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Abstract

Skeleton Climbing is an algorithm that builds triangu-
lated isosurfaces in 3D grid data, more economically than
Marching Cubes, and without the time penalty of current
mesh decimation algorithms. Building the surface from
its intersections with grid edges (1-skeleton), then faces
(2-skeleton), then cubes (3-skeleton), treats the data in a
uniform way; this allows a 25% reduction in the number
of triangles produced, while still creating a true separating
surface at similar speed.

CR Descriptors: I.3.5 [Computer Graphics]: Computa-
tional Geometry & Object Modeling.

1. Introduction

One must often extract from 3D grid data, sampled by
CAT scan, MRI, seismic sensors, etc., an approximate iso-
surface � separating the grid points with data above or at
a certain threshold level � from those below. For brevity
below, call these � and � points.

Given modern graphics hardware, it is convenient to
build � as a set of polygonal faces: most simply, avoid-
ing nonplanar faces, a set of triangles, usually large. Half a
million triangles for the surface of a scanned brain, for ex-
ample, are a serious burden on current display technology.

The current standard means for this is the Marching
Cubes algorithm (MC), from the covering patents[10, 11]
and other related papers[12, 13], modified by various
fixes[1, 3, 8, 14, 18, 19] for its failure (as patented) to con-
struct a true separating surface. The new scheme described
here gives a 25% reduction in the number of triangles. Other
schemes for triangle reduction, such as [2, 4, 6, 7, 16, 17],
test many possible change-steps for each actually used, and
take tens of minutes. They do not guarantee to keep � and
� points separated, and they are complex to parallelize, as
are methods like [9] which track a component of the surface
through the data volume. Skeleton Climbing’s mergers are
valid a priori, producing a true separating surface at a speed
little different from MC, with fewer triangles and none of
the parallelization problems of reduction methods designed
for general meshes. In interactive data exploration, one can-

not wait an hour for a more easily drawn surface.
Our scheme constructs � in an efficient, direct way for

each configuration: vertices in the edges of the cubical grid,
triangle sides in the square faces, and finally triangles in
the cubes. Such progression from the 1-dimensional ‘skele-
ton’ (edges, attached to corners), to the 2D skeleton (faces,
attached to edges), to the 3D skeleton (cubes, attached to
faces), to . . . , etc., is known in topology as ‘skeleton climb-
ing’, a suitable name for the proposed algorithm, summa-
rized in Fig. 1. The triangulations chosen have a regular
relation to the data grid, that allows a fast reduction to a
simpler separating surface.

Section 2 discusses the construction of the 1-skeleton,
fixing sides within faces. Section 3 constructs the
1-skeleton, placing triangles across them. Choosing certain
specific rules (a) reduces total triangle side length, (b) pre-
vents surface self-intersections within cubes, and (c) allows
fast merging of triangles (Section 4). We discuss imple-
mentation in Section 5, results in Section 6, and state con-
clusions in Section 7, with some description of future and
related work.

2. Building the 1-skeleton

In steps 1–3, we choose surface vertices just as MC does:
one on each cube edge joining a � to a �, positioned by lin-
ear interpolation. Rather than go directly to cubes, we then
construct surface edges between vertices that share a cube
face, and then surface triangles between edges that share
a cube. The original MC direct step to cubes reduced the
number of cases both by symmetry and by interchanging �
and �. This can mismatch edges in a �

�

�

�
face, giving holes

in the surface. Building the 1-skeleton first, and reading it
from both sides, avoids this.

The four vertices on the edges of a �

�

�

�
face can join in

two ways. The choice can use interpolation schemes such
as [14], but all current ones assume that the sampled func-
tion ‘looks polynomial’ on the scale of a voxel; when one
is fitting a surface of discontinuity, such as that between the
density of bone and the density of soft tissue, the results are
not especially meaningful. Where the surface as a whole is
smooth on the voxel scale, the choice is typically without
topological effect (Fig. 2). The simplest rule, “do not cross
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Step 1
Determine those edges (marked with cross-bars) in the 1-skeleton of the cubical grid that join � and � points, and must thus contain vertices
(elements of the 0-skeleton of �). Call these occupied edges. Grey edges are the vertical edges through points (l;m; n) with l andm even,
the x-direction edges with m and n odd, and y-direction edges with l odd and n even.

