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Abstract

In this thesis, we describe two approaches, geometry-based and image-based, to address the problem
of time-critical modeling and rendering. Time-critical modeling and rendering aims to improve the
rendering speed using both modeling and rendering techniques. Improving the rendering time enables
interactive display of large scale complex scene. This isimportant in many applications such as virtual
reality, medical visualization, flight simulation, etc.

We first describe a new geometry-based simplification algorithdaptive skeleton climbing
which generates simplified mesh directly from volume data. By partitioning the volume into variable-
sized rectangular boxes, the algorithm generates triangles to approximate the enclosed isosurface
adaptively (larger triangles approximate smooth regions and vice-versa). Since we apply binary tree
organization on each dimension of the rectangular boxes, it allows moreilitgxitoforming rect-
angular boxes which are not allowed in previous octree approaches. Therefore a coarser mesh can be
generated using the proposed algorithm.

Although generating simplified meshes can significantly reduce the rendering time, the rendering
speed is still dependent on the complexity of the scene. Note that the scene can be arbitrarily complex.
If the only goal of the graphics system s to provide the visual experience, we can model and render the
desired image using previously recorded images (reference images). This leads to our development of
image-based computer graphics. For pure image-based rendering, the rendering time will now only
depend on the resolution of the images.

Since the illumination of the scene is fixed during image capture, the illumination in the synthe-
sized images is also fixed. We propose a novel concept of measuring apparent BRDFs of image plane
pixels to overcome the unchangeable illumination problem in previous image-based approaches. By
treating the image plane pixel as an ordinary surface element and measuring its apparent BRDF from
the reference images, we can recordphel BRDF. Using this apparent reflectance information, we
are able to re-render the image-based scene/object under any desired illumination condition.

The idea is verified by applying it to various image-based data structures, light field, Lumigraph
and panorama. We also devispractical compression scher@handle the huge amount of data of
pixel BRDFs.
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Chapter 1

Introduction

Since the introduction of Sketchpad&163] in the early sixty, technologies in modern interactive
computer graphics has been much improved. We now can render millions of antialiased, texture-
mapped polygons within a second using state-of-art graphics hardwaee 98, MONT97]. Radios-
ity development [&RA84, NiISH85, COHE93, SLL 94] further allows us to render realistic images
that are nearly indistinguishable from real photographs. However, rendering realistic image of arbi-
trarily complex scene in real time is still far from satisfactory.
The ultimate goal ofime-critical modeling and renderingesearch is to allow rendering realis-
tic images in real time. Rendering algorithm alone is not enough to solve the problem, a suitable
modeling algorithm is also needed. It is a research problem of both modeling and rendering.
Time-critical modeling and rendering has been studied for a long period of time. Newell and

Blinn [NEWE77] have already pointed out the following problem in their 1977 review.

There is a huge disparity between the complexity of scenes in the real world and synthetic
scenes.

Ten years later, Heckbert gt«87] further confirmed that even with faster computers and larger

memories, real time rendering of complex scene still cannot be achieved.

Since 1977 we have made considerable progress in complexity due to faster computers, larger
memories, improvements in algorithm efficiency, and increased use of procedural modeling, but
we cannot yet regard the complexity problem as solved. We have found that handling complexity
is as much of a modeling and logistics problem as it is a rendering problem.

Most common rendering algorithms used nowadays are dependent of the scene complexity. One
practical rendering algorithm is the depth-buffering, which has a time complexi(of, wheren
is the number of primitives in the scene. Unfortunately, real world scene can be arbitrarily complex.
Imagine a scene of a forest, each tree is modeled with thousands of polygons. Even with the fastest
graphics engine, it is not possible to realistically render such a scene in real time.

Although the scene can be infinitely complex, the human perception is limited. The limitations

can be subdivided into two classes, the internal and external limitations. The internal limitationis due
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to the number, sensitivity and distribution of the rod and cone sensors on the human retimss
On the other hand, external limitation is due to the physical laws of light propagation. For example,
object occluded by another opaque object cannot be seen from human eye since the light ray propa-
gates along a straight line.

By utilizing the various types of limitations, the scene can be rendered in a shorter period of time.
Hence, the research of time-critical modeling and rendering is baseca#igearch of how to make

use of limitations of human perception

1.1 Geometry-based and Image-based Approaches

There are now two basic approaches to computer graphics, nameglgdheetry-baseaind thamage-
basedapproaches. Geometry-based computer graphics is the approach used by most of the computer
graphics systems nowadays. Figure 1-1 shows the geometry-based approach graphically. It is a
physical simulation of light propagation in the space. The geometry models (including the geometry
representation and the surface properties) and the physical laws are input to the simulation process.
The final result (desired image) is a synthetic image simulating the visual appearance of the scene

when physically viewed by the human eye.

P Desired image

Simulation —»

Figure 1-1: Geometry-based computer graphics.

Geometry-based time-critical modeling and rendering can be done on the two inputs of the physi-
cal simulation and the rendering algorithm (the simulation process) itself. Using the simplified equa-
tions to approximate the physical laws, the simulation can be done more efficiently. The Phong’s
illumination model [FHON75] is a good example of approximating physical reflection by simpli-
fied formula. Even the infamous physical-based radiosity modeHg93, SLL 94] involves certain

amount of simplification. However, simplifying the physical laws alone cannot achieve the goal.
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Hence, simplification has also been applied on the geometry models. Various aspects of simplifica-
tion of geometry models will be described in Chapter 2. Another direction is to design a renderer that
can efficiently render large scale models using hierarchical rendering approreBd8& GREEISG].
In this thesis, we will concentrate on simplification of models instead.

A completely different approach to computer graphics is the image-based approach. Figure 1-
2 illustrates the approach. Instead of going through a physical simulation, the desired images are
synthesized by means of warping and composition. A sedfefence imageasnd minimal geometry
information are input to the system. The fiisired imagés done by warping and compositing the

input reference images based on the minimal geometry information.

Reference

Images Desired Image

Warping &
Composition

‘_>'

Minimal
eometry Info

Figure 1-2: Image-based computer graphics.

One major reason of the emergence of image-based computer graphics is the need of time-critical
modeling and rendering. When using reference images as input, the rendering (warping and com-
positing) time is no longer associated with the scene complexity, instead it now depends on the reso-
lution of the images. Moreover, modeling is no longer a process of mimicking real world object using

geometry representation, instead modeling becomes taking photographs of the scene.

1.2 Thesis Contributions

The main contribution of this thesis is a collection of concepts and algorithms that model and render
realistic images efficiently in both geometry-based and image-based computer graphics. The intro-
duction of these concepts and algorithms pushes a step toward to the ultimate goal of time-critical

modeling and rendering.
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The first contribution is a brand new geometry-based simplification algorithm, nanaeihpsve
skeleton climbingPosT98, Ros197]. It generates simplified polygonal isosurface representation
directly from volume data. The coarsest mesh generated is about 4-25 times fewer triangles than
the existing common method. Nevertheless, the geometry details are preserved. In other words, the
resultant mesh can be displayed 4-25 times faster than that generated from the common approach.
At the same time, there is minimal loss in visual quality. More importantly, the proposed algorithm
generates simplified mesin-the-flyand runs in a short period of time. As opposed to the mesh
optimization approach [HPM3] which is post-processing algorithm and requires tens of minutes to
execute. An attractive feature of the proposed algorithm is that it generates coarser mesh in a smaller
period of time than that of generating finer mesh.

The second contribution iscncept of measuring pixel BRI)W oNG97b, WONGI7a] inimage-
based computer graphics. Most existing techniques concentrate on finding the correct view while
assuming the illumination of the scene is fixed. Hence there is no way to adjust the illumination in
the desired image. The image-based renderer can only change the viewpoint and but cannot change
the lighting condition. In other words, it is not a complete renderer. A few approaches have been
proposed to allow the adjustment of illumination in the desired image. However, they are either only
for still image or with a lot of restrictions, such as Lambertian object assumptions. More seriously,
most of them areincontrollable(described detailly in Chapter 5). We proposedraqueconcept
and algorithms that allow general controllableillumination for arbitrary image containing both
Lambertian or highly specular surfaces.

To control the illumination, we need to know the reflectance of the objecaceirf However,
for image-based computer graphics, we are no longer accessible to the geometry models and surface
descriptions. All we have are a set of reference images and minimal geometry information. We
proposed a new concept that regards a image plane pixel as an ordinary surface element and measures
its apparentreflectance. Extracting this reflectance information from the reference images, not just
allows the change of the illumination, but also allows us to correctly synthesize image of the same
scene illuminated by light source which does not present in the input reference images.

Using the proposed concept, we extend two major image-based representations to include illu-
mination which is not available before. The final contribution is that we apply a set of compression
schemes [VBNGI8], including spherical harmonics transform and LBG vector quantization, to com-

press the new pixel reflectance data in order to majgaittical.
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1.3 Thesis Outline

This thesis is divided into two main parts. Part | describes our work in geometry-based time-critical
model and rendering while Part 1l describes the image-based approach. Readers are referred to Chap-
ters 2 and 5 for a quick overview of the motivations of our work.

Part | begins by presenting the problem of geometry simplification and overviewing the related
work in Chapter 2. We will also discuss the motivation of introducing a new geometry-based algo-
rithm.

The following two chapters discuss the details of the relaptive skeleton climbingigorithm.
Chapter 3 first describes how the volume data is partitioned into variable-sized rectangular boxes
whose size is adaptive to the geometry of the enclosed isosurface. In Chapter 4, the process of
generating simplified triangular mesh is described.

Then, in Part Il, we starts by introducing the current status of image-based computer graphics.
The missing of controllable illumination is discussed when reviewing the existing image-based tech-
niques. Our motivation to include illumination into image-based computer graphics will also be
described.

Since image-based computer graphics is a new area, many fundamental concepts are still being
developed. In Chapter 6, we first describe a fundamental model proposed by McMill@vi IV ]
for image-based computer graphics. It is knowpksoptic functionWe will later point out that the
original formulation of plenoptic function is not very suitable for computer graphics which requires
the control of illumination. By modifying the original plenoptic function, we propose to use a new
fundamental model for computer graphics, which we callemoptic-illumination function

In Chapter 7, we introduce the concept of measuring pixel reflectance. The capturing of the pixel
reflectance and the manipulation of them to re-render the image-based scene will be discussed in
details. Some results are also shown to verify the concept.

Chapter 8 applies the proposed concept to two major image-based data structures, ligte Vieftb,L
GORT96] and panorama [@=N95a] in order to include illumination. Note that these two image-based
data structures do not allow any control of illumination originally.

To make the idea practical, we need a good compression scheme in order to store the pixel re-
flectance data efficiently. In Chapter 9, we describe a series of compression algorithms that can

compress the huge reflectance data to a compact size.
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Finally, in Chapter 10, we conclude by comparing the geometry-based and image-based ap-
proaches. The pros and cons of the proposed concept and algorithms will be discussed in detail.

We will also discuss the future directions.



Part |

Geometry-based Approaches



Chapter 2

Geometry-based Approaches

The major key to geometry-based time-critical modeling and renderiageise simplificationAl-
though we can also improve the rendering speed by simplifying the physical laws, this kind of sim-
plification also reduce the quality of the synthesized images. Moreover, it is still not very helpful in
rendering a very large scale scene.

As mentioned before, the research of time-critical modeling and rendering is a research of making
use of the limitation of human perception. The objects that are too small or too far away can be
simplified. The objects that are occluded can be simplified or even removed (if it does not contribute
any radiance in the final image). The portion of object with a smooth geometry can be represented
by larger simple geometry representation, such as planar surface. Small geometry details such as
cotton fibre can be approximated by texture mapping. All these approximations utilizing the human
perception limitations. The phrasaultiresolution representatias used to describe the data structure
used in achieving the mentioned effects. A review of previous work is described in Section 2.3.

Each simplification algorithm is specially designed for a specific geometric representation. Sev-
eral representations of geometry models are proposed. Each representation owns a unique feature
which is not replaceable by another. A brief look of the major geometry representations are described
in Section 2.1.

Without exception, we proposed a simplification algorithm which is specific to a representation,
the planar surface model. Planar surface model is the most popular geometry representation due to
its simplicity and the wide popularity of graphics accelerator. Our algorithm can also be regarded
as a converter which converts the volumetric representation to planar surface model. During the

conversion, simplification takes place to simplify the resultant planar surface representation.

2.1 Geometry Representations

A geometry representation can be characterized by its nature of describing (resembling) shapes in

three-dimensional Euclidean space. The major reason of using Euclidean geometry in modeling is
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because three-dimensional Euclidean geometry is the geometry of our real world. We ihae fam
it. Moreover, we often model real world scenes in computer graphics.

Surface model is a popular model in computer graphics. It represents object as a set of two-
dimensional surfaces embedded in the three-dimensional space. The two-dimensional surface can
be planar or curved. Planar surface models, such as polygonal mesh and triangular mesh, are the
most popular geometry representation in current graphics system, due to their simplicity and the wide
availability of graphicsaccelerators which are specially designed for them. Curved surface models
are usually expressed in parametric forms and controlled by a set of control points. They are useful
in manual object modeling. Examples are Bezier, B-splines, and NURBS surface patches.

Solid representation describes model by a solid volume instead of hollow volume enclosed by
surfaces. There are many variants of solid representations. Constructive solid geometry (CSG) is one
such solid representation. It is a Boolean combination of primitive solids, such as sphere, box and
cone, etc. Itis usually used in modeling mechanical components. However, it is not very useful in
representing object with irregular curved shape. Binary spatial partitioning (BSP) is another solid
representation which is very similar to CSG. But the only primitive allowed is the half-space, the half
space partitioned by a plane.

For the previous two representations, we can ask whether a point is inside or outside the enclosed
volume of the modeled object. There is a representation which does not allow the query of such ques-
tion. One such example is the implicit surface [B97]. It does not define a surface explicitly, but
it defines a 3D field such that each pointin space associates with a value. What we can ask is only the
value at a specific point. Implicit function is good at representing natural objects such as water, fire
and cloud, since natural objects do not have any rigid or solid shape. A discrete variantis the volumet-
ric data. It is a lattice of discrete values. Volume data is often collected from Computed Tomography
(CT). Another discrete variant is heightfield. Heightfield is a two-dimensional fungtiony ) which
returns a scalar height value at edehy) position. In most cases, it is used in describing landscape.

Even though the planar surface model is the most popular, objects are seldom created directly in
planar surface representation due to the tediousness. If the object is modeled by hand, object is usually
created in curved surface representation and then converted to planar surface model. If the object is
acquired from 3D scanner such as CT or range scannet, it is first created in volumetric representation

and then converted to the planar surface model usiogurface extractiotechnique.
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2.2 Motivation

Our work concentrates on finding simplified planar surface model. Early surface models are mostly
constructed by hand. However, due to the increasing popularity of the 3D scanners, there is an
increasing trend in acquiring planar surface models from 3D scanning. Hence, the need of an efficient
isosurface extraction algorithm becomes apparent.

An isosurface extraction is an algorithm that given the volume data aedraspecified threshald
it generates a planar surface representation that approximates tlisosudace An isosurface is a
surface that every point on the surface has the same value as the given threshold.

A common isosurface extraction algorithm is the marching cubes algoritlomg®7]. It is a fast
and simple algorithm generating triangular mesh by looking up a 256-entry voxel-cube configuration
table. The major advantage of this algorithm is its speed. However, its major criticism is that it
produces exceedingly huge amount of triangles. Although there are several post-processing mesh
simplification algorithms [bPP3, SCHRI2, TURKI2] that can reduce the triangles in the generated
mesh, they usually require tens of minutes to simplify the mesh.

An ideal isosurface extractor should produce minimum amount of triangles that can sufficiently
approximate the true isosurface and at the same time it can generate the mesh in a short period of time.
We designed a new isosurface extraction algorithm with an on-the-fly mesh simplification. That is,
given a volume data and the threshold, the algorithm directly converts it to a simplified triangular
mesh. Since the algorithm directly generates the simplified mesh, the algorithm is much faster than
those post-processing mesh reduction algorithms.

The problem of marching cubes is that it subdivides the volume into unit size voxel cubes (a voxel
cube composes of eight neighbor voxel samples) and then generates triangles within the cubes. The
number of triangles is clearly related to the size of the cubes. If larger cubes are used, the number
of triangles will reduce. Unfortunately the size of the cube is independent of the geometry of the
enclosed isosurface in the original algorithm. Therefore, even the enclosed isosurface is smooth
enough to be approximated by larger triangle, many small triangles are still generated due to the unit
size partitioning approach. Figure 2-1(a) illustrates the problem of unit size partitioning in 2D. In 2D,
the isosurface becomes iso-curve and cube becomes square. Even though longer edges can be used in
approximating the iso-curve in the diagram, the 2D marching cube algorithm still generates 7 edges
in this example.

Wilhelms and Van Gelder [WH92] and Shekhaet al. [SHEK96] noticed this problem. They
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Figure 2-1: Volume partitioning schemes. (a) 2D marching cube, (b) quadtree (2D analogy of 3D
octree), (c) 2D adaptive skeleton climbing.

used octree to partition the volume data. The idea is to fit smooth region with large cubes while
complex region with small cubes. The 2D analogy of octree is quadtree shown in Figure 2-1(b).
However octree is still quite restrictive in partitioning the volume. The partitioned region should
always be a cube. Moreover, unnecessary fragmentation occurs in some cases due to the hierarchical
octree structure. In the 2D example of Figure 2-1(b), the quadtree algorithm still generates 6 edges.
To overcome the restriction imposed by octree organization. We apply binary tree organization
along each dimension of the pigioned boxes. This approach allows more flexibility in partitioning
the volume. The partitioned region needs not be a cube. It can be a rectangular box. This approach
also reduces the number of unnecessary fragmentation which is quite often in the octree scheme.
Figure 2-1(c) shows the 2D analogy of our partitioning scheme. Note the subdivided regions can now
be a rectangle. This flexibility further reduces the number of generated edge to 3 edges.
All adaptive marching cube approachesi[f5, WiLH92, SHEK96] face the problem of gap-
filling. Gap exists between a large box and its small neighbors. One more unique feature of our
algorithm is that it does not need to fill the gap because the gap is prevented by sharing information
among neighbor boxes. We will go through the details in the next two chapters. Before that, let us

review some of the related work.

2.3 Related Work

Due to the increase of computer power and capacity, more complex scene can be modeled and ren-

dered. However this increase does not satisfy the need of rendering complex scenes. Instead there is
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an increasing demand of rendering even more complex scenes. But the increase in computer capa-
bility allows more sophisticated algorithms in the area of time-critical modeling and rendering to be
developed.

There is a significant amount of work have been done in this area. We will concentrate on the
work generating simplified planar surface models. These work can be roughly partitioned into two
major classes based on the view dependency of the algorithm. In the next two subsections, we will

try to classify the work along this criteria.

2.3.1 View Independent Simplification

Most early simplification algorithms are view independent. Williams[M83] proposed an algo-
rithm which simplifies a polygonal mesh organized in grid structure. Due to the special structure of
the mesh, simplification can be easily done by low-pass filtering the vertices.

