 147 86 33 4 3 0 0

A. Experimental Setup

NCT and NCE mechanism are implemented in C language,

and the core programs include about 100 and 800 lines of

code, respectively. The memory cost and time performance

are measured on a PC with an Intel Core 2 Duo CPU of 2.8

GHz and DDR2 SDRAM of 8 GB.

Then we utilize the domain name information from D-

MOZ [5], Blacklist [6] and ALEXA [7] to construct three

datasets as our experiments’ input. We extract 3,004,388

different domains from DMOZ’s 4,328,389 different URL to

construct DMOZ dataset. Using all the domain and URL

collections in June, 2011 from Blacklist , we construct the

Blacklist dataset which contains 2,050,886 domains. Similarly,

we utilize the top 1,000,000 sites’ domains form ALEXA

as the ALEXA dataset. Besides, an IP lookup table from

RRIP [8] which contains 354,641 IP prefixes is used to

compare the lookup performance between name lookup and IP

lookup. TABLE II shows the number of domains with different

components’ number obtained from these three datasets.

B. Effects of Code Allocation Mechanism

The Code Allocation Mechanism can effectively reduce

the number of codes and shorten the length of each code.

Fig. 6 shows the number of components and codes with

different name collections sizes, and the compression ratio of

Code Allocation Mechanism. Compared with the method that

directly assigning one code to one component, our allocation

method can save more than 50% codes when the size of name

set is larger than 2,000K. The average encoded name length

on three datasets is shown is TABLE III. We can see the

694

TABLE III
COMPARISON OF MEMORY USAGE

Dataset
Total

Domains

Total

Components

Avrage

Name

Length

(bits)

NCT Size

(MBytes)

NCT-STA

(MBytes)

NCE Size(MBytes) Compression

Ratio

(NCT

vs NCE)

Compression

Ratio

(NCT-STA

vs NCE)

CCT-STA ENPT-STA
Total

Size

Encoded

Name Length

(bits)

DMOZ 3,000,000 12,392,934 165.11 403.05 331.93 199.81 72.45 272.27 41.03 32.45% 17.97%

ALEXA 1,000,000 4,143,835 158.17 132.492 109.11 63.69 15.95 79.64 43.50 39.89% 27.01%

Blacklist 2,050,886 9,136,076 171.55 272.737 224.61 113.21 55.30 168.51 45.21 38.22% 24.98%

Fig. 6. The number of different components and codes, and the compression
ratio of Code Allocate Mechanism on DMOZ dataset

Fig. 7. Number of Entries for Transition1, Transition2 and Transition4 on
DMOZ dataset

encoded name length in NCE is much shorter than the average

name length in NCT. For example, the average name length

is reduced by 75.15% after encoding on DMOZ.

C. Memory Compression

The memory cost in NCE includes two parts, (1) State

Transition Arrays for ENPT and (2) State Transition Arrays for

CCT. TABLE III presents the memory compression results of

NCE. It shows ENPT only needs 18% memory size compared

with the NPT , which is constructed as NCT. In other words,

the memory cost of a FIB table can be compressed 82%. We

can observe from TABLE III that compared with NCT, the

memory cost of NCE is reduced by 30%. Even if NCT is

implemented by State Transition Arrays, NCE still cuts down

the memory usage by 20%.

As stated above, we use three types of Transition Arrays to

implement ENPT. Fig. 7 illustrates the number of entries for

these three kinds of Transition Arrays used on DMOZ dataset.

Fig. 8. The memory cost of NCE and NCT on DMOZ dataset

When there are 3,000K domains, 66.3% of the total entries are

Transition4, 28.79% of the total entries are Transtion2 and the

left 4.91% are Transition1. Compared with the method that

implements the Transition Array with Transtioin4 only, the

solution which uses three sized arrays to construct Transition

Arrays can reduce the memory cost by 33.7%.

Fig. 8 depicts the memory cost of NCE, which includes

the space of CCT-STA and ENPT-STA on DMOZ dataset. We

can observe that with the increase of the number of names,

NCE’s memory compression ratio gradually grows too. Fig. 8

reveals that when the number of domains increases, NCE’s

components number and states number grow more slowly than

those of NCT. Consequently, NCE’s memory cost increases

slower than that of NCT, which demonstrates that NCE is

memory-efficient on both small domain set and quite large

domain set.