Step 2
Decide for each face F in the 2-skeleton of the cubical grid which pairs of occupied edges will be joined by triangle sides (elements of the
1-skeleton of �). Do not cross �—� diagonals. Orient sides to keep neighbouring �s to the left.
Step 2a
Transfer this side structure (with opposite orientations) to the two cubes sharing face F .

Step 3
Find triangles (elements of the 2-skeleton of �) in each cube of the 3-skeleton of the cubical grid, to span the loops around it formed by
the sides across its faces from Step 2. Cube edge by cube edge (starting with the grey edges), if the edge E is occupied, shrink the set of
sides by merging the two that end on E; emit a triangle with the orientation given by these two sides. If their ends were already joined,
mark these ends’ cube edges ‘unoccupied’.

Step 4
For each occupied grey edge, replace the four triangles that meet on it by two triangles with the same boundary. We show this both with
and without the other triangles found by Step 3 in the 2�2 block around E. Section 4 shows why such a four-triangle reducible group
exists for every occupied grey edge.

Figure 1. The four steps of the Skeleton Climbing algorithm.



Figure 2. Where the regions separated by a
true isosurface are more than a voxel thick,
so that a �

�

�

�
face is sandwiched between all-

� and all-� faces, the choice of edges (left)
makes no topological difference to the sur-
faces that fill in either set of three resulting
polygons. Where a true surface of disconti-
nuity is more complex on this scale, the sam-
pling gives insufficient detail for any interpo-
lations scheme to reconstruct it reliably.

�–� diagonals”, is as sensible as any more complex choice,
and convenient for speed.

We do not reduce by symmetry in the Skeleton Climb-
ing algorithm, but (to avoid displaying 256 configurations)
Fig. 3 shows only one from each set of non-empty cases
equivalent by reflection and rotation. Moreover, for com-
plementary pairs of cases without a �

�

�

�
face, only one is

shown. The numbering and view are kept similar to those
in [10, 11, 12], for easier comparison by readers familiar
with MC. (Case 14 in the MC literature, identical to 11 by
reflection in a diagonal plane, is omitted here.)

3. Surface construction
If an n-gon is filled in by triangles without introducing

new vertices, and the triangles form a disk, there are n� 2

of them. (Topological evidence for tubes and handles at the
sampling-cube scale cannot be secure, so we assume these
complications to be absent. This also minimizes the triangle
count.)

Any such disk can be constructed by ‘nibbling corners’
as in Fig. 1, Step 3, in some order. Any order gives the same
(MC) number of triangles within the cube. We choose an or-
der allowing a systematic merger across cubes, that reduces
the triangle count without sacrificing topological separation
of � and � points.

The nibbling process is algorithmic and straightfor-
wardly coded. One can either use to build a look-up table,

1 2 3 3a

4 5 6 6a

7 7a 8 9

10 11 12 13

Figure 3. Side patterns in cube faces for the
“do not cross �—� diagonals” rule. In 3 vs 3a,
6 vs 6a, and 7 vs 7a, complementation gives a
pattern in a different reflection/rotation class.
In cases 10, 12 and 13 the patterns are differ-
ent, but equivalent by reflection and/or rota-
tion.

or in SIMD parallelism (where lookup is expensive) build it
into the active code.

Step 3 (Fig. 4) iteratively performs EmitTriangle:

(a) Choose a cube edge E from the cube’s ‘occupied’ set.

(b) The oriented edge starting at a point on E ends at an
edge E0 we call ‘forward’ of E; the one arriving at E
begins at E00 , ‘back’ of E. If the edges E0 and E

00

are already ‘back’ and ‘forward’ of each other on the
current cube, relabel both as unoccupied. Else, join
them with a new side (that is, mark them as ‘forward’
and ‘back’ of each other).

(c) Relabel E as unoccupied, and add the oriented triangle
joining the vertices on E; E

00 and E
0 (in that order)

to the surface � under construction.

until all cube edges are ‘unoccupied’. The order of choices
for E is discussed in Sections 3.1, 4 below.