Another typical type of algorithms converts heightfield data to simplify polygonal mesh for dis-
play [SCAR92, PoLI93]. This type of algorithm is commonly used for the application of real time
flight simulation. A common approach is first to use a large triangle patch to approximate the land-
scape. If the approximation error is greater than a user-specified threshold, the large triangle will be
subdivided into smaller patches. The process repeats until the error is below the threshold. This ap-
proach can be callealdaptive subdivisionDeHaemer and Zyda [EHA91] developed an algorithm
that converts 3D range data to simplified polygon mesh. They used two approaches. One is the men-
tioned adaptive subdivision (top-down) approach. The another one is a polygon growing (bottom-up)
approach. The polygon growth algorithm starts from a small polygon, try to merge it with its neigh-
bors to form larger facets. The merging stops whenever the approximation error is greater than the
threshold.

Another common type of simplification algorithm converts volume data to simplified polygo-
nal mesh given a threshold [MH92, SHEK96, SHU95]. Wilhelms and Van Gelder [WH92] and
Shekhaet al.[SHEK96] used octree partitioning to subdivide the volume into variable-sized cubes in
order to reduce the number of generated triangles.

Other algorithms accept general mesh as input. Rossignac and BoostJ® presented an
algorithm that uses a signal processing approach. The algorithm treats the vertices on the mesh as

sample points in 3D. By grouping neighbor points and replacing them with a representative point, it



Chapter 2. Geometry-based Approaches 13

can then generate simplified models. Garland and Heckber[&7] proposed to use the quadric er-

ror metrics in finding the representative vertices. Schroeder, Zarge and Lorersa®p3 proposed

a mesh decimation algorithm. The algorithm removes less important vertices on smooth regions and
performs retriangulation to preserve the geometry details of the mesh. @bhefCoOHEI6] used

a similar approach but the process is guidedimyplification envelope@nner and outer envelopes).

Turk [TURK92] proposed another algorithm with a completely different approach. The algorithm
places sample points on the input dense mesh atiteréire surface based on the distribution of the
sample points. To prevent non-uniform distribution of sample points, a repulsion force is applied at
each sample point. Hopgt al.[HorPM3] applied the optimization technique to optimize the number

of triangles in the input mesh. Hence, the main problem is how to design a good objective function.

In general, view-independent algorithms simplify the objects only based on the geometry com-
plexity of the input object. Since they don’'t make use of any viewing information to simplify the
object, the simplified object is hence view independent. That is, no matter where the viewpoint is,
there is no need to modify the simplified object.

To use the simplified objects in multiresolution modeling, the original high resolution object
is first converted to multiple simplified versions using any of the mentioned algorithms. During
rendering, high resolution version is displayed when the viewpoint is close to the object. On the
other hand, low resolution version is used when the viewpoint is far away. The criteria of choosing
which version depends on the distance between the viewpoint and the object. This capability of
switching different resolutions of the object is calledel of detail This technique is first described
by Clark [CLAR76]. It is usually not very difficult to modify a renderer to support the level of detail.
This is another advantage of using view-independent algorithms. However, visual artifact may appear
when switching from one resolution to another. The magnitude of artifact depends on several factors:
the number of resolutions stored, the specific resolution chosen, the rendering algorithm and the
geometry complexity of the object. Funkhouser aed@h [FUNK93] used constrained optimization

to choose a level of detail and rendering algorithm to generate images within the target frame rate.

2.3.2 View-Dependent Simplification

Viewing information, such as position of the viewpoint, viewing direction, and field of view, provides
extra information besides the geometry complexity of the object or scene. With this information, we

usually can simplify more. For example, scenes/objects outside the viewing frustum can be simplified
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or removed. Obijects closer to the eye should be represented in more detail while those far objects
can be simplified. The trade-off of designing a view-dependent algorithm is an increase in algorithm
complexity. When the viewpoint or the viewing direction changes, the simplification done for the
previous frame has to be adjusted. Hence the renderer used must be specially designed to forward
the viewing information to the simplification algorithm at the back end. Moreover, the data structure
storing the polygonal mesh is also specially designed to suppasetbetive refinemeiotn the mesh.

That is, to represent portion of the mesh in high resolution while the rest in low resolution.

Lindstromet al. [LIND96] proposed a view-dependent simplification algorithm for heightfield
data. The algorithm uses a regular grid to represent the heightfield and employs a screen-space thresh-
old to control the error of the projected image of the grid. By projecting the polygon to the screen
space, error can be measured in this space. Measuring error in screen space effectively make use of
the viewing information. The polygon will be further subdivided if the error exceeds the threshold.

For arbitrary mesh, a dedicated data structure is needed to support selective refinement. Such data
structure is basically historyrecording how the highest resolution mesh is simplified to the lowest
resolution one. With this history, the mesh can be selectively refined by replaying the simplification
process for a selected region in the mesh. The criteria of refinement usually depends on a screen-space
threshold. Xia and Varshney [X96] usedecol/vsplittransformation (a step of simplification, for
example merging two vertices to one) during the simplification process. Hopperpd, HoPFO7]
proposed the progressive mesh which is constructed by simplifying the mesh using unconstrained,
geometrically optimizedrsplit transformation. Popogiand Hoppe [BrP7] used a more general
transformation known ageneralized vertex spiih their simplification process.

Previously mentioned Rossignac and Borrel's approactsfB3], which treats the mesh as a set
of unstructured vertices, can be extended to view-dependent version. Luebke and Erikssa]
developed a view-dependent polygon simplification based on the similar idea by recording the process

of selecting the representative vertices.

2.4 Summary

In this chapter, we introduce the major key to geometry-based time-critical modeling and rendering,
scene simplification Due to the simplicity and wide popularity of graphics hardware, the planar
surface model is the most popular geometry representation. Hence most of the research are done for

planar surface model. The motivations of our work is to generate simplified triangular mesh during
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the isosurface extraction in a short period of time. Our algorithm is a view-independent simplification

algorithm.



Chapter 3

Volume Partitioning

We describe here a direct construction of isosurfaces with between 4 and 25 times fewer triangles
than marching cubes algorithmsgdre87, Wyv190] (depending on the complexity of the volume),
in comparable running times. Hence more complexity can be handled at interactive speed. The
proposed algorithm is named adaptive skeleton climbingSince we construct the isosurfaces by
first finding iso-points on grid edges (1-skeleton), then iso-lines on faces (2-skeleton) and finally
isosurfaces within boxes (3-skeleton), it is known in topologglkeleton climbing Moreover, the
size of the constructed boxes will adapt to the geometry of the isosudagdarger boxes enclose
smoother regions), hence itaslaptive

The proposed algorithm can generate isosurfaces Itiptfeuresolutions directly. The coarseness
of the generated meshes is controlled by a single parameter. The triangle reduction is done on the
fly as the isosurfaces are generated without going through a separate postprocess. The proposed on-
the-fly triangle reduction approach can preserve geometric details of the true isosurface and generate
more accurate meshes because it directly makes use of the voxel values in the volume. In contrast,
the postprocessing triangle reduction approaches{A91, HorpM3, SCHRI2, TURKI92] usually use
the indirect geometrical information from the approximated dense meshes.

Our approach is quite different from the adaptive marching cubes algoritrm®s SHEK96].
No crack-patching step is needed because we build conilggit{described shortly) into theaces
where cells meet before generating triangles.

The algorithm can be intuitively subdivided into four major steps:
1D Voxel Analysis and Grouping.

2D Adaptive Skeleton Climbing.

3D Adaptive Skeleton Climbing.

A

Isosurface Extraction.

In order to fit large triangles to smooth isosurfaces, the content inside the volume must be first

analysed. Our goal is to find out the size-maximal boxes that enclose the smooth isosurfaces. To

16
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find size-maximal boxes in 3D (step 3), we have to find the size-maximal rectangles in 2D (step
2). This further leads us to the need of finding out the length-maximal segments in 1D (step 1). In
step 3, we build 3Bsimpleboxes (described in Section 3.3) whose sizes are closely related to the
geometry complexity of the enclosed isosurface. Information is then shared between adjacent boxes
to prevent existence of gap. And finally in step 4, the triangular mesh is generated. Figure 3-1 shows
the processes of adaptive skeleton climbing graphically. The basic idea is to group voxels first in 1D

(segments), then in 2D (rectangles) and finally in 3D (boxes).

4 s iﬂﬂ iﬂﬂ
e 4 j
y 4

Construct Construct Construct
dikes plots padis
Lay padts on each farm

Form highrices Generate iso-lines Gener ate triangles

Form bricks

Figure 3-1: Overview of adaptive skeleton climbing.

In this chapter, we will describe the first three steps of the algorithm. The goal of executing
the first three steps is to partition the volume into size-maximal boxes. It is actually a bottom-up
construction process, instead of a top-down subdivision process. Section 3.1 describes manipulation
and grouping of the basic 1D data structures in detail. Section 3.2 carries on the grouping in 2D.
Section 3.3 discusses the construction of simple boxes. Details of triangular mesh generation are

described in Chapter 4.

3.1 1D Data Structures and Manipulation

We start the volume analysis in 1De. consider a linear sequence of voxel samples. Try to find out
the length-maximal subsequences of voxels withplestructure (described shortly).
It helps to think of the volume data as giving sampled values at points (dots in Figure 3-3), rather

than voxel values filling cubes. For the sake of discussion, let’s define the 1D terminologies and data
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Figure 3-2: Glossary of various terminologies.

structures. To provide a quick reference to all terminologies (1D, 2D & 3D), a graphically-explained
glossary table is available in Figure 3-2. A line2f+1 sample points is callelign (Figure 3-3(a))
wheren is an integer> 0. A dike (Figure 3-3(b)) is a segment of lign which covers voxel samples

in the intervalla2™, (a 4+ 1)2™], where0 < m < n and0 < a < 2"~™, botha andm are integers.

That is, all dikes are organized in a binary tree (Figure 3-4). The reason to use binary tree on 1D
data instead of octree on 3D dataifk96] is that binary tree provides more flexibility in grouping

voxels.

(a) Lign (b) Dike

Figure 3-3: Basic 1D data structures.

Figure 3-4(b) shows the binary tree organization of 15 dikes which covers 9 voxels. The voxels
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covered by each dike are shown graphically in Figure 3-4(c). The nodes are labeled in a breadth-first-
search order, with the root node as 1. With this dike-labeling scheme for each lign, we can store two
length{2"! —1) arrays of dike informatiomccupancyandsimple dikefor a lign of2™ + 1 samples.

For simplicity, letN = 2" for short hand.

HORORONORONORORGRO

2 2 3
T T
1 4 5 6 7
NN /NN
0 8 9 10 11 12 13 14 15
(a) Level (b) Organization of dikes (¢) Samples covered by dikes

Figure 3-4: Binary tree organization of 1D voxel data.

Theoccupancy arrayf a lign describes the presence of iso-points (1D analogy of 3D isosurface)
on its dikes. With this occupancy array, we can accurately locate thigoposf iso-point and how
the isosurface crosses the lign. Now, let us denote the voxel sample with value above or equal to the
threshold £) ase, and sample with value belowaso. Then the binary value of thé&" entry in the
occupancy array means:
01, if dike ¢ is crossed by isosurface once, upwargs e.

10, if dike 7 is crossed by isosurface once, downwergs o.

00,  all samples in dike are on the same side of
occ[ ¢] =
11, if dike 7 is crossed by isosurface more than once.

Note the binary values symbolize the crossing conditions. For instance, if the isosurface crosses the
dike once and the voxels within the dike change fro(@) on the left toe (1) on the right, then the

value inocc[] is 01, (o — e). Once the entries of unit dikes (leaf nodes of the binary tree) are
initialized directly from volume data, the entries of the non-unit dikes (upper interior nodes) can be
found by a recursive bitwise OR operations on the leaf nodes since the valcgjn are specially

designed.
occ[ ¢] := (occ[ 2¢]) OR (occ[ 2:+1])

Another array isimple dike array It tells us the length-maximaimpledikes inside the lign. A
dike: is simpleif occ [i] < 115; thatis, the dike is crossed at most once by the isosurface. The entry

simple[ ¢] holds the index of the length-maximal simple dike with the same left end as.dike
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Intuitively speaking, simple dike array tells us which voxels can be grouped together without vi-
olating the binary boundary due to the tree organizatmnary edgefor short) and the simplicity
constraints. The length-maximal simple step following dike the dikesimple[ :+1] . By per-
forming the following pseudocode fragment, we can walk through the lign in steps of length-maximal
dikes in an efficient way.

current := simple[1]

while current  # "end of walk mark”
current := simple[current+1]

Figure 3-5(a) illustrates that a lign is subdivided into length-maximal dikes (shown in black in
Figure 3-5(b)). In this 9-voxel lign example, the lign is subdivided into 4 dikes. The first two dikes
are unit dikes, since the isosurface crosses both of them. Although the isosurface crosses the rest of
the segment only once, it is still subdivided into two dikes due to the binary edge constraint imposed

by the binary tree organization.

Dikeson‘o"‘“‘oo'\\

(@) voxel grid —H—H——F—— Region above
DikeID: 8 9 5 3 threshold
Dikes in
(b) the binary
tree
I .

Figure 3-5: (a): The lign is subdivided into length-maximal dikes by algorithitSimple . (b):
The dikes visited when walking through the lign.

Values insimple[]  are found by a binary tree depth-first-search traversal, whose pseudocode
is shown in Figure 3-6. Note that due to the binary edge constraint, the subdivision may not be always
minimal (Figure 3-5). But this restriction simplifies the merging process in the 2D adaptive skeleton

climbing discussed in next section.

3.2 2D Adaptive Skeleton Climbing

Next, we go on to the 2D data structure and find out the size-maximal rectangles of voxel samples

with simplestructure.
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Input:  initialized occupancy array and unfilled simple dike array
Output: filled simple dike array
Algorithm:
InitSimple(myID, legacy):
if current dike is a bottom node (unit dike)
returnmyID
if parent dike is simple
if current dike is right child, it must be simple

simple[mylD]  :=mylD
else /* inherit the simplicity */
simple[mylD]  :=legacy

[* Propagate simplicity downward */
InitSimple(2*myID, simple[myID])
InitSimple(2*myID+1, simple[myID])
else /* parentis not simple */
if current dike is simplei.e. occ[myld]l< 112
simple[myID] := myID
[* Propagate simplicity downward */
InitSimple(2*myID, simple[myID])
InitSimple(2*myID+1, simple[myID])
else /* Is the left descendant simple? */
descendent := InitSimple(2*myID, dummy)
InitSimple(2*myID+1, dummy)
simple[myID]  :=descendent
[* Propagate simplicity upward */
returnsimple[myID]

Figure 3-6: AlgorithmnitSimple

3.2.1 Data Structures

The 1D data structures allow us to group voxels into length-maximal simple segments (dikes). Sim-
ilarly, in the 2D, we want to group voxels to form size-maxinsitnplerectangles. Consider a
(N+1)x(N+1) farm of voxel samples, withV+1 horizontal andV+1 vertical ligns, each with

its own occupancy and simple dike arrays. First, let's define the 2D terminologies (Figure 3-2) and
data structures. Atrip (Figure 3-7(a)) consists of two consecutive ligns plat (Figure 3-7(b)) is

analogous to the dike which consists of two consecutive dikes.
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Figure 3-7: The 2D data structures.

Plots are also organized by a binary tree. Similarly a plainspleif and only if its two dikes

are also simple. Hence, we can defingiraple plot arraywhich is similar to the simple dike array.
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Since the shorter dike has a larger dike ID, the length-maximal simple plots can be easily found by
performing aMAXoperation on each pair of elements in the simple dike arrays of the two consecutive

ligns.

strip[  jl.simple[ <] := MAX(lign[  j].simple[ <],
lign[ 7+ 1].simple[ <))

Figure 3-8 shows one such operation graphically. The calculated plots are overlaid with the voxel

samples in Figure 3-8(b). Note that each plot is crossed at most twice by the isosurface.
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Figure 3-8: Length-maximal plots from consecutive ligns.

3.2.2 Merging Plots to Form Padis

A rectangle with dikes as sides is callgadi (Figure 3-7(c)). A padi isimpleif all plots inside it and

its four side dikes are simple. Our goal is to subdivide the 2D farm of voxels into size-maximal padis.
To do so, neighboring simple plots are merged to form simple padis(Figure 3-9), as large as possible.
Note there is no unique way to merge plots. Different merging strategy gives different sets of padis.
Figure 3-9 shows two alternatives when merging the two consecutive strips. Even an optimal merging
is found for 2D, it may not yield an optimal merging in 3D (discussed in next section). Moreover, a
fast algorithm is crucially required since it will be frequently executed. A slow optimistic algorithmis
useless in this case. Hence we do not use any optimistic algorithm to search for the optimal merging.
A heuristic bottom-up merging (ASC2D, Figure 3-10) is used due to its efficiency and simplicity.

The algorithmASC2Daccept2 N initialized simple plot arrays as input. There &earrays for
horizontal strips anaV arrays for vertical strips. The array can be initialized by kK&Xoperations
discussed previously. The basic idea of the algori#®C2Din Fig 3-10 is as follows. Let us denote
the horizontal direction from left to right as directianand vertical direction from bottom to top as

directiony. For each length-maximal plot on each horizontal stes{(ip), expand it iny direction
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Figure 3-9: Merging plots to form padis.

Input: 2N initialized simple plot or Igout arrays.
N for horizontal strips &V for vertical strips.
Output: A set of size-maximal padis (and iso-lines).
Algorithm:
Initialize an empty candidate list of padis.
For eache-strip (horizontal strip)
/* Expand the plots to form padis */
For each length-maximal simple plot
Let rectangle: := a
While 3 neighbor simple plot on the adjacent strip
r :=r U b (Figure 3-9)
Subdivider in y-direction into pieces according to the
binary edge restriction and givepadisry , r2, . . . rx (Figure 3-11)
For each generated padi
For each padp; inside the candidate list
If p; encloses;
Deleter;
If r; enclose;
Removep; from the candidate list
If p; partially overlaps withr;
Clip r; (Figure 3-12(a))
If r; is not removed
Add r; to the candidate list
/* Optional Iso-line Generation */
For each padp; in the candidate list
Generate iso-line fop; by looking up the table (Figure 3-15).

Figure 3-10: AlgorithmASC2D
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Figure 3-11: Plots are first merged to form rectangle. The rectangle is then subdividedyalong
direction to satisfy the binary edge constraint applied tajthéection.

by merging it with consecutive plots having the same length (Figure 3-9). Note the neighboring plots
need not be length-maximal. With the binary edge constraint, it is more likely to find neighbor plots
with same length and align to each other. A candidate rectangle is then formed. Since the binary edge
constraint is also applied to the vertical direction, this rectangle is subdivided to form size-maximal
padis (Figure 3-11).

During the execution of the algorith&SC2D0 many padis will be generated. They may overlap
with each other or one may enclose another. All padis which are enclosed by any other padi will
be removed. Those overlapping padis will be clipped with each other. This seems to be tricky.
Instead, only 9 overlapping cases will exist (Figure 3-12(a)). Overlapping cases like Figure 3-12(b)
do not exist. Once again this is the advantage of applying binary edge constraint on both dimension.
Figure 3-13 shows an example result of running the algor&l®@2D The generated padis are shown
as rectangles among the voxel samples.