D. Lookup Time and Speedup

In this subsection, we investigate the lookup performance

of NCE. In order to get the average name lookup time,

we input 100K random names each time and get the total

execution time. Then names’ average lookup time can be

obtained. As illustrated in Fig. 9 and TABLE IV, when there

are three parallel code lookup modules, NCE’s average lookup

time is about 1,800∼3,250 CPU cycles, which equals to

643ns∼1161ns since the CPU frequency is 2.8 GHz. And it

needs 1,332.57 CPU cycles to look up an IP prefix in an IP

table which is constructed by trie (2.1 million lookups per

second), in the average case. So, NCE is an effective approach

for accelerating the longest name prefix lookup.

Then we investigate the relationship between NCE’s average

lookup time and the number of parallel CCT lookup modules.

We extract 1,000K names form DMOZ, Blacklist and Alexa

respectively. And we repeat the experiments and get the

695

TABLE IV
COMPARISON OF NCT AND NCE’S PROCESSING PERFORMANCE

Dataset
Total

Domains
NCT NCE(P=3)

Speedup
Building
Time(s)

Average Packet
Lookup Time
(CPU Cycle)

Packet
Delay(us)

Building
Time(s)

Average Packet
Lookup Time
(CPU Cycle)

Packet
Delay(us)

DMOZ 3,000,000 43.69 23,112.78 8.25 34.91 2,975.26 1.90 7.77
ALEXA 1,000,000 18.62 12,154.76 4.34 12.32 2,881.78 1.23 4.22
Blacklist 2,050,886 31.58 9,699.37 4.15 23.53 2,335.51 1.65 4.15

Fig. 9. NCE’s average lookup time (When
the number of parallel CCT lookup
modules is 3)

Fig. 10. The relationship between NCE’s
average lookuptime and the number of
parallel CCT lookup modules

Fig. 11. The relationship between NCE’s
speedup and the number of parallel CCT
lookup modules

corresponding average lookup time. The experimental results

are shown in Fig. 10.

Next we study the relationship between NCE’s speedup and

the number of parallel encoding modules. 3,000K names in

DMOZ are constructed into three sets, which have 1,000K,

2,000K, and 3,000K names, respectively. Fig. 11 illustrates

the results, which shows that the speedup performance of NCE

gets better when the number of names increases. It also shows

that NCE’s speedup grows gradually accompanied with the

increase of the number of CCT lookup modules.

E. Average Packet Delay

We extract 1,000K different names and calculate NCE’s

average packet delay using different number of parallel C-

CT lookup modules. The experimental results are shown in

Fig. 12.

In our experiments, there are several parallel CCT lookup

modules and one ENPT lookup module. Using parallel CCT

lookup modules, the CCT lookup delay could be reduced.

However, as is shown in Fig. 12, when the number of parallel

CCT lookup modules is greater than 6, NCE’s average packet

delay almost stay at the same level. Because the packet delay

is determined by the maximal component code lookup time

of a name when the number of parallel CCT modules is

greater than the number of a name’s components. When the

number of parallel CCT lookup modules is greater than 6,

almost all the components of a given name could be looked

up concurrently since 99% of the existing domains have no

more than 6 components (See Table II).

F. Update Performance

Fig. 13 shows the update time in the worst case. The time

is calculated by inserting 100K new names to the exiting NCE

Fig. 12. The relationship between NCE’s packet delay and the number of
parallel CCT lookup modules

with different initial NCE scales. It spends 142,143.46 CPU

cycles (50.77 us) on inserting a new name to NCE which

already has 2,900K names. In other words, NCE can handle

more than 20,000 updates per second in the worst case.

VII. RELATED WORK

In NDN Proposal [1], L. Zhang et al. propose a fast scalable

name lookup mechanism that uses Ternary Content Address-

able Memory (TCAM) as the basic hardware components. But

this method directly loads names to TCAM which causes great

waste of the valuable TCAM memory and leads to excessive

power consumption.

Z. Genova et al. [9] and X. Li et al. [10] hash URLs to the

fixed-length signatures, and look up the signature in the hash

696

Fig. 13. The worst case update performance of three name collections

table, which has good URL lookup performance. However,

these methods consider an URL as an indivisible entity, thus

cannot provide longest prefix matching capability. In order to

overcome the problem caused by longest prefix matching, Y.

Yu et al. [11] propose a mechanism to map a whole name

to a code, but it needs additional protocol to exchange codes

tables between routers. Similarly, A. Singla et al. [12] and S.

Jain et al. [13] apply the flat name (ID) to replace IP address

in the future networks, their work focused on the routing

mechanism, and the performance of flat name forwarding is

still unsatisfactory.

Some other methods try to decompose an URL into com-

ponents and build a component tree to aggregate URLs [14].

The URL component tree is similar to our Name Prefix

Trie, which can only offer basic prefix lookup and cannot

satisfy the name lookup performance requirement in NDN. B.