3.1. Choice of triangulation

It is clear in Step 3 of Fig. 1 that trimming off vertices
in a different order could give a different set of triangles;
always four, as required to fill six sides. (Each step shrinks
the set of vertices by one; the third leaves a single triangle.)
There is a large set of possible edge choice sequences for
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Figure 4. The first two triangle emissions in
the Step 3 example of Fig. 1. Arrows in-
dicate forward indices; at left, for instance,
forward[E] = E

0, back[E0] = E.
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Figure 5. Describing possible edge se-
quences after the greys, up to symmetry. (The
last two of the cube’s twelve edges become
unoccupied before they are reached.) If an
edge joining two greys is chosen first, by
symmetry we can assume it is the one seen at
top, here labelled 1. If the second also joins
two greys, assume it is that seen at left (in
this example, 3), otherwise that it is one of
the three front ones. If the first joins a grey to
a black, assume it is the front vertical (in this
example, 2).

applying EmitTriangle, and hence a large class R of algo-
rithmically distinct ways to assign a minimal triangle set,
though not always with distinct results. For the example
in Fig. 4, there are 360 distinct sequences E1; E2; E3; E4

of edge choices which actually emit triangles, embedded in
longer sequences of Es that are unoccupied when reached.
They give just 14 different surfaces.

Any minimal triangle set on any cube can be produced
by many R 2 R, but there do exist strategies which no R

matches for all cubes, such as the ‘fan’ strategy, radiating all
interior edges from the first vertex seen. This produces ugly
forms, with long thin triangles, resulting in a greater edge
length and a more ‘wrinkled’ surface than necessary. Any
fixed cube-edge sequence gives far less side length than the
data-dependent one this corresponds to.

One way to select R is to emphasize geometrical qual-
ities, and minimize the ‘bentness’ of �, defined by sum-
ming dihedral angles, jangle sum � 360�j at vertices, and

1 2 3 3a

4 5 6 6a

7 7a 8 9

10 11 12 13

Figure 6. Typical Skeleton Climbing Step 3
triangle sets for the edge sequence in Fig.
5.

so on; or minimize lengths. All of these vary with the in-
terpolated vertex positions, so strategies should be tested
over real datasets. In the simple ‘visit all cube edges, elim-
inate if occupied’ coding approach there are 9,979,200 dis-
tinct sequences up to cube symmetry. We have therefore
studied this optimization only for the much fewer Step-4-
compatible cases that visit grey edges first.

There is enough symmetry (Fig. 5) to greatly reduce the
sequences one need look at; the order shown produced
about 2% less total edge length (using length(x; y; z) =

jxj+jyj+jzj) than the maximum length found, on sample
medical data. (Note that the grey edges in neighbouring
cubes are reflections of those in this one, so that their num-
bering must match this reflection.)

A useful side effect of this optimization is that intersec-
tion between the triangles becomes impossible (by a tedious
examination of cases). Using the edge sequence in Fig. 5,
Skeleton Climbing produces only properly embedded trian-
gle sets for each cube.

Fig. 6 shows sample Skeleton Climbing triangle assign-
ments for the cases in Fig. 3 with this edge-elimination se-
quence. They are not ‘the’ assignments for these cases,
since in cubes with different (i; j; k) parity and thus dif-
ferent grey edges, translations of the same side set may get
different results.

In most cases the triangles generated lie strictly inside
the cube, except at the polygon sides they are present to fill.
In a few cases (Fig. 7) a set of sides may admit—though
not require—a less perfectly internal set of triangles. If this
happens also for the cube meeting C in F , the result is a
small area covered twice, by triangles (or parts of triangles)



Figure 7. Two spanning surfaces for the same
fixed side configuration, with a fold side and
a triangle within a cube face (only 3a and 6a
of Fig. 3 admit this).

with opposite orientations: or a fold edge from each cube
may meet another, or a triangle. Where the lookup table
generated by a particular rule R generates such an example,
it is easily avoided by switching that case to a rotationally
equivalent rule bR, equally compatible with Step 4, which
gives strictly-internal triangles for that case. In lookup-
table-unfriendly SIMD, it is harder to avoid.