A layout of padi is generated as the resulASC2D This layout information is stored implicitly
in thelayout arrays Layout array is very similar to the simple plot array but with the constraint that
no plot may cross the boundary of any generated padi on the layout. For a fakmtof) x (N +1)
voxels,2N layout arrays are definedy z-strips and\ y-strips. Theit! entry inz-strip (y-strip)
stores the index of the length-maximal plot that fits into the padi layout and shares its left (bottom)
end with plot:. Figure 3-14 shows the padi layout of & 5 xy-farm, which is represented hystrips
(Figure 3-14(b)) ang-strips (Figure 3-14(c)). The reason to store the layout in this way is to simplify

the simple box construction discussed in Section 3.3.

3.2.3 Iso-line Generation

Once the size-maximal padis are found, we can generate 2D iso-lines which separatés from
thoseo voxels. Although we will not generate any iso-lines until the 3D boxes have been constructed

(discussed in next section). For the sake of discussion, it is more convenient to discuss it here.
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Figure 3-13: Example result of running algorit&8C2D
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Figure 3-14: Storing the padi layout in layout arrays.

The iso-line can be efficiently generated by looking up a 2D padi configuration table in Fig-
ure 3-15, instead of a 3D voxel cube configuration table as in marching cubes algoritbrReES[L,
WyvI90]. Figure 3-15 shows all possible padi configurations and their corresponding iso-lines. Note

the padi need not be a square. Similar to the 3D voxel configurations, ambiguity also exists on 2D

padi configurations (the two lower left configurations in Figure 3-15).

X7

Figure 3-15: Generate iso-lines by a 16-entry table. Two ambiguous cases lead to subsampling.

The ambiguity with two diagonally opposiéeorners can sometimes be resolved by subsampling
at the center of the padi. However, wrong iso-lines still be generated in some cases (Figure 3-16).
Where connectivity is crucial, software should warn the user of ambiguous cases and offer finer,
more CPU-costly tools for local investigation. In many cases the warning is as useful to the surgeon,
geologist or other user as any silently-attempted best guess by the software.

The generated padis (shown as rectangles) and iso-lines (shown as thick lines) are overlaid on the
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Figure 3-16: Bad ambiguity resolution by subsampling.

2D voxel grid in Figure 3-13. The algorithm isolate$rom e voxels, with 30 edges on 23 adaptive
padis rather than the 46 edges on 64 unit squares. This is the key how we can reduce the number of

triangles.

3.3 3D Adaptive Skeleton Climbing

By manipulating these 1D and 2D data structures, enough information is provided for us to construct
3D simpleboxes. The information is implicitly stored as the 2D padis. Using this information, we go

on to construct simple boxes by stacking simple padis.

3.3.1 3D Data Structures

Considerg N+1) x (N+1) x (N+1) voxel sample grid. For the sake of discussions, we now define
the 3D terminologies (Figure 3-2) and data structures. All terminologies are graphically illustrated
by a3 x 3 x 3 volume in the Figure 3-17(a). farmcontaing N+1) x (N+1) voxels on a 2D grid.
A slab analogous to a strip containing two consecutive ligns, consists of two consecutive farms. A
brickin the slab has two matching padis in two consecutive farms as fad@gh#iceis a rectangular
box composed of stacked bricks.

It is convenient to call a farmy-farm, z z-farm oryz-farm, according to which plane the farm is

parallel to (Figure 3-17(b)). Similarly, a brick is calleg-brick if it is parallel to thexy plane.

3.3.2 Merging Bricks to Form Highrices

Our goal is to construct 3Bimplerectangular boxes. We start by findisgnplebricks. A brick is
simpleif the two padis forming it are also simple. A highricesisnpleif all its component bricks are
simple, and its six faces agmplepadis.

Firstly, simplezy-bricks are identified. Then these simplg-bricks will be stacked one by one to

construct the simpley-highrice. Note a highrice can be treated as composing-dfricks,» z-bricks
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Figure 3-17: Data structures for the 3D algorithm.

or yz-bricks, depends on which dimension the bricks are stacked. We call a highricg-ttighrice
if it is constructed by stacking simpley-bricks. In our algorithm, we only interest in finding the
simplexy-highrices.

Figure 3-18 outlines the main algorithm. The first step generates the padi layeatbrfarm
by algorithmASC2Dwithout the iso-line generation step. Then we identify the simjtdoricks by
performing simpleMAXoperations for each pair of corresponding entries in the layout arrays on two

consecutive farms. Just like the 2D version. An example is shown graphically in Figure 3-19.

xy-slab[  k].x-strip[ 7]layout[ 7] =
max(xy-farm[  k].x-strip[ jllayout[ 4],
xy-farm[ &k + 1].x-strip[ jllayout[  <])
xy-slab[  k].y-strip[ 7]-layout[ 7] =
max(xy-farm[  k].y-strip[ jllayout[ 4],

xy-farm[ &k + 1].y-strip[ jllayout[  <])

Next, neighbor bricks merge to form highrices in 3D (Figure 3-20), analogous to merging plots
to form padis in the 2D case (Figure 3-9). Again there is no unique merging rule (Figure 3-20),
and again we prefer a fast heuristic to a search for a suboptimal subdivision. For each size-maximal

xzy-brick on each slab, we stack thg-bricks upward along direction until no more simple bricks
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Input:  An (N+1) x (N+1) x (N+1) 3D voxel grid.
Output: A set of maximal highrices and isosurface triangular mesh.
Algorithm:
/* Generate the padis on each farm */
For each farm out ofi{y-farm, zz-farm andyz-farm)
Find size-maximal padis b4SC2D
Set layout arrays according to the padi layout on eagliarm.
For eachry-slab
Find the layout ofry-bricks byMAXoperations. (Figure 3-19)
Initialize an empty candidate list of highrices.
[* Stack the bricks to form highrice */
For eachry-slab
For eachwy-brick a
Let rectangular box := a
While 3 neighbor simplery-brick b on the adjacenty-slab
r :=r Ub (Figure 3-20)
Subdivider into zy-highrices with the binary restriction
applied along: and givek zy-highricesr, r2, ..., ry (Figure 3-21)
For each generategy-highricer,
For eachry-highriceh; in the candidate list
If h; encloses
Deletery,.
If r; enclosesy;
Removeh; from the candidate list.
If h; partially overlaps withr;
Cllp .
If ri is not removed
Addr to the candidate list
/* Sharing information among highrices */
For each farm#£y-farm, zz-farm, yz-farm)
Reinitialize lgyout array to fitzy-highrice boundaries (Figure 4-2)
Find a padi layout wittASC2Dusing new layout values
/* 1so-line Generation */
For eachry-highrice in the final candidate list
For each padi on the surface of thg-highrice
Generate iso-lines. (Figure 3-15)
Connectthe iso-lines to form loops
For each edge loop on the surfacesgfhighrice
Triangulate it and emit the triangles.

Figure 3-18: AlgorithmASC3D

L=

MAX

L7

Figure 3-19: To find the simple bricks inside the sIMAXoperations are done on each pair of the
layout arrays of neighboring farms.
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available. Then this temporary box is subdivided alemijyection to fulfill the binary edge constraint
(Figure 3-21). During the highrice formation, the generated highrices may overlapped with each other
or one may be enclosed by another. Any enclosed highrice will be removed. Overlapping highrices
are clipped. Just like the 2D cases, the overlapping cases are quite restrictive due to binary edge

constraint. Hence simplifies the clipping process.

i —r

or

Figure 3-20: Merging bricks to form highrices

+  brick Subdivide Binary edge
zA expand along z constraint
+ pplied to
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Figure 3-21: Bricks are first merged to form box. Then the box is subdivided altmigrm highrices
in order to fulfill the binary edge constraint.

3.4 Summary

In this chapter, we described the detail steps to partition the volume into size-maximal boxes. The
partition process is basically a bottom-up approach. The goal is to fit smooth region with larger boxes.
To increase the flexibility on the shape of the boxes, we apply binary tree partition on the 1D data,
instead of applying the octree partition on the 3D data. First, we partition the 1D lign into length-
maximal dikes. Then, we go on to 2D to partition the 2D farm into area-maximal padis based on the
1D partition information. Finally, the partition is performed in 3D to find out the size-maximal boxes
using the 2D partition information. We will continue to describe the generation of triangular mesh in

the next chapter.
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Triangular Mesh Generation

Once the volume has been partitioned into size-maximal rectangular boxes, we can generate triangles
within each box. Since the size of the rectangular box reflects the geometry complexity of the enclosed
isosurface, hence the generated triangles will also adapt to the geometry. That is, larger triangles are
generated to approximate smooth isosurface regions.

In this chapter, we will describe the mesh generation process in details. One important step
to prevent the occurrence of gapiidormation sharingdescribed in Section 4.1. After that, we can
generate triangles for each box in Section 4.2. Section 4.3 discusses how to apply the original adaptive
skeleton climbing algorithm, which only works fo¥ x N x N volume, to volume of any size. We
will also describe how to generate the isosurface in multiresolution. Then, in Section 4.4, we discuss
the techniques to speed up the algorithm. Section 4.5 shows the results and compares them with the

classic marching cubes algorithm.

4.1 Sharing Information Between Highrices

At this moment, we can immediately generate triangles inside egdtighrice with the padi layout
on the surface on they-highrices. This will yield triangular mesh with crack, just like the cases of
Shuet al.[SHU95] and Shekhaet al.[SHEK96], since the boxes may not be unit cube.

Figure 4-1(a) shows a large highrice next to a small one. The isosurface crosses the plane separat-
ing the two highrices (Figure 4-1(b)). If triangles are emitteddach highrice without the knowledge
of their neighbors, gaps will appear in the generated triangular mesh. This is because the linear iso-
lines generated on the highrice surfaces may not match each other geometrically (Figure 4-1(c)), even
though they are topologically correct. To prevent this mismatch, information must be shared between
adjacent highrices.

In our algorithm, the neighbor information can be shared by manipulating the basic data struc-
tures. Recall that we store the padilayout of each farm in layout arrays in Section 3.2.2. Layout arrays

are variants of simple plot arrays. We can reuse these arrays with the new constraint that no plot may

31
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Figure 4-1: Sharing information between neighbor highrices.

cross the boundary of any face of any generatgdhighrice. That is, we store the 3D highrice layout
in these arrays this time. Figure 4-2 shows the farm between the two highrices in Figure 4-1. The
surface boundary of the larger highrice is shown as thick dark gray line in the farm of Figure 4-2(b),

while that of the smaller highrice is shown as thick light gray line.

¢

— Generate Isoline
Padi again Generation

() (b) (©) (d)

Figure 4-2: Once we reinitialize the layout arrays to store the 3D highrices’ lap@@2Dcan be
run to generate padis that fitted into the surface boundaries of both highrices.

Once the layout arrays are reinitialized, algorithm ASC2D is executed on them (instead of simple
plot arrays) to give a new set of padis. Since the length-maximal plots represented by the layout
arrays are not allowed to cross any boundary, the generated padis will also fit inside these boundaries.
Figure 4-2(c) shows the generated padis for the discussed example. After generating iso-lines on each
padi, three segments of iso-lines will be generated in the example (Figure 4-2(d)), therefore no gap

will exist.
4.2 Extracting Triangles Within a Box

4.2.1 Generating the Edge Loops

Instead of thinking the padis are laid on the farm, they can also be regarded as padis laid on the
six faces of eachy-highrice. Each face of they-highrice may contains more than one padis as in

Figure 4-3.
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Figure 4-3: The six faces of a highrice adiled with padis after information sharing.

To generate the isosurface, we first generate iso-lines on padis by looking up the 2D padi config-
uration table in Fig 3-15, and connect them to form closed edge loops (Figure 4-8(a)). Note that in
our algorithm, we only need a 2D padi configuration table, no 3D voxel cube configuration table is
needed.

Even though iso-lines (edges) are generated by looking up the configuration table, the edge loop
is not yet available since the edges are not yet connected. Hence the next step is to connect the
disjointed edges.

First, we need to label all unit dikes on the surfaces of the highrice (Figure 4-4). A highrice of
sizep x ¢ x r containd = 4(pq + ¢r +rp) distinct unit dikes. An edge can then be represented by an

unordered paifa, b), « andb are the ID of the unit dikes where the edge begins and ends respectively.

17 18 19 20
r A

< 7 34
35 36 37 38 39
9 10 1 12 33 4

28 29 30 31 "4

2
q 5 6 7 8 2 47
25
21 2 23 2 45
1 2 3 4

p

Figure 4-4: Each unit dikes on the surface of the highrice is assighed with a distinct label.

edgetablel 3 1

3 4 5 -1 1
(@)

2]
5

edgetable2

2

1

edgetablel | 3 | | 1
L[ [s]
2

3 4

T
L1

(b)

edgetable2

1

Figure 4-5: To connect the edges, two lengtuge tables are used.

Secondly, two lengtfitables are used to connect the edges (Figure 4-5). For each unordered pair

(a,b), fill the a't entry withb and theb'h entry witha. For example, if there is an eddg, 3), the
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tables will look like Figure 4-5(a). If the entry in the first tabkxifjetablel ) is already occupied,
we fill the corresponding entry in the second taldddetable2 ). For instance, a new eddg, 5)
is generated, the two tables will become Figure 4-5(b).

When all edges are entered into the tables. The edge loops can be retrieved from the table by the
algorithmGenLoop in Figure 4-6. This algorithm contains a simple loop which steps through all
nodes inside the edge loop. It works whenever the edge loop is closed and each node in the loop is
connected by two edges. It can also handle multiple edge loops within the same highrice. The time

complexity of this algorithm is obviously linear.

Input:  Two filled edge tables.
Output: A sequence of unit dike ID representing the edge loop.

Algorithm:
current  :=ID of first non-empty entry iredgetable1
start :=current

prev :=-1 //invalid value
next :=-1 //invalid value
while next # start
if edgetable[current] # prev
next :=edgetablel[current]
else
next :=edgetable2[current]
outputcurrent
prev :=current
current :=next

Figure 4-6: AlgorithmGenLoop.

4.2.2 Triangulating the Edge Loops

Given an edge loop consisting of several vertigesve emit triangles using the algoritHemitTriangle

in Figure 4-9. In each iteration, three consecutive verti¢es;; andv;,, are selected and one tri-
angle is generated (Figure 4-7). The vertey, is then removed from the edge loop. The algorithm
continues until only two vertices are left.

An edge loop can be triangulated in multiple ways. Different sequences give triangular meshes
with identical triangle counts, but with different geometry (Figure 4-8(b) and (c)). To generate a mesh
that closely approximates the true isosurface, we make use of the gradient. As shown in algorithm
EmitTriangle in Figure 4-9, we reject any triangle with planar normal vectprthat largely
deviates from the gradiengs at three vertices. The deviation is measured by the dot produgt of
andg;. A threshold is used as a criteria. The threshold constraint will be relaxed if no triangle can be

generated under the current constraint.
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Figure 4-7: In each iteration, one triangle isiged and one vertex is removed.

L / I 1 f
\ >\/\ i\ éf] \/\ or N é%f’/’\
E A P - S P> 4
(a) (b) Possible (¢) Better
Triangulation Triangulation

Figure 4-8: Triangulate the edge loop to emit triangles.

4.3 Extending to Arbitrary Volume

The proposed algorithm handles volume with the size€¥of 1) x (N 4 1) x (N + 1), i.e. a cubic

block To handle volume with different size, we can simply tile the blocks to cover the whole volume
and applyASC3Don each block. Recall that gaps will appear if no information is shared between
adjacent highrices. Similar cracks will appear if information is not shared between adjacent blocks.
Unlike the case of variable-sized highrices, each block has the same size. This simplifies the process.
To share information between blocks, we simply perfdidoperations on each pair of layout arrays

on the surfaces (which are also farms) of two adjacent blocks. The siMi#o¥eperations effectively

find out the largest padis that fit the constraints. This information sharing process must be done just

Input:  An edge loop and an initial deviation threshdld
Output: A triangular mesh.
Algorithm:
Put all vertices on the edge loop into an order preserving list.
While the list contains more than 2 vertices
Pick three consecutive verticés;, v; 41, v;4+2 ) to form a triangle
If the deviation is too large?; - ¢ < T orniy - §ip1 < T
orny - gigo < T
Reject this triangle
Else
Emit this triangle
Remove vertex; ;1 from the list
If no triangle can be generated above current threskold
Decrease the value Gf

Figure 4-9: AlgorithmEmitTriangle
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after the information sharing among highrices.

Up to this moment, we have not yet discussed the effect of using different valuésia. the
size of the block. The block size constrains the maximum size of the highrices. When the block size is
small, sayN = 1, the largest highrice contais 2 x 2 voxels,i.e. same as standard marching cubes.
When a larger block size is used, larger highrices are allowed to be generated, hence larger triangles.
In other words, by controlling the valug, we can generate isosurfaces inltiplie resolutions. Note
that parameten is an indirect control, the actual mesh generated will also depend on the geometry
of the real isosurface. More triangles witilsbe generated if the isosurface geometry is complex.
Figures 4-14 to 4-18 show the results of using different block sizes. From (a) to (b), the vahies of
are 1, 2,4 and 8. As the block size increases, larger triangles are generated to approximate the smooth
surface.

Unlike the triangle reduction algorithms HMA91, HoPM3, SCHRI2, TURK9I2] which gener-
ate coarser mesh based on the high resolution mesh, the proposed approach generates coarser mesh
directly from the original volume data. This ensures no distortion or error is introduced before the
triangle reduction. More importantly, the proposed algorithm is an on-the-fly process which requires
no time-consuming postprocessing triangle reduction. In fact, the algorithm produces coarser mesh
in a smaller amount of time (see Table 4.1). Although our approach may not reduce triangles as much
as mesh optimizer does, it is a cost effective method to significantly reduce triangles in a short period

of time.

4.4 Speeding Up the Algorithm

4.4.1 Skipping Empty Blocks

In practice, there is no need to process every block of voxels. Since many blocks are iesnpty,
contains no isosurface, we can simply ignore them without performing the computational intensive
merging processes. This can be done in the early stage of the algorithm. Once we have initialized the
valuesinocc[] for each lignin the block, the emptiness of the block can be immediately identified.
With this simple technique, the execution time of the algorithm can be reduced to about 25% of the

original execution time. The actual speedup depends on the geometry complexity of the isosurface.
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4.4.2 Indexing in Span Space

Skipping empty blocks can significantly reduce the computational time. However it still requires the
initialization of the occupancy arrap¢c[] ) for every block. A further speedup can be achieved
by indexing the block in span space. Livretal. [LIVvN96] indexed the voxel cubes usirgl-
tree [BENT75]. By indexing the minimum and maximum values among the eight voxels within
the voxel cube, the non-empty voxel cubes can be rapidly located usir@(tlfe + %) searching
algorithm [LEE77], wherec is total number of voxel cubes arids the number of cells intersecting
the isosurfaces.

In our case, indexing the unit voxel cubes is not enough since we need to locate non-empty blocks
of various sizes((N + 1) x (N +1) x (N +1)). Moreover, the original method retrieves voxel cubes
in an arbitrary order. That means, if two neighboring voxel cubes are intersected by the isosurface,
the method cannot ensure these voxel cubes are retrieved one by one. The retrieval order is important
in our case, since information sharing has to be done between neighboring blocks to prevent gaps. To
perform information sharing efficiently, the non-empty blocks must be retrieved in a layer-by-layer
fashion. Two more keys are added to construct a 4d-tree, in order to solve the mentioned problems.