Michel et al. [3] design a compression algorithm named Hash

Chain, which is based on a hierarchical URL decomposition,

to aggregate URLs sharing common prefixes. Hash Chain

uses an incremental hashing function to compress common

prefixes length and minimize collisions between prefixes. Z.

Zhou et al. [4] use CRC32 hash function to compress the

URL components, and combine a multiple string matching

algorithm for URL lookup engine. Hashing functions not only

compress the memory of URL sets, but also accelerate the

search speed by computing the searching keys. However, these

hash-based algorithms have a fatal drawback, hash collision

(false positive), making it cannot be applied to name lookup

in NDN. False positive will cause the Interest packet cannot

be forwarded to the right destination. Any possibility of hash

collision will undermine the integrity of the basic functions of

the NDN router.

VIII. FURTHER WORK AND CONCLUSIONS

A. Further Work

The entry length in the Ternary Content Addressable Mem-

ory (TCAM) can be effectively cut down by the encoding

method as discussed in Section IV. For example, in our DMOZ

dataset, a TCAM entry needs about 165.11 bits to store a

name. By using Code Allocation Mechanism, the length of an

entry is shortened to 41.03 bits. It can save 75.15% TCAM

memory by using codes to replace names, and reduce the

power consumption of TCAM which is proportional to the

length of TCAM entry. Besides, we can apply Binary Content

Addressable Memory (BCAM) to implement CCT lookup to

improve the overall name lookup performance.

B. Conclusion

In this paper, we have proposed an effective Name Com-

ponents Encoding approach named NCE to reduce memory

overhead and accelerate lookup speed for longest name prefix

lookup in NDN. The technique involves a Code Allocation

Mechanism and an evolutionary State Transition Arrays. Code

Allocation Mechanism reuses the codes as much as possible.

The evolutionary State Transition Arrays for Encoded Name

Prefix Trie and Component Character Trie reduces the memory

cost further while accelerating lookup speed. Both theoretical

analysis and experiments on real domain sets demonstrate

that NCE could effectively reduce the memory cost while

guaranteeing high-speed of longest name prefix lookup.

REFERENCES

[1] L. Zhang, D. Estrin, V. Jacobson, and B. Zhang, “Named data
networking (ndn) project,” in Technical Report, NDN-0001, 2010.
[Online]. Available: http://www.named-data.net/

[2] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” in Proceedings of the
5th international conference on Emerging networking experiments and
technologies, ser. CoNEXT ’09. New York, NY, USA: ACM, 2009,
pp. 1–12.

[3] B. Michel, K. Nikoloudakis, P. Reiher, and L. Zhang, “Url forward-
ing and compression in adaptive web caching,” in INFOCOM 2000.
Nineteenth Annual Joint Conference of the IEEE Computer and Com-
munications Societies. Proceedings. IEEE, vol. 2, 2000, pp. 670 –678
vol.2.

[4] Z. Zhou, T. Song, and Y. Jia, “A high-performance url lookup engine
for url filtering systems,” in Communications (ICC), 2010 IEEE Inter-
national Conference on, may 2010, pp. 1 –5.

[5] ODP - Open Directory Project. [Online]. Available:
http://www.dmoz.org/

[6] Blacklist. [Online]. Available: http://urlblacklist.com/
[7] Alexa the Web Information Company. [Online]. Available:

http://www.alexa.com/
[8] ripe. [Online]. Available: http://rrc00.ripe.net/
[9] G. Z. and C. K., “Managing routing tables for url routers in content

distribution networks,” International Journal of Network Management,
vol. 14, pp. 177–192, 2004.

[10] X. Li and W. Feng, “Two effective functions on hashing url,” Journal
of Software, vol. 15, pp. 179–184, 2004.

[11] Y. Yu and D. Gu, “The resource efficient forwarding in the content
centric network,” in NETWORKING 2011, ser. Lecture Notes in Com-
puter Science, J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont,
and C. Scoglio, Eds. Springer Berlin / Heidelberg, 2011, vol. 6640,
pp. 66–77.

[12] A. Singla, P. B. Godfrey, K. Fall, G. Iannaccone, and S. Ratnasamy,
“Scalable routing on flat names,” in Proceedings of the 6th International
Conference, ser. Co-NEXT ’10. New York, NY, USA: ACM, 2010,
pp. 20:1–20:12.

[13] S. Jain, Y. Chen, Z.-L. zhang, and S. Jain, “Viro: A scalable, robust
and namespace independent virtual id routing for future networks,” in
INFOCOM 2011. 30th Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings. IEEE, 2011.

[14] C. Park and S. Hwang, “Fast url lookup using url prefix hash tree,” in
Available: http://dbpia.co.kr/, 2008.

697