Any two schemes involving the same sides within cube
faces, spanning them by triangulated disks interior to the
cube without interior vertices, must involve exactly the
same number of triangles. Fig. 7 points up the only pos-
sible reduction beyond this, for a fixed set of triangle sides.
Where two cubes sharing a face F both allow a mini-
mal span with triangles in F , one could put two such in
each, spanning the same parallelogram, and cancel all four.
This would still give a valid separating manifold surface �,
though with a different topology. The reduction would be
tiny, and (like our Step 4) would adjust what goes into one
cube by checking its neighbours.

This apart, the minimum number of triangles can be
found by summing (jsidesj� 2) over all loops around
all cubes, so within-cube methods differ little in triangle
counts. The original MC used complementation to retain
3 and 6 of Fig. 3, rather than 3a and 6a, each of which gives
two triangles more; the result is rarely fewer by more than
1% overall, and leaves holes in the surface. Every amended
MC uses more. For instance, [19] produces exactly the side
set generated in Step 2, by a somewhat different route, and
hence exactly the same triangle count as the steps 1 to 3
given here. (The actual triangles are different—[19] simply
emits the sides as polygons, leaving the graphics hardware
to triangulate them as fans—but the numbers are equal.)
Step 4, which goes outside the cubes, yields an identical re-
duction from the triangle count of this whole class of meth-
ods.

4. Triangle reduction

In any cube C, the first occupied edge E handled in Step
3 produces a triangle T with two edges lying in cube faces
(Fig. 8), and this is the only triangle in C with a vertex (v,
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Figure 8. (a) Possible fixed sides in C ending
at vertex v on edge E. (b) Triangles formed by
these possible sides, viewed parallel to edge
E.

say) on that edge. If the other vertices u, w of T are not
themselves joined by a fixed edge (thus eliminated in find-
ing T ), each of the edges they occupy will later acquire at
least one additional triangle incident on it, meeting T along
the interior edge uw. Their surroundings in C thus become
more complicated than those of v.

Suppose now that E is the first edge handled in each of
the four cubes C1, C2, C3, C4 around it. It is then at the
meeting point of a set Q of just four triangles in �, lying
withinC = C1[C2 [C3[C4 with a quadrilateral bound-
ary �Q � �C whose linking number withE is 1. Any other
surface within C spanning �Q will also meet E (generi-
cally, an odd number of times) and separate the � and �

points at E’s ends.
In particular, either triangle pair spanning �Q is within

C and can replace Q without harming �’s separation prop-
erties, as shown in Step 4 of Fig. 1. We do need (Fig. 9) to
let � pass through � points, as for � points the definition
“above or at �” already allows.

For any single edge, it is easily arranged that the above
replacement of four triangles by two is possible. The gain
comes when we can do it for many. If we take the set E of
those vertical lines in the grid with both i- j-coordinate odd,
every cube C in the grid has exactly one edge E on a line in
E , so we can order its edges to handle that edge first. After
E is handled, we can no longer assume for an arbitrary edge
E

0 that E0 will meet at most one triangle in C (though if E
is unoccupied, E0 may still do so by being the first occupied
edge handled); nor that the set of triangles meeting E

0 will
be unaffected by the replacement we do around E.

We can assume it, however, for any edge F that does not
share a face with E (Fig. 10); and after handling F we can
assume it for the unique edge G that shares no face with E
or F . Moreover, the replacements around E, F and G will
not share the same triangles. As Fig. 1 shows, we can simul-
taneously find such a set E, F , G of ‘grey’ edges for every
cube: three out of every twelve edges in the grid. Step 4
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Figure 9. Four triangles around a single �

point p in C are replaced in Step 4 by two
that meet in p.
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G

F

Figure 10. Three grey edges sharing no face.

replaces four triangles by two around every such edge, if
occupied, and eliminates the vertex on it. Each instance of
Step 4 can be performed in two ways, depending on which
opposite corners of �Q are joined by a new triangle side.
The choice has little impact on the appearance of the sur-
face, and none on its topology, but does affect such issues
as memory management; if for every horizontal grey edge
we choose the merged edge to be horizontal, the triangles in
each layer remain within it, and can be computed without
reference to other layers. Choosing to cross x-direction grey
edges with y-direction new sides, and so on cyclically, par-
titions the data into 2�2 blocks whose borders no triangles
cross. The reduction therefore loses no parallelizability, at
less than the extreme level of one processor per voxel.