For each block, four keys are defined.
(Vmin1 Vma)ﬁ N, L)

Key Vinin andVi,.x are the minimum and maximum values of voxels within a block. Keig the
block size. With this key, we can store blocks of different sizes in a sihdigee. When querying
the blocks of specific size, the search Kéymust be set to the corresponding value. Kejs the
number of the layer where the block is located (Figure 4-10). By querying the blocks in an increasing
order of L, we can retrieve them in a layer-by-layer fashion. Hence, information sharing can be done

without storing all the non-empty blocks in the memory.

~ NN
o

~ N W N

Figure 4-10: The blocks are retrieved in a layer-by-layer fashion.
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4.5 Results

Table 4.1, Figures 4-11 and 4-12 quantify for various datasets the results of our implementation of
adaptive skeleton climbing with four block size¥, = 1, 2, 4 and8. Triangle counts and CPU

times on a SGI Onyx are compared with the Wyvill implementationvf\90] of marching cubes
algorithm. The timing results shown Table 4.1 has been sped up by skipping the empty blocks.
The kd-tree indexing is disabled since it is not fair to compare it with the original marching cubes
algorithm which includes no indexing scheme. Figures 4-14 to 4-18 show the corresponding images.
Only the meshes generated by our algorithms are shown. Gouraud shaded isosurfaces are overlaid
with triangle edges for clarity.

The “knot” data sets are sampled from an algebraic function, at three resolgtion$4 x 64,

128 x 128 x 128 and256 x 256 x 256. Figure 4-14 shows the extracted isosurfaces fronddhet4 x 64

volume in multiple resolutions. Volume “Mt. St. Helens” (Figure 4-15) is a landscape heightfield
dataset. We also tested three medical computed tomography (CT) datasets, “Headl” (Figure 4-16),
“Head?2” (Figure 4-17) and “Arteries” (Figure 4-18). The data set “Arteries” contains no large smooth
sheets, and its geometrical complexity inherently requires a finer mesh for topological correctness.

In general, as the block siz€ increases, both the CPU time (Figure 4-12) and the triangle count
(Figure 4-11) decrease. There are about four to twenty-five times reduction in the triangle count.
Figures 4-14 to 4-18 reveal little change in shape as the triangle count decreases. Note that in some
cases increasing the block sixemay slightly increase the triangle count when the complex geometry
of the isosurface requires sufficient triangles to represent it. In three out of seven tested cases, the
optimal block size (in terms of triangle count) % = 4. Depend on the geometry complexity of
the true isosurface, the optimal value may vary. From the experiments, the proposed algorithm is not
efficient to generate the highest resolution mesh as the marching cubes algorithms do. However, it
can generate coarser meshes in an amount of time comparable to that of marching cubes algorithms.
In the test cases of “knot256” and “Mt. St. Helens”, the running times of generating coarse meshes
(N = 8) are even faster than that of the marching cubes.

Table 4.2 shows the reduction (in percentage) of execution timkd-tfee indexing is used to
locate the non-empty blocks. There is about 10-60% reduction depending on the volume complexity.
Figure 4-13 shows the same results graphically. From the graph, it shows that the reduction decreases
as the block size increases. As the block size increases, more unit voxels will be involved in the

merging process even though they are not intersected by the isosurface.
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Data Set ASC,N =1 | ASC,N =2 | ASC,N =4 | ASC,N =8 MC
knot64 12,712\ 3,682\ 1,772\ 2,054A 13,968\
64 x 64 x 64 8.16sec. 3.61sec. 2.5%ec. 2.43ec. 1.7%ec.
knot128 44,760\ 13,088\ 4,692A 3,918A 56,208N
128 X128 x128 61.5%ec. 24.0Gec. 15.61sec. 14.31sec. 12.81sec.
knot256 152,08QM 48,562\ 15,37QM 8,820 225,736\

256x256x256 | 470.9%ec. 178.54%ec. 105.3kec. 87.78&ec. 94.6XecC.
Mt. St. Helens| 335,096\ 119,045\ 83,538\ 92,7400\ 335,008\
258 x258x256 | 495.16ec. 195.4%ec. 137.4%ec. 120.8Gec. | 219.85Bec.

Head 1 580,771\ 186,331 136,90 159,207\ 592,368\
256x256x113 | 339.2kec. 138.5%ec. 97.3Xsec. 100.55sec. 61.91sec.
Head 2 98,397A 58,244A\ 60,885A 63,5820\ 95,362

128 x 128 x57 44 AZXec. 20.93%ec. 17.51sec. 19.2%ec. 8.00sec.
Arteries 263,68a\ 131,769\ 139,636\ 149,251\ 263,438\
256x256x148 | 311.9%5ec. 134.0Gec. 103.6&ec. 128.05ec. 56.0%ec.

Table 4.1: Comparison of adaptive skeleton climbing, with block siges 1, 2, 4, 8, and marching
cubes, in terms of triangle numbet ) and CPU time.
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Figure 4-11: Graph of triangle countin Table 4.1.
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Comparison of CPU Time
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Figure 4-12: Graph of CPU time in Table 4.1.

Data Set|f ASC,N =1 | ASC,N =2 | ASC,N =4 | ASC,N =8
knot64 59% 53% 40% 30%
Head 1 46% 38% 29% 23%
Head 2 42% 32% 19% 13%
Arteries 67% 58% 40% 26%

Table 4.2: Reduction (in percentage) of execution time after indexing withdtese.
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Reduction of Execution Time
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Figure 4-13: Reduction (in percentage) of execution time after indexing withdheee. (Graphical
presentation of Table 4.2.)

4.6 Summary & Discussions

Adaptive skeleton climbing produces isosurfaces in times comparable to marching colxesSTI,
with substantially fewer triangles, and without the gap-filling problems of adaptive marching cube
methods [WLH92]. It directly uses the volume data and produces isosurface in multiple resolutions.
Although optimal coarse meshes can be found by postprocessing mesh reduction algotH g}
significant computational time is needed. Moreover, the optimality of the mesh representation is not
the main concern of the people such as surgeons. Instead, the speed of the algorithm, the accuracy
and the triangle count of the generated meshes are more important to a surgeon who may have to try
different threshold values to explore the tumor surfaces and interact with them. Our algorithm can be
served for such purpose.
Since we use simple rectangular boxes instead of octree cubes, this approach provides more flex-
ibility in partitioning the volume, hence captures more isosurface regions with simple geometry. It
is faster than postprocessing mesh simplification methodsf&I3, SCHR92, TURK92, DEHA91],
though the mesh may not be optimally reduced. The proposed algorithm can serve as a companion

to the mesh optimizer, since the coarse mesh produced can be a better initial guess for the optimizer.
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Adaptive skeleton climbing is a fast heuristic algorithm, rather than a path to a strict optimum.
Currently, the proposed algorithm subdivides the volume into sub-volumes based on the simplicity
criteria suggested in Section 3.1. Itis atopological criteria instead of a geometrical criteria. This leads
to a difficulty in measuring and controlling the geometric error between the generated mesh and the
true isosurface being represented. To use the generated meshes in the level of detail applications, an
error measurement is needed. This can be done if the finest mesh is treated as the “true” isosurface.
Then the geometric error can be estimated by comparing the generated mesh with the “true” mesh.
A more direct approach to generate mesh with desired geometric error is to modify the subdivision

criteria in the adaptive skeleton climbing to a geometrical criteria.
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(@) (b)

(©) (d)

Figure 4-14: Visual comparison of the effects of block size for an algebraic surface, "knot64”. (a)
N=1,(b)N=2, (c) N=4, (d) N=8.
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Figure 4-15: Visual comparison of the effects of block size for landscape data "Mt. St. Helens”. (a)
N=1,(b)N=2, (c) N=4, (d) N=8.
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Figure 4-16: Visual comparison of the effects of block size for a CT data of human head, "Head1".
(@ N=1, (b)N=2, (c) N=4, (d) N=8.
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(d)

Figure 4-17: Visual comparison of the effects of block size for another CT data of human head,
"Head2". (a)N=1, (b) N=2, (c) N=4, (d) N=8.



Chapter 4. Triangular Mesh Generation 47

Figure 4-18: Visual comparison of the effects of block size, for a CT data of blood vessels in the
head, "Arteries”. (a)V=1, (b) N=2, (c) N=4, (d) N=8.
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Chapter 5

Image-based Approaches

In Part | of this thesis, we introduce a geometry-based simplification algorithm which generates sim-
plified mesh directly from the volume data. Take example “Head 1” from Table 4.1. The coarsest
resolution of the model requires 159,207 triangles to represent. This is only the number of triangles
for one object. If the scene contains thousands of such objects, real time rendering will be impossible
given the current technology. Using the view-dependent simplification algorithms can improve the
rendering speed by displaying coarser mesh when it is far away or occluded. However, if the scene
contains thousands of semi-transparent skull models overlapping each other and it is viewed from a
close distance, any view-dependent algorithm is helpless in this case.

There is an increase in believing that geometry-based approach will not achieve the goal of real-
time display of arbitrarily complex scene. The time complexity of any geometry-based renderer is
a function ofn, the number of primitives in the scene, which may be arbitrarily large and slows
down the rendering. The solution to this problem is to design a renderer with a time complexity
independent ofi. This leads to the research iofiage-based modeling and renderjmgodeling and
rendering using images only.

Besides time complexity, another major reason for the emergence of image-based computer
graphics is the difficulty in modeling real world scenes/objects. As mentioned in Chapter 1 and
illustrated by Figure 1-2, image-based computer graphics synthesize desired images by warping and
compositing the reference images. No explicit geometry model exists during the synthesis. Modeling
becomes a process of taking photographs. Taking photographs of real world scene is usually easier

than constructing the geometry representation.

5.1 Motivation

Previous work (described in Section 5.2) mainly focus on finding the correct view given a set of ref-
erence images. The illumination of the scene captured by the reference images is commonly assumed

unchanged and carefully designed. Hence the illumination in the final desired image will also be
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fixed In other words, we have a renderer that supports the change of viewpoint, viewing direction
and field of view, but not the change of illumination. Apparently, such rendenecdsnpletefor the
computer graphics usage. Our motivation is based on the neecbafigletdmage-based renderer.

There are a few work done on the illumination of images. Unfortunately, all of them has some
restrictions or limitations. One common limitation is that all object surfaces visible in the image
must beLambertian This is a very strong assumption which is impractical for real world image
containing specular surfaces. Another limitation is Wievpoint is commonly assumed fixéchat
is, although we can change the lighting, we cannot change the viewing direction. One of the previous
work restricts the type of illuminatioto only outdoor illumination. Therefore it can only render
the scene under the sunlight. One more problem is that some of dbenot allow controllable
illumination even though they can change the illumination. We will discuss it in detail in the next
section. Generally speaking, all previous work are not general enough.

In this thesis, we will introduce a completely new ageheralconcept that allows the re-rendering
of arbitrary image under any illumination. Thereng assumption on the surface propertseen in
the image. There iso restriction on the type of illuminationAt the same time, theiewpoint of
the image can be changed well. One more importance is that our approach offersrdrollable
illumination.

To calculate the reflected radiance outgoing from a surface element, we need to know the re-
flectance of that surface element. A general description of reflectancehglifextional reflectance
distribution function(BRDF). It is actually a table of reflectance values recording the reflectances of
the surface when the surface is viewed from different direction and illuminated by a light source from
various direction.

Without the geometry, there is no way to measure or specify the BRDF of a surface element seen
in the image. To allow the illumination to be done in image-based systems, we introduce the concept
of measuring the apparent BRDF of a pitsl treating a pixel as an ordinary surface element. We
will show later in this thesis how these pixel BRDF can be used in re-rendering of any image-based
scene under any lighting condition. A series of techniques will also be introduced to make the idea

practical.
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5.2 Related Work

Previous work can be roughly classified into two main streams. The first stream focuses on determin-
ing the correct perspective view. The second stream of research focuses on re-rendering the scene

under different illumination.

5.2.1 Finding the Correct View

Images have long been used in computer graphics as an approximation of surface details. This appli-
cation is commonly known as texture mapping. Its simplicity and efficiency make it popular. The ba-
sic idea of texture mapping is to modulate various surface properties of the object according to the tex-
ture image. Many variants of texture mapping are proposed during the past three decades. The origi-
nal texture mapping [&€rm74] changes only the color parameter of the surface. If the specular reflec-
tion is changed according to the texture, it is known as environment mapping{B, GREE36a].

If the normal vector is perturbed according to the texture, it is known as bump mapping/[@b].

Others change the glossiness coefficientif8a], transparency [&RD84, GARD85], diffused re-

flection [MiLL 84], surface displacement ffdk84a], shadows [Gok84a, REEV87, FEGA92], and

local coordinate system [K1185, CaBr87]. Heckbert [HECk86] provided a comprehensive survey

of various usage of texture mapping. Most of texture mapping techniques treat images as an ap-
proximation of small geometry details. Images are frequently used as a component of the geometry
models. Since the small geometry details being approximated by the texture image are in microscopic
scale, they can be regarded as fixed even the viewpoint changes.

Recently, researchers generalized the idea and began to use images to approximate larger geom-
etry. In other words, images are used to model the whole object, not just a component. To do so,
one major issue has to be solvéidding the correct images when the viewpoint chandesdey et
al.[FOLE90] developed a system which can rotate raytraced voxel data interactively by interpolat-
ing images captured from certain viewing direction. The interpolation method used is not physically
correct. Chen and Williams [@EN93] interpolated views by modeling pixel movement, resulting in
physically correct interpolation. Missing pixels due to occlusion are filled by partial rendering. Max
and Ohsaki [M\x95] used a similar approach in modeling trees.

Later, Chen [GiEN95a] described an image-based rendering system, QuickTime VR, which gen-
erates perspective views from cylindrical panoramic image data by warpimeN@5b]. Note that

the panorama is actually the texture image used in previous environment mapping resemsaié [B
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GREE86a]. The perspective view can also be achieved by drawing a sphere from inside with the envi-
ronment texture mapped onto the sphere. McMillan and BishapMM5] also used panoramic im-

age as the fundamental images in their image-based renderer. They also mentioned that image-based
rendering is a problem of sampling and manipulating the plenoptic functiog[81]. A method to

sample and reconstruct this plenoptic function is proposed. Faugeras and Rebe®3fF applied

the epipolar geometry to reconstruct the desired image using only a few reference images.

Image morphing [BIE92] can be classified as a special type of image-based rendering. The
major goal is to find a smooth interpolation from one image to another one. The interpolated images
need not be physically correct. Interpolation is done by first warping the shape of object in both the
source and target images. Then these two warped images are cross-dissolved to produce the desired
image. If extra geometric information (such as camera parameters) can be determined, the morphing
can produce physically correct images. Seitelf®6] extracted the camera information from the
reference images and then used it to produce morphed frames which are physically correct.

Levoy and Hanrahan [£vo96] and Gortleret al.[GORT96, Gu97] reduced the 5D plenoptic
function to a 4D light field or Lumigraph. They used two planes to parameterize any ray passing the
volume (light slab) enclosed by these two planes. The light field or Lumigraph is actually a table of
radiances along the rays passing through the light slab. The table is hence indexed by four parameters
(each plane requires two parameters to addressitiggoen the plane). This simplification allows
the view interpolation to be done by standard texture mapping techniques, which can be further ac-
celerated by hardware. This two-plane organization will be described in more detail in Section 8.1.1.
Instead of two-plane structure, Ihehal. [l HM97] used spherical structure to record the radiances.

Debevecet al.[DEBE96] used a hybrid approach (both geometry and image) to model architec-
tural objects. Geometry representation is used to approximate larger structure while image is used to
approximate smaller geometry. This approach is very similar to early texture mapping. One unique
feature of their work is that the geometry surface is not only mapped with one single texture image,
but with multiple texture images captured from different viewpoints. During rendering, the textures
will be blended to give a smooth realistic 3D rotation. A similar method is also proposed bgPulli
al. [PuLL97].

Recently, animated image-based objects are developed by Live Pictue9[d].
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5.2.2 Re-rendering Under Different lllumination

Another stream of research focuses on re-rendering the image under different illuminations. Hae-
berli [HAEB92] re-rendered the scene using simple superposition property. However, the direction,
the type and the number of the light sources are limited to the lighting setup during the image cap-
turing. Nimeroffet al.[NIME94] efficiently re-rendered the scene under various natural illumination
(overcast or clear skylight) with the knowledge of the empirical formulee that model the skylight
in mind. Hence the illumination in the desired image is restricted to the outdoor illuminaton,
illuminated by the sunlight only. Moreover, the viewpoint is always fixed.

Belhumeur and Kriegman [B.H96, ZHAN98] used singular value decomposition to extract a set
of basis images from the input reference images. The desired image can be synthesized by linear com-
bination of these basis images given a set of coefficients. In other words, the illumination is changed
through controlling the values of the coefficients. Since there is no intuitive relationship between the
values of the coefficients and the direction of the light source, they cannot control the direction of the
light source in the desired image. That s, the illuminatiomisontrollable Moreover, they assumed
the objects in the scene mustlb@mbertian This is a very strong assumption and nearly impractical
for real world images. In Belhumeur and Kriegman’s work, the viewpoint is also assumed fixed.

Seitz and Kutulakos [8T98] proposed an interesting “image-based” editing framework. The
algorithm first constructs an intermediate voxel data structure (geometry representation) using the
voxel-coloring technique [§T97]. Then the voxel data is used for editing. With the voxel data,
they can re-render the scene under a different illumination. However, they still have a Lambertian
surface assumption during the voxel-coloring process. Hence, the framework only work for limited
surface types. Strictly speaking, their framework involves a reconstruction phase, voxel-coloring,
which reconstructs an intermediate geometry representation. Therefore, the rendering complexity
will still depend on the complexity of the reconstructed scene, in this case, it is the resolution of the

voxel representation.

5.3 Summary

In general, the first stream of previous work focuses only on the correct view synthesis and neglects
the illumination capability. On the other hand, the work in the second stream is not general enough

to allow re-rendering of arbitrary images under arbitrary lighting condition. More importantly, the
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illumination is not controllable. Starting from the next chapter, we will introduce the general concept
of measuring apparent BRDF of pixel. This allows us to re-render arbitrary images under arbitrary,

controllable illumination.



Chapter 6

The Plenoptic Models

In traditional geometry-based computer graphics, the scene is first modeled as a set of geometrical
entities. Then a physical simulation of light propagation takes place to approximate the image of the
scene formed on our retinas. Hence the fundamental computation model of geometry-based com-
puter graphics is a physical simulation. It allows us to evaluate the correctness of the modeling and
rendering techniques.

For image-based computer graphics, a fundamental computation model is also needed to allow us
to evaluate the usefulness of various image-based techniques and to develop new techniques based on
it. McMillan [M cM197] suggesteglenoptic functiofADEL91] to serve as the fundamental model.

In this chapter, we will introduce the plenoptic function in details. By comparing its capability
with the physical simulation in the traditional geometry-based computer graphics, we demonstrate
the generality of this model.

The plenoptic function is first proposed as a model for evaluating various human vision model,
not for computer graphics. Although the original formulation is very general, it is not convenient to
express one crucial factor in traditional computer graphics, naithehgination. In this chapter, we

propose an extended formulation of plenoptic function which includes illumination as well.

6.1 The Plenoptic Function

Adelson and Bergen [BEL91] proposed a seven-dimension function knowplasoptic functiort.
Plenopticis the combination of a Latin rogilenusmeans plenty or complete, and the worgtic. It
describes the irradiance from any directiorarriving at any point” in space, at any timeand over

any range of wavelengths They formulate the function as follows,

[ =P(by, 6y, By, By E. 1, M), 6.1)

LA similar terminology known agight fieldwas coined by A. Gershun [ERs39] to describe the radiometry properties
of light in a space.
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or in the short form,
I=P(V,E,t\), (6.2)

where [ is the irradiance,
E=(F,, E,, E.) is the position of the center of projection or the eye,
V= (sin 8, cos ¢, cos 8, sin 8, sin ¢,) specifies the viewing direction originated
from the eye,

t is the time parameter.

Basically, the function is formulated to mimic the idealized human eye. This idealized eye can be
placed at any poink in the three dimensional Euclidean space. We then can place the reference axes
at this position to define the coordinate system with the idealized eye being the origin. In graphics
terminology, the space associated with this coordinate system is known egetspaceA viewing
directionV originated from the ey can be specified by an azimuth angleand a zenit? angle
9,, measured from reference axeand; respectively. Figure 6-1 shows the geometric relationship

between these parameters.

Figure 6-1: Geometric elements of the plenoptic function.

Two parameters are not shown in figure 6-1. Paramgtgpecifies the wavelength of the light

while parametet specifies the time. In most computer graphics applications, we are only interested

2Note in Adelson and Bergen’s original formulationf&L91], they use the elevation angle instead of the zenith angle.
There is no functional difference between these two types of angle specification. The reason we use zenith angle in
this thesis is because it is more convenient when discussing computer graphics related problems, since zenith angle is
conventionally used in radiosity literatures§@e93, SLL 94].
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in sampling color according to a particular color space, such as red, green and blue (RGB). Others
applications such as color publishing may interest in sampling at four wavelengths (CYMK). For an
in-depth discussion of color theory in computer graphics, readers are referrediio§®f]. The time
parameter actually models all other unmentioned factors such as the change of the scene or the
change of illumination. Whenhis constant, the scene and illumination are fixed. Theoretically, the
plenoptic function can be continuous over the range of all its parameters.

Geometrically, the parameterg8’{, £,, £.) define the Euclidean position of the center of pro-
jection. Parameterd(, ¢,) define a ray originated from the center of projection. The geometric
structure of this ray space is equivalent to a unit sphere. Figure 6-2 shows the space graphically.
The complete plenoptic function can be imagined as infinite number of such sphere placing all over
the Euclidean space. Each sphere fires infinite number of rays from the center of projection in all

directions. From now on, let’s call the spherepéanoptic sphere

Figure 6-2: The ray space.

Finding the complete plenoptic function is not possible since it is defined all over a continuous
parameter space. However, we can sample those regions that we are interested. Basically, finding the

plenoptic function is a problem sampling

6.2 Subsets of Plenoptic Function

A digital image is a set of adjoined pixels, usually (not always) organized in rectangular form. The

value of each pixel is dependent on the type of projection used during the scene capturing. Hence
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a digital image representing a captured scene is not just a set of adjoined pixels, but also includes
a projection. The most common type of projection is perspective projection since it mimics the
projection that takes place in the human eyes. Another useful projection type is orthogonal or parallel
projection which is commonly used in engineering drawing. Other types of projection like fish-eye
and panoramic projections are also used for specific applications. In this section, we will demonstrate
that an image with any type of projection can be regarded as a partial sampling of the complete

continuous plenoptic function.

6.2.1 Perspective Projected Images

The most popular type of projection used in image capture is perspective projection. Its incorpo-
ration of foreshortening allows human to perceive depth in a two dimensional image. To specify a
perspective projection, we needenter of projectiorandprojection plane The center of projection
is simply a positior”' in the Euclidean space. The projection plane can be defined by the viewing
vectorD, the upward vectol/, the verticaky, and the horizontak;, field of view angles.

By fixing the parametek. of the plenoptic function at' and restricting viewing directiord(,¢,)
to be within the viewing frustum defined by the perspective projection, we have a partial plenoptic

function that is equivalent to a perspective projected image.

E=C, i=D, j=U,

LMy O T
2 - - 2 2 — 2 - 2
Figure 6-3 illustrates the point graphically. The region with noisy pattern on the plenoptic sphere
contains the irradiance values that can be represented by a perspective projected image. Hence a

perspective projected image is only a subset of the plenoptic function.

6.2.2 Parallel Projected Images

Another useful projection is parallel projection or orthogonal projection which is often used in engi-
neering drawing as it preserves the length. Parallel projection is specified by a rectangular viewing
box defined by two extrema points.{in, Ymin, Zmin) @Nd Emax, Ymax, 2max) &S iN Figure 6-4. One
surface of the box is defined as the projection plane. To generate the image, all points inside the

viewing box are projected onto this plane along the normal vetof projection plane.
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Figure 6-3: The set of irradiance values represented by a perspective projected image.

By fixing the viewing direction{,, ¢,) of the plenoptic function along the projection direction
and restricting the center of projectiéhon the projection plane, we get a partial plenoptic function
that can represent any irradiance values shown in a parallel projected image.

=D, =0, 0U:g, by =0, D-E=0,

Er = Zmin, Ymin < Ey < Ymaxs  Zmin < 2 < Zmax.

Figure 6-4 illustrates the concept graphically. Each sphere in the image represents one instance
of the plenoptic sphere at different locatiéh Once again we show that the parallel projected image

is only a subset of plenoptic function.

6.2.3 Panoramic Images

Panoramic image is first used in computer graphics as the texture map used in environment map-
ping [BLIN76, GREES6D]. Recently, Chen [@EN95a] introduced a commercial image-based ren-
derer which efficiently warps [@EN95b] the cylindrical panoramic image to perspective image. Due

to wide availability of these panoramic image viewers, such as QuickTime \W&f85a] and Re-
alSpace VR [LvE97], there is a growing need of producing panoramic imagesNIV®5, SEL97].

Most currently available panorama are in cylindrical form (the central cylinder in Figure 6-5(a)) since

it can easily unfolded to a rectangular image. On the other hand, spherical panorama (the central

sphere in Figure 6-5(b)) requires special handling and more computation.
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Figure 6-4: Parallel projected image as subset of plenoptic function.

Panoramic image is also a subset of plenoptic function. By fixing the paranie&eithe center of
projection of the panorama, this partial plenoptic function can represent any irradiance values shown
in the spherical panoramic image (Figure 6-5(b)).

E=C.

For cylindrical panorama, we can further restrict the viewing direction parameterbe within

the vertical field of view ¢, ) and alignj with the cylinder axid’.

E=C, j=U,
_%<Z_0U<_”
2 =2 -2

The region with noisy pattern in Figure 6-5(a) shows the subset of plenoptic function that is
represented by a cylindrical panorama. Spherical panorama can be represented by a plenoptic sphere
(Figure 6-5(b)).

6.2.4 Images With Any Type of Projection

No matter what kind of projection is used during the scene capture, the irradiance should be recorded
by shooting aray from the center of projection or along a given projection direction into the scene.
Therefore if the parameter space of the plenoptic function can express any ray in the space, the

plenoptic function should be able to capture any irradiance coming along that ray. Hence an image
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(b)

Figure 6-5: Subsets of plenoptic function represented by (a) cylindrical panorama and (b) spherical
panorama.

with any type of projection should be a subset of the plenoptic function. Angkrean be represented

in a parametric form composing of an origihand a unit directional vectap.
R=C+t,D,
where (' is the origin,

D is the ray direction, normalized,

t, is a parameter.

By fixing the parametef. of plenoptic function at” and the direction parameter, (¢,) along
the directionD, the plenoptic function is able to capture irradiance along anyRayTo simplify
the formulation, we align the reference axis with global coordinate system. Hence, dirgctiof
aligns withy axis and directiorp,, = 0 aligns withz axis. Figure 6-6 illustrates the idea graphically.

E=C,

D.

<u
I

6.3 Comparing with Geometry-based Computer Graphics

In the last section, we show that images captured by any kind of projection are only subsets of the

plenoptic function. Now we push a little bit further to see whether image-based computer graphics
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Figure 6-6: Parameters of plenoptic function can express any ray.

based on plenoptic function can perform all the functions that traditional geometry-based computer
graphics can do. To simplify the discussion, we assume the geometry-based systems use only per-

spective projection.
6.3.1 Panning, Tilting and Zooming

When the center of projection is unchanged, geometry-based camera model can perform three basic
operations, namely panning, tilting and zooming. To do panning in image-based model, we can
simply adjust the range of parametgy. Figure 6-7 shows the original (a) and the changed (b)
regions in the plenoptic function when panning takes place. By gradually changing the value of the

panning parametey in the following inequality, a smooth panning can be performed.

ap
2t

op
_? + 5p S (bv S
where «, is the horizontal field of view,
d, is the parameter to pan,

¢, is azimuth angle in the plenoptic function.

Similarly, tilting can be done by controlling the range of paraméteusing the following in-
equality. Figure 6-8 shows the regions of plenoptic function affected before (a) and after (b) tilting.

(8% s (8%
L5 <=——0,< =456
2‘|‘t_2 _2‘|’t7

where «, is the vertical field of view,
d; is the parameter to tilt,

6, is zenith angle in the plenoptic function.
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(b)
Figure 6-7: Panning in the plenoptic model. (a) Original (b) After panning.

() (b)
Figure 6-8: Tilting in the plenoptic model. (a) Original (b) After tilting.
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Zooming can also be done by controlling the ranges of both the paramigeatde, . By increas-
ing the value of the zooming parameter we can perform zoom out. On the other hand, decreasing
the value of§, allows us to zoom in. Figure 6-9 shows the various regions covered in the plenop-
tic sphere when zooming in and out. Zooming in and out is easily controlled by the following two
inequalities.

Oéh(s
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where «, is the horizontal field of view,

o, IS the vertical field of view,

d, is the parameter to zoonh, > 0,

¢, is the azimuth angle in the plenoptic function,

6, is the zenith angle in the plenoptic function.
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Figure 6-9: Zooming in the plenoptic model. (a) Original, (b) zoom in, and (c) zoom out.

6.3.2 Walkthrough

Walking through a static scene is another basic operation that can be easily done in geometry-based
computer graphics. In image-based computer graphics, this can also be done by translating the center

of projectionZ along the translational vectdr as follows,

—

E'=E+T,
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where F is the original position of the center of projection,
E' is the new position of the center of projection after translation,
T is a translational vector.

Figure 6-10 shows the walkthrough done in plenoptic function graphically.
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Figure 6-10: Walkthrough in plenoptic model.

6.4 The Plenoptic-lllumination Function

The original formulation of plenoptic function is very general and complete. Since its introductionis
used for evaluating human vision model, the scene is almost always assumed fixed and the illumina-
tionis unchanged. Hence the time parametsfixed in most cases. However, for computer graphics,
what we concern is the synthesis of thesiredimages. The capability of changing the lighting setup
is essential. Unfortunately, the illumination and other scene changing factors are embedded inside a
single time parametét In this section, we modify the original plenoptic formulation to include the
factor of illumination.

What we do is to extract the illumination factor framTo do so, we extend the original formula-
tion to allow an explicit specification of the illumination component, the direction of the light source,

L. The new formulation is calleplenoptic-illumination function

I =Py(L,V,E ), (6.3)
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where [ is the irradiance,
L= (sin 6; cos ¢y, cos 6y, sin 8y sin ¢;) specifies the direction of a directional light
source,
V= (sin 8, cos ¢, cos 8, sin 8, sin ¢,) specifies the viewing direction originated
from the eye,
E=(FE,, E,, E.) is the position of the eye or center of projection,

t’ is the time parameter which embeds all other scene changing parameters.

The difference between this new formulation and the old one (Equation 6.1) is the explicit in-
clusion of parameter light vectdr which specifies the direction of a directional light which emits
unit radiance. The function tells us the radiance coming from a viewing direttiamiving at our
eye I/ at any timet’ over any wavelength when the whole scene is illuminated by a directional
light source from direction- L with unit radiance emission. Graphically, it can be illustrated by

Figure 6-11. Comparing to Figure 6-1, a new light vedtas added.

Figure 6-11: Geometry elements of plenoptic-illumination function.

The reason to specify the function using a directional light source is to simplify the construction.
Moreover, even a directional source is used for parameterization, we shall see in Section 7.5.5 that it
can be converted to other type of light source if extra geometric information is given. Since we are
using a directional light source, there is no difference in saying where the light Veizariginated

from. Therefore we choose to say the vedias originated from the ey#&'. This is simply a notation.
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With the new formulation, we can easily pose the following questhat will we see if the scene
is illuminated by the sun at 10:00 am and at 6:00prBychanging light vecto and fitting it into

the plenoptic-illumination function, we can retrieve the required answer. Figure 6-12 demonstrates

such query.
@
/7
&
Figure 6-12: Querying the plenoptic value given the light vedtor
6.5 Summary

In this chapter, we describe the plenoptic function which is suitable to act as the fundamental model
for image-based computer graphics. Any image can be regarded as a subset of the complete plenop-
tic function. To demonstrate the generality of the plenoptic model, we compare the capability of
image-based computer graphics based on plenoptic model and the traditional geometry-based com-
puter graphics. The original formulation of plenoptic function allows standard camera motion such
as panning, tilting, zooming and walkthrough. For scene and illumination changing, even though the
original formulation can still express them using a single time paranigiéis very inconvenient

to query what the scene looks like when the scene is illuminated by a light from a given direction.
lllumination is one crucial parameter in image synthesis. Therefore, we modify the original formula-
tion of the plenoptic function to include an explicit illumination parameter. The new formulation is
plenoptic-illumination function. We shall see in the next few chapters how useful this new formula-

tion is when explaining our new image-based techniques that allow controllable illumination.
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Pixel’'s Bidirectional Reflectance Distribution Function

In Chapter 5, we mention that previous work in image-based computer graphics can be subdivided
into two major streams. The first stream focuses on determining the correct perspective view while
the second stream focuses on re-rendering the static scene under different illumination. In the first
stream of previous work, the illumination of the scene is usually assumed to be fixed and carefully
designed. On the other hand, the viewpoint is assumed fixed in the second stream. Some previous
work [BELH96, ZHAN98] can re-render image undeuacontrollablelight source. Other [NME94]
re-renders images under outdoor illumination only. Moreover, taynothandle scene withigh
specularitydue to their fundamental assumptions. For examples, scenes including a shiny glass or
mirror cannot be correctly re-rendered using their approaches.

In this chapter, we present a new representation of image data that allows the change of viewpoint
as well as the change of illumination. It is knowngsel BRDFE One thing we want to emphasize
is that in our new approach the illuminationasntrollableandgeneralenough to allow re-rendering
of any scene (including highly specular scene) under any lighting environment. It can be thought as
a special digital holographic stereogram that gives 3D illusion whenever the viewing direction or the
illumination changes.

One major goal of image-based rendering is to minimize the use of geometrical information while
generating physically correct images. With this goal in mind, the proposed image representation
allows the viewer to change the viewpoint and the scene lighting without knowing geometrical details

(say, geometry model) of the scene.

7.1 lllumination Models

To design an image-based representation that supports illumination, we need to know how illumina-
tion is done. For surfaces that do not emit light, they reflect the incoming light. Objects with different
surface properties reflect different amount and proportion of light energy. This derivation allows us

to distinguish surfaces with different color, shininess and surface roughness. For example, the reason

68
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we can tell the object is red is because the surface reflects only the energy of the components around
the red light and absorbs energy of other components in the light spectrum. Figure 7-1 shows how the

light spectrum has been changed after reflection.
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Figure 7-1: How can we tell an object is red?

Besides the surface properties, we know that the reflected light is also dependent on the direction
of the incoming light and the direction of the viewing. The details of how a surface reflects light are

described by various illumination models.

7.1.1 Local lllumination

In early years, most of the proposed illumination models are empirical. They are designed to mimic
what human observed at different lighting condition. They are usually not physical-based. The most
popular illumination model used (even in nowadays) is the Phong’s illumination modeNFs]. It

is formulated as,

I=TLps + Y Llpa(N-L) + ps(B-V)"], (7.1)
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where I, is the intensity of the ambient light,
I, is the intensity of a point light source,
p. 1S the ambient reflection coefficient,
pa is the diffuse reflection coefficient,
ps is the specular reflection coefficient,
N is the unit surface normal vector,
L is the unit light vector,
R is the unit mirror reflection vector,
V is the unit viewing vector,

n is the specular reflection exponent.

Figure 7-2 illustrates the geometric relationship among elements in the above formula. There are
many variations in the formulation of the Phong’s illumination model. All variations must include
three basic reflection components, namely the ambient, diffuse and specular reflections.

—>

N
—» —»
L R

4

Figure 7-2: Geometry relationship between elements in the local illumination model.

Diffuse reflection component, sometimes called Lambertian reflection, accounts for the dull,
matte reflection of surfaces, such as chalk. Diffuse surface reflects equal amount of light intensity
in all directions. Diffuse reflection is view-independent. It is proportional to the the dot product
(N - L). Figure 7-3(a) shows a diffuse surface which reflects equal intensity in all directions (repre-
sented by the spherical gray region). On the other hand, specular reflection component accounts for
the highlight on the shiny surfaces. Specular surface reflects unequal amount of intensity in different
directions. Most intensity are reflected along the mirror reflection direction (Figure 7-3(b)). There-
fore specular component is view-dependent. It is proportional to the power of dot pl(d?.}lu&)”.

Mirror is one extreme case that its reflection contains mostly specular component. However, most
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surfaces in the real world are in between diffuse and specular surfaces (Figure 7-3(c)). Although
the Phong’s model is empirical, it turns out that the physical-based modekspl7, Cook81] only

have a little difference in the formulation of the diffuse and specular components. In most cases, the
empirical Phong's illumination model can still give a realistic appearance cdiceirf

. N . N . N
-L -L

_|_

(a) (b) (©)

Figure 7-3: Most surfaces are combination of pure diffuse and pure specular surfaces.

The last reflection component is the ambient reflection (the t#&py). It accounts for all the
indirect intensity contribution reflected from nearby surfaces. ilicaghlly, it is assumed to be con-
stant, since the true value is very difficult to find. Itis this constant ambient assumption characterizes
the illumination model akcal. Since the reflected intensity can be calculddedlly with the knowl-
edge of local surface properties,( pqs & ps) and the geometric relationship between the interested
surface element and the light sources. There is no need to know the surrounding geometry (global)

since no indirect intensity contribution is accounted by the formulation.

7.1.2 Global lllumination

The lack of indirect contribution makes the early syntheticimage looks artificial. This artifact leads to
the research oflobal illumination One famous technique is ray tracing v 80] which produces
more realistic images. In the middle of 1980’s, researchetR|£84, NISH85] began to apply radios-
ity methods to computer graphics and produced the state-of-the-art realistic imagery. Radiosity meth-
ods were first developed for computing the radiant energy interchange between surfac84]S
These methods are used in various engineering applications, such as the analysis of radiative transfer
between panels on spacecratft.