If the occupied edges are distributed without some spe-
cial parity bias in the data, Step 4 will thus eliminate about
25% of the vertices in �. A few-handled surface without
boundary has about twice as many triangles as vertices, so
this reduction translates as 25% fewer faces. Deviation from
this is more often due to multiple components than to mul-
tiple handles; in the extreme case of N isolated � points,
Step 3 would surround each � by an octahedron. Step 4
would replace about 3=4 of these by flattened tetrahedra;
8N triangles become 8(n=4)+4(3N=4) = 5N , a 37.5% re-
duction. But such isolated points are commonly pre-filtered
out as ‘noise’; fortunate here, as the flattened tetrahedra
would look slightly odd as a way of marking them. Trials
on medical data have yielded savings from slightly above
25% to about 31%; no case with less than 25% reduction
has so far occurred, though a nasty example could of course
be synthesized.

5. Implementation

One original motivation for the work was to find a more
SIMD parallelism-friendly algorithm than MC. In its sim-
plest form, using a 256-entry lookup table, SIMD MC
would require each processor to march lockstep through
256 possible cases, since to use variables as array names is
costly or impossible on such machines. Most steps, on most
processors, are thus wasted. In [20], MC—in its original,
quadrilateral-hole version—was reduced to a 63-step form,
a useful speedup over [5]. Steps 1–3 of Skeleton Climbing
give topological correctness, in a 24-step SIMD form. Some
of these steps are more complex than those for MC (though
further optimization may be possible), so that the resulting
speed advantage over MC was about 12% rather than three-
fold, when tested on a Wavetracer SIMD machine. (Step 4
has not yet been parallelized.)

6. Results

The sequential version currently implemented, being
en route to the parallel code, avoids lookup tables where
possible. (In fact, the 8-bit indexing of 256 cube
configurations—central to the MC patent—nowhere occurs
in the parallel code.) Clearly, a lookup implementation of
Steps 1–3 would run in about the same time as for MC; the
current version, computing the triangles for each cube from
first principles, runs about 6% slower than an ‘original’ MC
implementation; that of [19] is twice as fast, but we have
not yet done a similar optimization of Skeleton Climbing.

Step 4 decreases the combinatorial time by an average
of 4%; the extra load is balanced by a 25% reduction in
the triangle-emission work. The rendering speedup is thus
essentially free. Quantitative results are summarized in Ta-
ble 1.

The graphical results are very satisfactory. In each of
the figures below we show results for the Wyvill[19] ver-
sion of Marching Cubes, the Steps 1–3 version of Skele-
ton Climbing, and the fewer-triangle version with Step 4 in-
cluded. Each surface is shown Gouraud shaded, with the
triangle edges added to display the algorithms’ effects in de-
tail; these would normally be omitted in applications. The
normals for shading are computed by the same gradient es-
timation, at the same vertices (except for Step 4’s deletions)
using each method.

Topologically, Step 4 is without penalty. Geometrically,
when � is an isosurface for a smooth function (so that in-
terpolation places vertices fairly accurately), some differ-
ence is visible. Fig. 11 shows results for the knotted torus
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sampled on a 64�64�64 grid.
At the finest part of the tube Step 4 makes some visi-

bly artefactual notches, which if the tube were a real artery
might falsely suggest stenoses (narrowings); but medical
data are less smooth. Linear interpolation locates vertices
very accurately where the data are sampled from a differen-
tiable function likeF , since ‘differentiable’ precisely means
that a local linear approximation is good. When the � and �
values cluster around two characteristic densities t0 and t1,
the surface of interest is a surface of discontinuity, where
linear interpolation fails badly. (A pair of height values
along a stair cannot predict the position of the step, they
only limit it.) In most important applications outside the
synthetic data created in CAD for implicit surfaces, the user
wants not a true isosurface (the set of points where a func-
tion has the value � ) but a discontinuity surface, the set of
points where the gap between neighbouring values includes
the value � . Estimations of this are more difficult.