Early illumination models usmtensityas one measurement of amount of light contribution. This
guantity is usually not well-defined. Different models usually have different interpretation on this
guantity. One of the contributions of applying radiosity methods to image synthesis, is radiosity

methods use radiometry for measurement of radiant energy transfers. Radiometry provides a set
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of physical and objective quantities. From now on, we will replace “intensity” with radiometric
guantities, such as radiance and radiosity, in the following discussions.

The details of radiosity methods is out of the scope of this thesis. Interested readers are referred
to the more complete literaturesif$81, CoHE93, SLL94]. Here we will only provide a general
idea of radiosity methods. The radiosity (total power) coming out from a surface element can be
calculated by the followingradiosity Equation

cosfcos @

Bla) = B@)+o() [ _B() Vi, y)dy, (72)

yeS e

where z is the surface element of interest,

y is any other surface element in the environmgnt

B(z) is the radiosity (total power leaving) of the surface element

E(z) is the exitance (emitted energy) of the surface element

V(z,y) is the visibility betweer: andy,

6 is the angle between the normakadnd the line connectingandy (Figure 7-4),

¢’ is the angle derivation at (Figure 7-4),

r is the distance between theandy,

p is the bidirectional reflectance.

Figure 7-4 shows the geometric relationship between each elements in the radiosity equation.

Figure 7-4: Geometric relationship between elements in the radiosity equation.
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Intuitively speaking, the radiosity equation tells us that the radiosity of a surface elerisetite
sum of the radiant energy it emits (the first term on the right side of Equation 7.2) and the reflected
radiant energy (the second term) which is contributed by all other surface elepientise scene.
Just like the previous local illumination model, the reflected radiant energy is also dependent on the
surface properties and the geometric relationship between the interested surface eleraadtits
surrounding. But here, we are not just accounting for one or more specialized light sources, but all

surfaces. In other words, every surface can be regarded as “light source”.

7.2 BRDF Representation

By inspecting the illumination models described in Section 7.1, we can find that the elements charac-
terizing the appearance of a surface are the reflectances (reflection coefficients in local illumination
models). To calculate the light going out from a surface element in a specific direction, the reflectance
of this surface element must first be determined.

The most general form of representing surface reflectivity ishildérectional reflectance dis-
tribution function(BRDF) [KAJ185]. It describes the directional distribution of reflected light. In
radiometry, BRDF is defined as the ratio of radiance in the outgoing direction and the radiant flux
density (irradiance) along the incoming direction. It is a function of four angle paraméjets, (6;,
¢7) or two vector parameteﬂ§ andZ which specify the direction of the viewing vector and the light

vector respectively.

LT ($7 0U7 ¢'U)
L, (z, 0, ¢)) cosbdw’

where L. (z, 8, ¢) is the radiance at along direction{,¢),

p(‘?,f) :P(Omemeh(bl) = (73)

(6,.¢,) specifies the viewing direction,
(6;,¢;) specifies the light source directidn

dw is the differential solid angle.

Figure 7-5 illustrates the geometric relationship among the elements in the BRDF formulation. In
the above formula, there is a basic radiometric quantity we have not yet explained. Itaditrece
Radiancel,.(z, 8, ¢) is defined as the amount of energy traveling at some poaibng a specified

direction @,¢), per unittime, per unit area perpendicular to the direction of travel, per unit solid angle.
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Figure 7-5: BRDF

Although it seems complex, BRDF can intuitively be regarded as the ratio of energy leaving in direc-
tionV and entering from directioh (Figure 7-5). The termw in the denominator is the differential
solid angle (a differential area on the unit sphere, see Figure 7-6). It is eqiialdd;d¢;. The
termcos 6; is used to project the differential area (solid angle) onto the surface plane. Therefore the
aggregate terros 0;dw (projected solid angle) can be thought as a weight to normalize, 6;, ¢;).

The BRDF is basically a table of reflectances indexed by four angles or two vectors.

Figure 7-6: Differential solid angle.

Since the BRDF is a four-parameter function, it is not straightforward to imagine what will it
looks like in 3D. It will be easier to visualize if one of the two vector parameters is fixed. When we

fix one vector parameter, the BRDF reduces to a spherical function or a unidirectional reflectance
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distribution function (URDF) which only depends on one vector parameter. Whisnfixed, it
becomes a function df only. It tells us the reflectance of the interested surface when we are looking
from various viewing direction inside the hemisphere enclosing the surface element. In most cases,
the spherical functions will be very similar to the reflectance function (Figure 7-3(c)) in the empirical
Phong's illumination model. Figure 7-7 shows a set of spherical functions (URDR$)vttien we

fix the L at various directions. Note each one of them is quite similar to the one in Figure 7-3(c).

-L X I K’,} -L fvfe
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\

Figure 7-7: BRDF as a set of spherical functions (URDFs).
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7.3 BRDF of Pixel

The most straightforward approach to include the illumination variability of the image-based com-
puter graphics is to measure the BRDF of each object material visible in the image. However, this
approach has several drawbacks. While the BRDFs of synthesized object surfaces may be assigned
at will, measuring those of all objects in a real scene is tedious and often infeasible. Imagine a scene
containing thousands of small stones, each with its own BRDF. The situation worsens when a single
object exhibits spatial variability of surface properties. Furthermore, associating an BRI2Eo

object in the scene causes rendering time to depend on the scene complexity.

One might suggest, for each pixel in each view, to measure the BRDF of the object surface seen
through that pixel window. This approach breaks the link to the scene complexity, but introduces
an aliasing problem. Consider pixélin Figure 7-8: multiple objects are visible through the pixel
window. Note that this will frequently happen in images showing distant objects. Even if only one
object is visible, there is still the problem of choosing surface normal for measuring BRDF when the
object silhouette is curved (see pixglin Figure 7-8).

Our solutionis to treat eagdixelon the image plane as a surface element withgparenBRDF.

Imagine the image plane as just an ordinary planar surface, and each pixel can be regarded as a surface
element. Each surface element emits different amounts of radiant energy in different directions under
different illuminations. In order to measure the (apparent) BRDEawh pixel, the location of the

image plane must be specified (see Figure 7-9), not just the direction. By recording the BRDF of a
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Figure 7-8: Aliasing problem of measuring BRDF of object surface visible through the pixel win-
dows.

pixel (Figure 7-9), we capture tteggregate reflectancef objects visible through that pixel window.
The light vectorZ from the light source and the viewing vectorfrom the viewpoint/ define the
two directions of the BRDF. This approach does not depend on the scene complexity, and removes
the aliasing problems described before. It is also a unified approach for both virtual and real world
scenes.

Note that the apparent BRDF represents the response of the object(s) within a pixel to lightin each
direction,in the presence of the rest of the scenet merely the surface reflectivity. If the captured
images (natural or rendered) include shadows, shadows will appear in the re-rendered result. We will

show some example scenes that contain shadows later in this chapter.
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Figure 7-9: Measuring the BRDF offaxel.
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7.4 Measuring Pixel BRDF

To measure BRDF of a physical surface sample, the surface sample is first positioned in a goniore-
flectometer [WARD92, MC90]. By illuminating the sample from different direction on the hemi-
sphere and detecting the reflectance with a sensor from another direction. The apparatus can record
a table of reflectances indexed by light vecfoand the viewing vecto?’. BRDF of synthetic sur-

face [CaBR87] can also be recorded using similar approach using an imaginary gonioreflectometer.

In our case, the apparent BRDF of pixel can also be sampled similarly. Of course we cannot phys-
ically position the imagery pixel patch inside a gonioreflectometer and capture its BRDF. But we can
take photographs (render images) of the real world scene (virtual scene) under various illuminations.
To do so, we first fix the direction of a directional light source. Then photographs of the scene are
captured from various viewing directions over the sphere enclosing the pixel. Then the directional
light source is fixed at another direction and images are captured from various viewing directions
again. This process continues until the the directional light source has been placed all over the sphere

enclosing the pixel. Figure 7-10 illustrates the process. The process is,

For each direction (61, ¢1) or L of the directional light source
For each viewing direction (0, ¢y) OF 1%
Render the virtual scene or take photograph of the
real world scene illuminated by this directional

source and denote the image as Io, 6.6,

One choice for sampling pattern is the spherical grid as shown in Figure 7-10. Sampling on the
grid points of the spherical grid allows us to calculate the solid angle conveniently.

Careful readers may find that the above approach can only sample the BRDF of a center pixel
from each grid point on the spherical grid. For its neighbor pixel, which is not located at the center
of the sampling sphere, we cannot sample the BRDF of this neighbor pixel using the same set of
directional vectors. Figure 7-11 illustrates the difference between the center pixel and its neighbor in
2D. That is why we use a directional light source to illuminate the scene, since the light vector for
every pointin space should be the same when using a directional light source. In real life, a directional
light source can be approximated by placing a spotlight at a sufficient distance from the scene. For

the viewing direction, we can use orthogonal projection to project the 3D scene onto the 2D image.
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Figure 7-10: Capturing the BRDF offaxel.

In real life, this can be done by placing the camera at a sufficient distance from the scene. We shall

cover more practical issues on sampling in the next chapter.

Figure 7-11: Difference in the sampling direction for the neighbor pixel.

Traditionally, the BRDF is sampled only over the upper hemisphere of the surface element, since
reflectance must be zero if the light source is behind the opaque surface element. However in the case
of pixel BRDF , the reflectance may be nonzero even the light source is from the back of the image
plane. This is because the actual object surface may not align with the image plane (Figure 7-12).
Instead, the whole sphere surrounding the pixel has to be sampled for recording its BRDF. Therefore,
the range of zenith angkeshould bgo, 7.

If the pixel is real surface element, the pixel BRDF should be defined as follows,

radiance passing through the pixel in Io, 60,6000
(radiance due to light source ) cos Ojdw

p(0U7¢U7017¢1) — (74)

However, since the pixel is only an imaginary surface, the physical reflection does not take place

at the pixel window. Instead the reflection is taken place at the real surface behind the pixel window.
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Figure 7-12: The image plane may not be parallel with the object surface.

Itis meaninglessto scale the radiance due the light source by thedefha.w, which is the projected

solid angle. Hence, we drop this term and simply calculate the pixel BRDF as follows.

radiance passing through the pixel in I6, 606,01
(radiance due to light source ) '

p(0U7¢U7017¢1) = (75)

One assumption is that there is no intervening medium, which absorbs, scatters or emits any
radiant energy. Moreover, the pixel value in the captured image is simply assumed to be linear to the
true radiance. For synthetic images, this may not be a problem, since the pixel value is linear to the
computed radiance. For real world photographs, there is a non-linear relationship between the pixel
value and the radiance (Figure 7-13). To remove this assumption, we can apply the radiance recovery
process proposed by Debevec and MalikeHE97]. Although they have pointed out the quantity
recovered is not the true radiance, it is linear to the radiance. Unfortunately, more photographs need
to be captured in order to perform the recovery process.

Once the recording is finished, we have a 2D array of BRDFs. One BRDF for one pixel on the
image plane. Figure 7-14 shows an example 3image. It can be thought aspecial digital holo-
graphic stereograniBeNT83]. Normal holographic stereogram shows a different image whenever
the viewing direction change in order to give an illusion of 3D. Our “holographic stereogram” gives a
different image not just when the viewing direction changes but also when the light source direction

changes to give us an illusion of 3D object with adjustable illumination.
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Figure 7-13: Nonlinear relationship between pixel value and true radiance.
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Figure 7-14: A 2D array of BRDFs.



Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 81

7.5 Manipulating the BRDFs

Once the BRDFs are sampled and stored, they can be manipulated. Using the property of superposi-
tion [Busg60], the final radiance (or simply value) of each pixel can be computed. We proposed a
local illumination model (Equation 7.6) that makes use of superposition to re-render the image-based

scene from different point of view under different illumination.

radiance through pixel = > p(8,, ¢, 0}, ¢}) L, (x. 6}, 6}), (7.6)

where n is the total number of light sources,
(6,, ¢,) specifies the viewing direction,
(6i, ) specifies the directior,;, of thei-th light source,
L.(x, 8}, #) is the radiance alon@;, #{) due to the-th light source,

x is the position of the pixel.

Note the above illumination model is local. That is, it ordgcounts for the direct radiance
contribution from the light sources. No indirect radiance contribution is accounted for. One may say
that the pixel is not a physical surface element but a window in space, how come we can borrow the
illumination model which models the light reflection from real siwé. Thisillumination model is
notthe result of borrowing the existing illumination model buaisesult of utilizing the superposition
property of images

In Section 7.3, we mentioned that the pixel BRDF is actually an aggregate BRDF of all visible
objects behind the pixel. We will show here that how this aggregate BRDF can give us correct
image. Considek unoccluded objects, visible through the pixel viewed from directidn and are

illuminated byr light sources. The radiance passing through the pixel window in this view will be,

szLZ—I_szLZ _I_ZpkLZ
k

= 2l ZP%LZ +Zp] L

J

LIf there exist objects that occlude each other, we can always subdivide the objects into visible (unoccluded) portions
and invisible (occluded) portions. Invisible portions will never contribute any radiance to the final image. Hence we can
consider only the unoccluded objects without loss of gditgra
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= pily+p2li 4+ p, L}

where ,of is the reflectance of theth object when illuminated by theth light source,

L: is the short hand of,.(z, 6%, ¢}), the radiance due to theth light source,
k

pi = Z ,of is the aggregate reflectance we recorded when measuring the BRDF
J=1
of the pixel.

The first row shows the sum of reflected radiances frorh atoccluded objects. Due to linearity
of illumination models, we can reorder the terms to give the result on the third row which is the sum

of multiplications of the aggregate reflectances and the radianesabflight source.

7.5.1 Change of View Point

Using Equation 7.6, we can change the point of view by substituting a different viewing véctor
or (8,,¢,). Figures 7-15 shows an image-based teapot from different point of view. Note that we
don't have the geometry of the teapot. What we have is a 2D array of BRDFs or a "special digital

holographic stereogram”.

(b)

Figure 7-15: Change of viewpoint. (a)Front view, (b)Looking from the bottom.

7.5.2 Light Direction

With Equation 7.6, the light direction can also be changed by substituting a different valye®§.
Figures 7-16(a) and (b) show an image-based teapot illuminated by a light source from the top and

the right respectively. Again, we don’t have any geometry model.
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Figure 7-16: Change of light direction. (a)Light from the top of the teapot. (b)Light from the right
hand side

7.5.3 Light Intensity

Another parameter to manipulate in Equation 7.6 is the intensity of the light source. This can be
done by changing the value &f for thei-th light source. Figure 7-17(a) shows the Beethoven statue

illuminated by a blue light from the left.

(b)

Figure 7-17: Multiple light sources with different color. (a)Left: Beethoven statue illuminated by a
single blue light from the left. (b)Right: One more red light comes from the right.

7.5.4 Multiple Light Sources

We can arbitrarily add any number of light sources. The trade-off is the computational time. An
additional multiplication and addition have to be computed in evaluating Equation e&dbrmewly

added light source. In the Figure 7-17(b), the Beethoven statue is illuminated by a blue light from the
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left and a red light from the right simultaneously.

7.5.5 Type of Light Sources

Up to now, all light sources we mentioned previously are directional. It is very efficient to evaluate
Equation 7.6 if the light source is directional, because all pixels on the same image pldherare
nated by light source from the same directiéh ¢}). Moreover, no geometry information is required

to re-render scene when it is illuminated by directional sources.

However, the method is not restricted to directional light. It can be extended to point source,
spotlight or more general light source as well. It will be more expensive to evaluate Equation 7.6
for other type of light sources, sin¢é!, ¢) will need to be recalculated from pixel to pixel. Since
the image plane where the pixels are located is only a window in the 3D space (Figure 7-18), the
intersecting surface element that actually reflects the light may be located on any point along the ray
V in Figure 7-18. To find the light vectdr correctly for other types of light sources, the intersection
point of the ray and the object surface have to be located first. Note there is no such problem for
directional source, since the light vector is identical for all points in the 3D space. One way 1o find
is to use the depth image. While this can be easily done for synthetic scenes, real world scenes may

be more difficult. Use of a range scanner or computer vision techniques may provide a solution.

Non-directional
source

S

wrong L

4

image | |
plane | |

Figure 7-18: Finding the correct light vector.
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Without the depth map, the re-rendered image is physically correct only when the scene is illu-
minated by directional sources. With the additional depth map, we can correctly re-render the scene
illuminated by any type of light source by finding the correct light vedtousing the following
equation,

—

I—5_ b+ Yy (7.7)
V|

where L is the light vector,
S is the position of the non-directional light source,
FE is the position of the eye,
V is the viewing direction,

d is the value from the depth map.

It can be a point source, a spotlight or even a slide projector source. Figures 7-19(a) and (b) show
a box on a plane illuminated by a point source and a directional source respectively. Note that all
input reference images capture the scenly illuminated by a directional light source. No other type
of light sources are used in the input reference images. Surprisingly, with the extra depth information,
we can synthesize the image-based scene illuminated by other types of light sources.

As we have mentioned before, the re-rendered image can contain shadow if it is recorded in the
pixel BRDFs during sampling. Note the difference in the shadow cast by these sources. Figure 7-
20 demonstrates the re-rendered result of the same scene illuminated by a spotlight. The intensity
ramp on the protrusive box surface is differentiable from that on the background plane in Figure 7-
20(a). Figure 7-21 shows the result of casting slide images onto the same scene. It demonstrates
that the reconstruction process is independent of the type of light source. Theoretically, we can even
illuminate the scene with area light source by trading off the computational time.

However, just as we discussed in Section 7.2, there is an aliasing problem in finding the correct
intersection positions. Imagine a scene of a furry teddy bear; thousands of objects may be visible

through one pixel window.
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o -

(b)

Figure 7-19: Point and directional light sources. (a)Left: shadow cast by a point source. (b)Right:
shadow cast by a directional source.

(@) (b)

Figure 7-20: Spotlight. (a)Left: Scene illuminated by a spot light source from the left. (b)Right:
Same scene illuminated by a right spot light source.

(b)

Figure 7-21: Slide projector. (a)Left: Scene illuminated by a slide projector source from the right.
(b)Right: Same scene illuminated by another slide projector source.
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7.6 A Subset of Plenoptic-lllumination Function

In Section 6.4, we proposed a new formulation of plenoptic function, the plenoptic-illumination func-
tion, as the fundamental computational model for image-based computer graphics due to its capability
of specifying the lighting. We have also shown that standard perspective images and panoramic im-
ages are subsets of the complete plenoptic function. In this section, we will show that the proposed
pixel BRDF is also a subset of the plenoptic-illumination function.

Since the light source we used for sampling the pixel BRDF is directional, the light vector for
any point in the space should be the same. There is no difference in saying whether light.vector
is originated from the pixel or from the viewpoit (Figure 7-22). For each vane(V, E) in the
pixel BRDF, we can always express it in the form of plenoptic-illumination function in the following

manner,
p(V,L) = P(L,—V,E ' \).

We simply translate the light vectdrfrom the pixel toF? and invert the viewing vectdr .

image
plane

\z o

Figure 7-22: Pixel BRDF as subset of plenoptic-illumination function.

7.7 Summary

In this chapter, we introduce the concept of measuring BRDF of a pixel. This concept is useful in
representing reflectance in the image-based computer graphics. In image-based computer graphics,
we are no longer accessible to the geometry of the scene, hence no way to measure and model the

BRDF of a surface element on the object. By measuring the BRDF of pixel, we can re-render the
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scene from different point of view under different lighting environment, just like what we do in the

geometry-based computer graphics. We also show that the pixel BRDF is actually a subset of the

proposed plenoptic-illumination model.



Chapter 8

Applications of Pixel BRDF

We have proposed the concept of measuring pixel BRDF in Chapter 7. The definition of pixel BRDF
does not restrict the camera model to be used. A camera model defines the portion of the scene
to be visible through a pixel window. For example, an image captured by a planar pinhole camera
(perspective projection) should be different from another image captured by a camera with fisheye len
(distorted fisheye projection). For the simplicity of discussion in Chapter 7, we assume the camera
used is parallel projected model (so that the viewing vektanill be the same for each pixel). In this
chapter, we will show that the representation of pixel BRDF is applicable to other camera models as
well.

We will show how to extend the usage of pixel BRDF to both perspectively projected and panoramic
images. Instead of discussing these two camera models one by one, this chapter is organized in a dif-
ferent way. We will discuss the two major actions in image-based computer graphics. The first is
theinward-viewingaction and the other is thmutward-viewingaction. An inward-viewing action is
an action that holds an object in hand and allows to change its orientation in order to investigate it.
For example, manipulating a diamond in hand to examine its various sides. On the other hand, an
outward-viewing action is an action that stands at a fixed point and looks around in an environment.
For example, standing in a museum and looking around to view the artworks. The commercial soft-
ware QuickTime VR [GIEN95a] defines two types of VR movies, namely the object movie and the
panoramic movie. The object movie is actually an inward-viewing application while the panoramic
movie is an outward-viewing application.

We first describe two existing image-based representations that are useful forimplementing inward-
viewing and outward-viewing applications. Both representations allow the viewer to change his/her
viewpoint only. They do not support the change of illumination. We then apply the concept of mea-

suring pixel BRDF to both of them in order to include the illumination.

89
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8.1 Viewing Inward

Figure 8-1 illustrates what is an inward-viewing action. Basically, it is an action that looks at a fixed
point in 3D from different viewing directions. The goal is to give a visual effect of holding an object

in hand and allowing the object to rotate in any direction. To achieve an effect of inward-viewing us-
ing image-based computer graphics, the most straightforward approach is like the following. Firstly,
images of the object viewing from different points of view are captured. Then, interpolation is used to
warp the reference images to give desired image if the desired view is in between the sampled view-
ing directions. Various organizations of reference images have been propaaed(F; LEV0O96,
GORT96, IHM97]. Among them, the light slab organizationgi2096, GORTI6] is a promising ap-

proach due to its capability of being rendered using graphics hardware.

'\(/ g

Figure 8-1: An inward-viewing example.

8.1.1 Light Slab Organization

Levoy and Hanrahan [Ev0o96] and Gortleret al.[GORT96] reduced the plenoptic function to a 4D
light slab organization. It is also known as two-plane parameterizatioRj@6, Gu97] because the
light slab is composed of two parallel planes. One plane (focal plane) is closer to the object/scene
while the other (camera plane) is closer to the viewer. Let’s denote the camera and focal ptanes as
andst planes respectively. Figure 8-2 shows the light slab geometry.

Any ray V entering the light slab volume from the plane and exiting throughv plane can be

represented by the quadrugke v, s, ). Therefore we can record the radiance coming along the ray
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Figure 8-2: The light slab.

V in a table indexed by the quadrufle, v, s, t). Levoy and Hanrahan called this table tight field
while Gortleret al. called it theLumigraph

To record the radiances along any ray passing through the light slab, every pointorethest
planes should be sampled. That is, for every p@intv;) on theuv plane, we should take a look at
every point(s;, t;) on thest plane and record its radiance. Of course, this is impractical. Instead, we
will position the camera at the grid point okparsegrid on the camera plane, and take photographs
of the focal plane. That means, we take sparse samples an thiane butdensesamples on thet
plane (due to the high resolution of the film). Figure 8-3 shows the process of recording the light field

(or Lumigraph) from the top.

RV E&E P

Figure 8-3: Recording the light field or Lumigraph (top view).

In Figure 8-3, all cameras are pointing at the center of the focal plane to captutestraples on
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the wholest plane. To do so, nearly all cameras (except the center one) have to rotate slightly away
from the normal of the camera plane (Figure 8-3).

To visualize the recorded light field, we can organize the radiances ima 2ibray ofst images
(Figure 8-4). Each image in the array represents the radiance coming from different points on the

st plane arriving at one specific point on the plane. It also looks like an array of the same scene

viewed from various directions.

A Gy <@ @ @V
R T T @V

/. VV/. VAV . VAV - 'Y
v .~ Yy &/ v, o g c.'ﬁ/

v fﬁ-/ v Y&v. VBV Y

Figure 8-4: The 2D array oft images captured at the grid points of &% uv grid.

With the light field, we can synthesize an image viewed from the desired viewpoint using back-
ward ray tracing. Figure 8-5 shows how we generate a desired image. To fill the color of a pixel
in the desired image, we fire a rayV’ from the desired viewpoint into the light slab. As we have
mentioned before, this ray can be represented by the quadruples, ¢). Using the quadruple, we
can retrieve a value from the light field table. This value tells us the radiance coming out from the
camera plane along the directibh Repeating this process for every pixel in the desired image, we
finish the image synthesis.

However, we usually take sparse samples onuth@lane. Therefore, we have to estimate the
radiance value when the ray shot does not pass throughttsample point. One simple way to

estimate is to use radiance of the nearest sample. In the example of Figure 8-6, the ray sémple “
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Figure 8-5: Synthesize the desired image using ray tracing.

does not coincide with any recorded sample. In this case, we use of the value@asample 6.

1 2 3 4
© © © ©
5 6 7 8
© © |, © ©
X
9 10 11 12
© © © ©

13 14 15 16
© © © ©

Figure 8-6: Guessing the radiance value.

This is actually a constant basis approaclof®96]. If we estimate the radiance in this manner,
there is no need to use ray tracing. Using texture mapping can give us the same result. Consider the
example in Figure 8-7(a), we have takerx44 uv samples on thev plane. Theuv plane is first
subdividedinto 4< 4 equak:v rectangles. To synthesize the projection (shaded region on the desired
image) of the rectangle on the desired image, we first moungttimage associating with thigv
sample on thet plane. Then we draw thev rectangle with a texture mapped. The texture will be

the associatest image. The texture coordinates are calculated by firing four rays through the four
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corners of thetv rectangle and intersecting with theplane.

t.lesired - [ ? desired b Eon.
image image L] [
| . 1
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\
w uy
(@) (b)

Figure 8-7: Constant basis (a) vs. linear-bilinear basis (b)

Constant basis will give annoying discontinuity when moving the viewpoint gradually from left
to right. A smoother approach is suggested by Godtaal. [GORTI6], called linear-bilinear basis
(Figure 8-7(b)). Basically, it uses weighted sum of neighbor samples to estimate the radiance. The
linear-bilinear basis approach uses six more neighbor samples to interpolate the radiance values. The
rendering is can be done by drawing texture mapped polygons with alpha blending. The gray ramp
in the span on thev plane shown in Figure 8-7(b) indicates the weight. The darker the color is, the

higher its weight is.

8.1.2 llluminating Light Field

The light field model only supports the change of viewpoint. It does not support any change of
illumination. We now apply the proposed pixel BRDF concept to the light field data structure. In the
light field, the viewing directiort’ is implicitly specified by the quadruple:, v, s, ¢) as in Figure 8-8.
What is missing is the Iightvectd?. Therefore, by extending the light field with one more dimension
(the dimension of the light vector), it can then supportillumination. The new formulation of light field

is a function of six elements, instead of four elements in the original light field function.

f(uvv787t7 017¢l> or f(uvv787t7 E)7 (81)
where (u, v, s, t) specifies the viewing direction,
(6;, ¢1) specifies the light vectak.
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Figure 8-8: Extending the light slab based systems to allow change of illumination.

Note that Equation 8.1 is very similar to the pixel BRDF (Equation 7.3). The only difference is

the viewing vector is now replaced Wy, v, s, t).

8.1.3 Sampling Light Field With Illumination

The basic idea to sample the light field with illumination is the same as the sampling mentioned in
Section 7.4. That is, for each light directidhwe capture images from a different viewing direction

V. Then change the light to another direction and capture the images from the same set of viewpoints.
The process repeats until all light directions are captured.

In Section 7.4, we suggest to sample both the viewing and light directions on the spherical grid.
Here, we separate the sampling patterns of viewing vectors from those of light vectors. We preserve
the sampling pattern of the original light field for sampling the viewing vector. That is, placing the
camera only at the rectangular grid points onthglane. On the other hand, we still sample the light
vector over the sphere enclosing #iglane. Figure 8-9 shows the two different sampling structures
for the viewing and light vectors. This arrangement allows us to re-render the desired image using
hardware texture mapping capability (discussed shortly).

Each image { image) in the light slab structure can be captured using perspective projection
(Figure 8-3). Moreover, images are only captured at certaisamples. That means, the sampling
pattern of the viewing vectdr will not be the same for each pixel, just like the case in Figure 7-11.
One solution is to perform resampling to evaluate the values on the grid points. This will introduce
errors.

A better solution that does not need resampling orstldane, is not to record the pixel BRDFs,

but to record the sets of pixel URDFs. As mentioned in Section 7.2, BRDF can also be represented
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Figure 8-9: The two different sampling structures of the viewing and light vectors.

as a set of URDFs (spherical functions) (Figure 7-7). To record the set of pixel URDFs, we first fix
the camera at onev sample point (freeze thE at one direction). Then we illuminate the scene
with a directional light source from a specific direction (which is equivalent to a sample point on the
unit sphere) and take a photograph. Next, the light source is changed to another direction (another
sample on the sphere) and another photograph is taken. The process continues until desired number
of samples on the sphere are sampled. Once the sampling is finished, we have recorded a spherical
function (URDF) of radiance for each pixel on thieimage. Next we move the camera to another
sample point and repeat the process. Again, for each pixel ot fhreage, we have captured another
spherical function of radiance. If we takeuv sample points, we will have spherical functions for
each pixel.

To re-render the scene using the set of pixel URDFs, we first generates an image (may not be the
desired one) for eactw sample point using Equation 7.6. That is, if there are 4 wv samples, we
first generate 4« 4 images as looking from these sample positions. Then these images are blended
together using the constant or quadralinear blending methods (Figure 8-7) proposed byegortler
al. [GORT96] to give the desired image. Figure 8-10 shows 4 images on the left are first re-rendered
given the light source information and then blended to give the desired image on the right.

Therefore, we actually separate the re-rendering process into two steps. While the first step is
done purely by software, the second step which involves drawing of texture mapped polygons can be

accelerated by graphics hardware. This approach will give faster interactive feedback if the viewer
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each view

Figure 8-10: Re-render using set of pixel URDFs.

changes the viewpoint more frequent than the lighting.

8.1.4 Sampling on a Sphere

For the light direction, we still sample it over a sphere (Figure 8-9). Sampling the directional vector
over a sphere is equivalent to sampling points on the surface of a unit sphere. The simplest sampling
pattern is the spherical grid (Figure 8-11(a)). However, the sample points are not uniformly distributed
on the sphere. More samples are located on the south and north poles while fewer samples are on the
equator (see Figure 8-11(a)). Moreover, regular pattern is usually more sensitive to the problem of
aliasing. An opposite approach is to sample randomly, which may give a uniformly distributed pattern
and less sensitive to aliasing(Figure 8-11(b)). However, it gives noisy result. Several techniques in be-
tween random and regular sampling have been proposed. The thesis of SHrk91B] surveys the
common sampling techniques, including jitterej@k84b], semi-jittered, Poisson disk and N-rooks
sampling. Cychosz [€cH90] generated sampling jitters using look-up tables. G@hial. [CHIU94]
combined jittered and N-rooks methods to design a new multi-jittered sampling. Cresesqg]

used a genetic algorithm to find the optimal sampling pattern for uniformly distributed edges. All
these methods make tradeoffs between noisiness and aliasing.

Discrepancy analysis measures sample point equidistribution, that is, measures how uniformly
distributed the point set is. Shirley fi8:91a] first applied it to the sampling problem in computer
graphics. The possible importance of discrepancy in computer graphics is also pointed out by Nieder-
reiter [NIED92]. Dobkinet al.[DoBK93a, DoBk93b, DoBK96] proposed various methods to mea-
sure the discrepancy of sampling patterns and to generate the patteyeg96)]. Heinrich and
Keller [HEIN94a, HEIN94b, KELL95] and Ohbuchi and Aono [@Bu96] applied low discrepancy

sequences to Monte Carlo integration in radiosity applications. Thedeasi-Monte Carlds used
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Figure 8-11: Sampling patterns on a sphere. (a) Spherical grid, (b) random sampling, (c) quasi-Monte
Carlo sampling.

to describe applications which apply the low discrepancy sequences in solving the sampling problem.
We have applied a low discrepancy sequence, namely the Hammersley point set, in sampling
the light vector [WbNG97c]. Hammersley points have been used in numerioss{B5, TRAU96,
CasE95] and graphics [HIN94a, HEIN94b, KELLI5, OHBU96] applications, with a significant im-
provement in terms of error.
Hammersley point set is a uniformly distributed and stochastic point set generatet:teymin-
istic equation. Let’s define the Hammersley point set. Each nonnegative irteger be expanded

using a prime basg:
k=ao+aip+ayp’+...+ap". (8.2)
where eacly; is an integer irj0, p — 1]. Now define a functio®,, of i by

Gy
pr+1'

<I>p(k):@+z—§+2—§+---+ (8.3)

P

If p =2, thesequencedf,(k),fork =0,1,2,...,iscalled the Van der Corput sequencef095].
Let d be the dimension of the space to be sampled. Any sequenge . . ., ps_ of prime num-
bers defines a sequende, , ¢,,, ..., P of functions, whose corresponditteth d-dimensional

' FPd—1

Hammersley point is

n

(5, B, (k) @y, (k). . .,cppd_l(k)) fork=0,1,2,....,n—1. (8.4)

where p; < py < -+ < pa_1,

n is the total number of Hammersley points.
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To evaluate the functiotr, (&), the following algorithm can be used.

p=p, K=k, &=0
whilek’ > 0 do

a = k" modp
(I):(I)—l—z%

P k'
K'=int ()
P =pp

whereint (z) returns the integer part of
The above algorithm has a complexity®@flog,, k) for evaluating the:-th point. Hence the worst

case bound of the algorithm for generatidg + 1) pointsis,

logp(l) + logp(Q) 4+t logp(N -1)+ logp(N)
< log,(N) +1log,(N) + - +1log,(N) + log,(N)
= Nlog, N.

A Pascal implementation of this algorithm can be found ia[iFi64]. In most computer graphics
applications, the dimension of the sampled space is either 2 or 3. In our application, we concentrate on
the generation of a uniformly distributed point set on the surface of a unit sphere. Higher dimensional
sets can be similarly generated using formulae (8.2—8.4).

To generate uniformly distributed point set on a unit sphere, we first generate uniformly dis-
tributed points on a 2D plane. Then they are mapped to the surface of the sphere. On the 2D plane,

formula (8.4) simplifies to
k
(E@pl(k)) fork=0,1,2,....,n— 1. (8.5)

The range of’g is [0, 1), while that of®,, (k) is [0, 1]. For computer applications, a good choice
of the primep; isp; = 2. The evaluation ob; (%) can be done efficiently with abolite, (k) bitwise
shifts, multiplications and additions: no division iegessary. To generate directional vectors, or

(equivalently) points on the spherical surface, the following mappingsN69] is needed:

(%,q)p(k)) > (6, 1) (\/1 12 cos b, V1 — 12 sin ¢, t)T . (8.6)
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The first, from(%, <I>p(k)) to (¢, 1), is simply a linear scaling to the required cylindrical do-
main, (¢,t) € [0,2x) x [—1,1]. The mapping from(¢,?) to (v/1 — 12 cos ¢, v/1 — t2 sin ¢, 1) is
z-preserving radial projection from the unit cylindér= { (z,y,2) | 22+ y?> = 1 |2| < 1} tothe
unit sphere.

Figure 8-11(c) shows the generated Hammersley pointspwith 2 on a sphere. Compared to
the regular sampling (Figure 8-11(a)), the Hammersley point set is uniformly distributed without a
perceptible pattern. Compared to the random sampling (Figure 8-11(b)), the Hammersley point set
gives a pleasant, less clumped pattern. One evidence of uniformly distribution is that there is no
way to tell where on the sphere are the poles or the equator. It has been recently fou®dd] [C
that mapping Hammersley points with base of 2 to the surface of a sphere gives the best uniformly

distributed directional vectors among several common approaches.

8.1.5 A Light Field Viewer with Controllable Illumination

We have implemented an interactive image-based renddabriew , that displays the light field
with controllable illumination. Figure 8-12 shows the interface of the viewer. The user can change the
viewpoint by dragging inside the right viewing window. Through the left light source control panel,

the user can control the direction, the intensity, the number and the type of the light sources.

=| fignt

light: 0 <

Add source Delete source

255

255

b - 255
type: dir pt spot proj
rad: [3.000
lookat: |0.0,0.0,0.0 up: 0.0,1.0,00
fov: 450,450 slide:

harecnt: 25 apply

(@) | (b)

Figure 8-12: The interface sfabview . (a) The light source control panel, (b) the viewing window.
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Figure 8-13 shows how a desired image is synthesized through drawing texture mapped polygons.
In Figure 8-13(a) example, constant basis approach is useduTpkane in the front is subdivided
into several rectangles. Each rectangle is associated witlinaage (the image of¢ plane viewed
from the center of that rectangle). When #iglane (the smaller rectangle behind) overlays with
plane, the intersection region (dark gray region in Figure 8-13(b)) will be the region that the light slab
has recorded the radiances. In other word, we can see something. Therefore, we only need to draw
texture mapped polygons that overlap with this intersection region, just like Figure 8-13(a). This will

significantly improve the efficiency of the program.

Eile QOption

uv samples needed

stLJ // | //

(@) (b)

Figure 8-13: Drawing only the necessary.

Whenever the user drags inside the right viewing window, suitable polygons are drawn and
blended to give a smooth rotation. Since the texture mapping and blending are done by graphics
hardware, rotation of the image-based object (or change of viewpoint) can be done in real time.
Figures 8-14(a) and (b) show two frames from the rotation of an image-based teapot. Whenever
the user drags the light source (small sphere) in the left light source control panel, pixel values
are re-calculated using Equation 7.6 to re-render the image under the user-specified lighting con-
dition. Note that the illumination in our systemésntrollable as opposed to those uncontrollable
approaches [BLH96, ZHAN98]. Only the views ¢ images) that are relevant (overlap with the gray
intersection area in Figure 8-13(b)) are re-rendered. They are then drawn and blended by graphics
hardware. Since the pixel value calculation is done purely by software, changing the illumination

is slower than changing the viewpoint. The more the number of light sources used, the slower the
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re-rendering is. Nevertheless, our prototype viewer can still re-render image-based scene illuminated
by three to four light sources in real time. Figure 8-15 (a) and (b) show two frames from moving one
light source from left to right.