Linear interpolation puts the vertices at a character-
istic position along �—� edges, depending on the ratio
(t1� � )=(� � t0). This produces the characteristic ‘stepped
forehead syndrome’ in Fig. 12. The effect decreases in the
Step 4 version of Skeleton Climbing, due to the triangles
that stretch between cubes on the step edges, with no dis-
cernable loss of surface quality in the more complicated re-
gions.

Fig. 13 shows real arteries, from a CT scan of a cadaver
head injected with contrasting plastic. Each surface—MC,
and Skeleton Climbing with and without Step 4—shows
artefactual notches in the smaller arteries, often at different
points, with at most a statistical difference between them.
(The physician concerned with a particular narrow artery
and its possible stenosis prefers a volume rendered image,
such as a maximum intensity projection, to any extracted
surface, with its � -dependent artefacts.)

A higher-resolution discontinuity surface is shown in
Fig. 14. Step 4 creates no reduction in quality in the smooth
regions, and in the complex region visible through the
nearer eye-socket (where some fine bones are of sub-voxel
thickness) the resulting image is an equally good represen-
tation of structure.

In Fig. 15, from a volume data set of Mount San Antonio,
Step 4 gives a clear reduction in step phenomena aligned
with the data grid (and thus clearly artefactual). This allows
the real striations of shape, created by differential weather-
ing of rock layers, to stand out more clearly.

7. Conclusions and further work

Basing isosurface construction on ascent by dimension
allows a reduction of 25% or more in triangle count, with-
out speed penalty, and with equal or better surface qual-
ity. Skeleton Climbing is now integrated into the package

DISHA (Determination of Short-Axis Slices of the Heart
Automatically), developed at CIeMed.

Moreover, since the fundamental controls cube meet-
ings first, it can be elaborated to handle blocks of variable
size (adaptively to the local data complexity), without the
cracks and crack patching in adaptive algorithms based on
Marching Cubes. The adaptive approach[15] is no longer
guaranteed to separate the identical grid points separated
by Marching Cubes and Skeleton Climbing, and its greater
complexity does have a cost in time, but it can often achieve
a five- to twentyfold reduction in triangle count at remark-
ably little sacrifice in speed or surface quality.

A solid base in the topology of cell complexes,
and the skeleton climbing approach, also offers a sys-
tematic and effective way to construct the multiple
surfaces that separate muscle/blood/bone/nerve/� � � or
granite/gravel/water/oil/� � � from each other as a consistent
structure, rather than extract these regional surfaces sepa-
rately. Work on this extension is in progress.

We would like to thank the National Science and Tech-
nology Board of Singapore for financial support through the
Centre for Information-enhanced Medicine, and Dr Tushar
Goradia of Johns Hopkins University for the cadaveric
artery data used in Fig. 13.

Web availability

The C implementation of Skeleton Climbing and
other supplementary materials are now available on web:
http://www.cse.cuhk.edu.hk/�vis/
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(a) (b) (c)

Figure 11. The surface defined by Equ. 1, sampled at 64�64�64 resolution. Extracted by Marching
Cubes (a) and by Skeleton Climbing without Step 4 (b), and with Step 4 (c), it requires (a) 13968, (b)
13968 and (c) 10464 triangles respectively. Step 4 preserves the topology, but for an isosurface of an
analytic function it loses a little smoothness where the tube is finest.

(a) (b) (c)

Figure 12. Surfaces extracted from a 128 � 128 � 57 CT scan, with a threshold distinguishing bone
from non-bone; (a) 100830, (b) 100066 and (c)75318 triangles. Skeleton Climbing with Step 4 gives a
smoother forehead region, and equally good detail.



(a) (b) (c)

Figure 13. Artery surfaces extracted from a 256� 256� 148 CT scan with injected contrast plastic; (a)
263438, (b) 265536 and (c) 195588 triangles. The quality is similar for all three.

(a) (b) (c)

Figure 14. A higher resolution (256�256�113) CT head; (a) 592368, (b) 595802 and (c) 446990 triangles.
The quality is similar for all three.

(a) (b) (c)

Figure 15. The surface of a 258�258�255 data set for Mount San Antonio; (a) 268252, (b) 268268 and (c)
201686 triangles. Artefactual ridges are reduced by Step 4, allowing the geology to show more clearly
in the fewer-triangle surface.