Actually, images inside Figures 7-15 to 7-17 and Figures 7-19 to 7-21 are all generated by our
prototype viewer. These results show that the concept of measuring pixel BRDF can support the
illumination of variable lighting condition. If the reference images contain shadow, the re-rendered

image will also include shadows (Figure 7-19).

(@) | (b)

Figure 8-14: Rotation of an image-based teapot.

| Eile Option

() (b)
Figure 8-15: Moving the light source from left to right.
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8.2 Viewing Outward

An outward-viewing application is nearly the opposite of the inward-viewing one. Instead of looking

at a fixed pointin 3D, we “fix” the eye at a pointin 3D and allow the eye to look around. The reason
we use the quotes for the word “fix” is because the eye is not actually fixed but is allowed to move
within a small region. In the case when we look at far scene, our eye can be assumed fixed, since the
movement of our eyes is negligible relative to the distance from our eyes to the far scene. Figure 8-16
illustrates this action. The goal is to give an immersive feeling. One example application is in virtual
reality. The CAVE [CN92] is a virtual reality application that allows the user to stand in a display

chamber and looking around in order to give him/her an immersive feeling.

Figure 8-16: An outward-viewing example.

8.2.1 Panorama

Theoretically, the light slab organization can also be used from the outward-viewing application. In
the inward-viewing applications, the plane is usually smaller than the plane. However, in the
outward-viewing applications; plane has to be enlarged while the plane has to be shrinked. In

the extreme case, plane shrinks to a infinitesimal point. Unfortunately, light slab representation is
not very good for outward-viewing application because in most cases we want to look at far scenery.
Even thest plane is enlarged to infinite size, a single light slab can only represent a field of view of
180 degree. To support a full 360 degree, at least two light slabs are needed.

A more efficient approach is to ugmnoramic image It is an image of 360 degree as viewed
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from one fix point in space. Figure 8-17(a) shows the structure of a spherical panorama. Note that

a spherical panorama can record the radiances represented by a plenoptic sphere (see Section 6.1).
However, storing a spherical image in computer is less natural. The image has to be either distorted
or cut since a spherical surface is not developablénother type of panorama is the cylindrical
panorama (Figure 8-17(b)). It composes of a cylinder and two discs. This type of panorama is more
popular in computer graphics applications because a cylinder can be unfolded to a rectangular image

without any distortion.

(a) (b)
Figure 8-17: Panorama. (a) Spherical, (b) Cylindrical

For a virtual scene, a cylindrical panorama can be directly obtained by ray tracing. To shade
a pixel, we fire a ray through each pixel on the cylinder. If raytracing déipats not available,
six perspective images forming a cube (Figure 8-18) can also be used to resample the cylindrical
panorama. Note this method is actually the environment mappirgf86a, GREES6D].

For a real scene, we can first capture the scene using a camera. That is capturing the scene as a set
of perspective images. Each image should have a significant region of overlapping. Image registration

can then be used to stitchfflEn95a, SELI7] them together to form a continuous panoramic image.

8.2.2 llluminating Panoramic Image

Although a panoramic image is not an image with perspective or parallel projection, we still can
record the BRDF of each pixel in the panoramic image. From now on, we focikiornation
of cylindrical panoramic image due to its efficiency and simplicity. However, the technique being

described is not restricted to cylindrical panorama, but also applicable to spherical panorama.

A developable surface is a surface that can be unfolded to a planar surface without infinite stretching or squeezing.
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Figure 8-18: Environment mapped cube.

Again, the basic idea is to record the radiance passing through the pixel window under different
illumination. One difference is that the viewpoint is always fixed for a panoramic image. That is, one
vector parameter of the pixel BRDF, is constant. The pixel BRDF reduces to a single pixel URDF
(not a set). Therefore, recording pixel BRDF of a panorama is simpler than that for the light field,
because we only need to record a single spherical function (URDF) for each pixel.

There is still one problem to overcome. In the case of the illumination of the light field, we
record the set of pixel URDFs with a coordinate system relative to the pixel as in Figure 8-19(a). For
panorama, if we still measure it on the pixel's frame like Figure 8-1%agh pixel has a different
coordinate system. That means, when querying a value in the URDF given a light vector, we need
to transform the vector to the local coordinate system of each pixel beftiireggihe answer. This
is exactly the case of directional light source. Given a light vector of a directional light source, the
light vector has to be transformed to the local coordinate system for finding the radiances. This
is very inefficient when transformation has to be done for every pixel in the panoramic image. A
more efficient approach is to use a common coordinate system for every pixel in the panorama as in
Figure 8-19(c). The common coordinate system free us from transformation. For other types of light
sources, the light vector for each pixel télslifferent. But at least it is efficient for directional lights.

8.2.3 A Panoramic Viewer with Controllable Illumination

An experimental panoramic viewgoanoview , that supports controllable illumination has been

developed to verify the idea. Figure 8-20 shows the user interface of this program. The interface is
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(@) (b) ()

Figure 8-19: Coordinate systems. (a) Pixel coordinate system on a planar image, (b) Pixel coordinate
system on cylindrical panoramic image, (top view) (c) Common coordinate system for all pixels in
cylindrical panorama.

very similar to the one in Figure 8-12. But this time when the user drags inside the right viewing
window, it pans to other viewing direction. The user can also zoom in and out the scene. Again the
light sources are controlled by the light source control panel on the left.

Figures 8-21(a) and (b) show two frames when panning the view from left to right while Figure 8-
21(c) zoom in the view of Figure 8-21(b). To render the panorama, we map the cylindrical panorama
to the surface of a cylinder. The texture mapped cylinder is then rendered by graphics hardware.
Therefore, the panning and zooming can be done in real time. When the user changes the lighting,
pixel values are calculated using Equation 7.6. This is again done purely by software. Figure 8-22
shows two frames from changing the direction of a light source in the image-based attic environment.
Note how the illumination is done even no geometry is present. The original geometry-based attic
scene requires about 2 minutes to render on SGI Octane. Using the image-based approach the scene
can be rendered within a second. This demonstrates the potential of image-based rendering.

Figure 8-23(a) and 8-24(a) shows the unfolded cylindrical panoramas of a chessboard and an attic
scenes respectively. The bottom three images are the perspective snapshots of the panorama, they
can be obtained by warping the panorama. Figure 8-25 shows the same attic scene as in Figure 8-
24, but illuminated by four spotlightgach with a different color. Note how the gjight correctly
illuminated the image-based attic. Again non-directional light sources illumination requires the depth

information.
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Figure 8-20: A panoramic viewer with controllable illumination.
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Figure 8-21: Panning and Zooming. (a) Original, (b) pan to right, (c) zoom in.
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Figure 8-22: Changing the lighting setup of a panoramic image.

Figure 8-23: Chessboard.
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Figure 8-24: Attic.

(b) @ (d)

Figure 8-25: Attic illuminated by spotlights.
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8.3 Summary

In this chapter, we have discussed how to apply the concept of measuring pixel BRDF to two major
actions of image-based computer graphics, namely the inward-viewing and the outward-viewing ac-
tions. Although we have applied the idea on two image data representations which have substantial
difference, there is not much problem in extending these two representations to include illumination.
We believe the concept of pixel BRDF is general enough to be applied to other image representations,

such as spherical light field{mM97], as well.
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Compression

Storing the pixel BRDFs requires an enormous storage space. Assume we represent the pixel BRDF
as a set of pixel URDFs. For a single pixel, if the URDF is sampled in the polar coordinate system
with 20 samples along both the azimuth)(and zenith ¢;) dimensions, there will be 400 floating

point numbers stored for each pixel. A single view of a 25@56 image plane will require 100Mb

of storage.

In this chapter, we will investigate various approaches to compression of pixel BRDF data. All
compression techniques identify some forms of coherence among data in order to compress it. We
will first explore the data coherence of the radiance values associated with a single pixel. Then, we
will explore the data coherence between adjacent pixdizidg these two types of data coherence,
we can compress the pixel BRDFs with a compression ratio of about 100 to 1.

There are two main criteria in choosing a good compression scheme:
e High compression ratio.
¢ Fast decoding algorithm.

Both criteria are equally important. A scheme with high compression ratio but cannot decode
quickly is not very useful for our application. Since the decoding has to be done purely by software,

a fast decoding algorithm is necessary for an interactive application.

9.1 Coherence Within a Pixel

Inthe following discussions, we will concentrate on compressing sets of pixel URDFs, instead of pixel
BRDFs. As we have mentioned in the previous chapter, storing pixel URDF allows the separation of
the re-rendering process into two steps. The first step is done purely by software while the second step
can be accelerated by graphics hardware, hence speedup the user interaction. Although we believe
compressing the complete pixel BRDF will significantly improve the compression ratio, the decoding

will be much slower since it cannot utilize the existing graphics hardware.

111
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To represent the URDFs more efficiently, the tabular data is transformed to the frequency domain
and quantization is performed to reduce storage. We have tested two types of transforms, spherical

harmonic transform and discrete cosine transform.

9.1.1 Spherical Harmonics

Spherical harmonics [QUR53] are analogous to Fourier series, but in the spherical domain. Cabral
et al.[CABR87] proposed the representation of BRDF using spherical harmonics. The work is further
extended by Sillioret al.[SILL 91] to model the entire range of incident angle. It is especially suitable
for representing smooth spherical functions. Appendix A will give a more detail description of the
spherical harmonics. In our approach, the viewing directidor each pixel is actually fixed. Hence,

the unidirectional functiop can be transformed to spherical harmonics domain using the following
equations directly, without considering how to represent a bidirectional function described by Sillion
et al.[SILL91].

27 s
Cion = [ | pl61:60Y1.0 (61, 61)sin By, 9.1)
where
N P (cos 8;) cos(mey) if m>0
Yim (01, ¢1) = NioPo(cos 01)/\/5 if m=0
Nim By (cos 0p) sin(|m|ey) if m <0,
_ |
N — 2041 (1 |m|)7
’ 2 (I +|m])!
and

(1—=2m)V1—2a2P,_1 ;_1(2) if l=m

Pim(z) =9 2(2m+ 1)Py 0 () if l=m+1

20—-1

wl—m

P_im(z) - H2=Lp_, . () otherwise.

where the base casefto(z) = 1.
Functionsy; ,,,’s are the basis functions (or spherical harmonics). Figure 9-1 shows the first few
spherical harmonics. The first basis function is a sphere. It has equal magnitude in any direction,

hence no directional preference. All other basis functions have directional preferences.
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C1.,'s are the coefficients of the spherical harmonics which are going to be stored for each pixel.
The more coefficients are used, the more accurate the spherical harmonics representation is. Accuracy
also depends on the number of samples in(thgp;) space. We found 9 to 16 spherical harmonic
coefficients are sufficient in tested examples containing no shadow. More coefficients are needed to
accurately represent scenes containing shadows.

To reconstruct the reflectance given the light ve¢tor¢;), the following equation is solved for

each pixel in each view.

lma:r l

p(017¢1) = Z Z Cl,mYl,m(QthZ)- (92)

1=0 m=—I
where(lmm)2 is the number of spherical harmonic coefficients to be used.

Figure 9-2 shows the original tabular reflectance distribution of a pixel on the left and its corre-
sponding reconstructed distribution on the right. There are 1800 samples (30aiarthe range
[0, %] and 60 alongp) in the left original distribution. The reconstructed distribution on the right is

represented by 25 spherical harmonics coefficients only.

S

N

Nk

Figure 9-2: Original sampled (left) and reconstructed (right) distribution. Note the lower hemisphere
of the reconstructed distribution is interpolated to prevent discontinuity.

The more coefficients are used, the more accurate the reconstructed images are. Figure 9-3 shows
the visual difference of representing the same pixel URDFs using different number of spherical har-
monic coefficients. From left to right, the number of coefficients used are 1, 4 and 25. All images are
re-rendered under tramelighting condition. It seems that as the number of coefficients increases
the teapot becomes more shiny. Since the recorded teapot is highly reflective, the correct teapot should
be shiny. One interesting observation is that as the number of coefficient decreases, the shiny object
becomes duller. It seems that the specular component is represented by the high-order coefficients.

This can be explained by the shape of the spherical harmonics basis functions mentioned before. The
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first basis function is a sphere with no directional preference (Figure 9-1). It actually captures the
diffuse component in the illumination model. Other higher order basis functions contain directional
bumps. The higher the order is, the sharper the bumps are. These high-order basis functions hence

capture the directional specular component.

Figure 9-3: Specularity difference of using different number of spherical harmonic coefficients. (a) 1
coefficient, (b) 4 coefficients, (c) 25 coefficients.

Another visual artifact when less coefficients are used is the smoothing-out of shadow. If the
reference images contain shadow (especially the hard shadow), the URDFs are discontinuous. A
discontinuous signal requires infinite number of spherical harmonic coefficients to represent. Of
course, we can only afford finite number of coefficients. Any finite representation will certainly
smooth out the signal. Figure 9-4 shows three reconstructed images using three different number
of coefficients. As the number of coefficient increases from left to right, the reconstructed images
become more accurate in term of shadow representation.

Using the example mentioned in the beginning of this chapter, 288 image which originally
requires 100 Mb of storage can now be compressed to 18.75 Mb if 25 spherical harmonics coefficients

are used for encoding one URDF. The compression ratio is roughly 5 to 1.

9.1.2 Discrete Cosine Transform

Although spherical harmonics can efficiently represent smooth spherical functions, it is inferior in
representing discontinuous function which is quite common if the scene contains shadow. This phe-
nomenon motivates us to try another compression scheme.

The second compression scheme we have tested is the discrete cosine transform (DCT). One

reason to choose DCT is that hardware DCT codec is becoming widely available. Same as before, we
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(@) (b) (©

Figure 9-4: Shadow difference of using different number of spherical harmonic coefficients. (a) 16
coefficients, (b) 25 coefficients, (c) 49 coefficients.

do not compress the four dimensional BRDFs. Instead, the two dimensional URDFs are compressed.
Since the URDF is a spherical function, it is first mapped to a 2D disc (Figure 9-5), before applying

the standard 2D discrete cosine transform to the disc image.

stereographic
projection

hemisphere disc

Figure 9-5: Mapping a hemisphere to a disc.

To map a spherical function to a plane, the mapping should be done in two passes, namely, one
for the upper hemisphere and one for the lower half. The mapping from a hemisphere to a disc is done
by stereographic projection H852]. To project the lower hemisphere, the point of projectivis
first placed at the pole of upper hemisphere and the plane is placed underneath the lower hemisphere
(Figure 9-6). A pointS on the hemisphere is mapped to paihon the plane by firing a ray fror
through points and intersects the plane at poifit The upper hemisphere can be mapped to plane
similarly. The polar coordinatd;, ¢;) on a hemisphere is mapped to the 2D coordifatg), within

a unit square by

v = %[tan(@l/Q)cos(—@)—l—l] 9.3)
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y = ltan(8/2)sin(~é0) + 1] (9.4)

Figure 9-6: Stereographic projection.

The resultant disc image after projecting the upper hemisphere of the URDF of an example pixel
is shown in Figure 9-7(a). The example pixel is extracted from the test scene in Figure 9-8(a). In
Figure 9-7(a), the white region near the image center indicates the specular highlight. The polygonal
black hole on the right is due to the shadow cast by the box in Figure 9-8(a).

Once the spherical function is projected to 2D image, discrete cosine transform (DCT) can be
applied to transform the image and the resulting DCT coefficients are zonal sampled and quantized.

The N x N cosine transform matrix(7, j) is defined as,

L i=0,0<j<N-1,

i) =3 T N ©5)
2 m(27+41)3 . .
yrveos =5, 1<i<N-1,0<;<N-L

Figure 9-7 shows the images before (a) and after (b) the quantization in DCT domain. Only 64
coefficients are retained for the image in Figure 9-7(b), while the image in Figure 9-7(a) is represented

by 50 x 50 floating point data.

9.1.3 Comparison

Figure 9-8 visually compares the reconstructed images of different compression schemes. Figure 9-
8(a) shows the test scene containing a box which cast shadow on a plane. The square region in
Figure 9-8(a) is enlarged for visual comparison. The ideal result is generated by looking up the orig-

inal tabular BRDFs (Figure 9-8(b)). Note that the hard shadow is preserved. After the stereographic
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(@) (b)

Figure 9-7: Before (a) and after (b) quantizing the disc image in frequency domain. Original data in
(a) is represented by 50 x 50 floating point data. The number of coefficients to represent the image
(b) is 64.

projection, some errors are introduced. It is because the mapping process is actually a resampling
process. Blurring is found around the shadow in Figure 9-8(c). This error can be reduced by increas-
ing the resolution of the disc imagieg. increasing the number of samples. However, the storage size
will also be increased. Figure 9-8(d) shows the reconstructed image generated from data compressed
using spherical harmonics. The error in this image is purely due to the quantization taken place in
the spherical harmonic domain. Figure 9-8(e) shows the reconstructed image generated from data
compressed using DCT. The errors in this image include quantization error in frequency domain and
the resampling error during stereographic projection.

In order to have a fair comparison, equal number of coefficients (64 floating point coefficients)
are used to compress the data in both compressed cases (Figures 9-8(d) & (e)). Comparing Figure 9-
8(d) to Figure 9-8(e), the image generated from DCT is noisier than that of spherical harmonics.
However, the shadow in the image generated from DCT is a better approximation of the true shadow
in Figure 9-8(b). The sharp corner of the shadow becomes a round corner in the case of spherical
harmonics, while the corner is still observable in the case of DCT. This is also confirmed by the RMS
of error statistics. The RMS of error of image generated from spherical harmonic data is 0.1043 while
that of image generated from DCT data is 0.0865. From this experiment, DCT compression scheme
is preferred if the scene contains hard shadows and a close approximation to the true image is needed.
On the other hand, spherical harmonics is preferred if the scene contains not much hard shadow and

a pleasant (smooth) visual result is a main concern.
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Figure 9-8: Visual comparison of reconstructed images. (a) Test scene. (b) Image generated using
original tabular BRDFs. (c) Result after projecting spherical function to a disc, also uncompressed.
RMS(err.)=0.0979. (d) Result from data compressed using spherical harmonics. RMS(err.)=0.1043.
(e) Result from data compressed using DCT. RMS(err.)=0.0865.
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Figure 9-9: The boundary value along the equator is linearly interpolated to prevent equatorial dis-
continuity in the sampled BRDF.

9.1.4 Preventing Discontinuity

Truncating the spherical harmonic series or discrete cosine series gives persistent Gibb’s ringing ar-
tifacts. One source of discontinuity is the incomplete sampling of light directions (boundary discon-
tinuity). Incomplete sampling is sometimes necessary for fast scene capture. From our experience,
there is no need to sample the whole rangé,of.e., [0, 7]. Usually the rang¢0, 7] is sufficient.
Zeroing all the unsampled entries introduces discontinuity along the equator of the sampling sphere.
To avoid this sharp change, the boundary value along the equator is linearly interpolated to a constant
value at the south pole (see Figure 9-9 and the right diagram in Figure 9-2). Another source of dis-
continuity is shadowing (Figure 9-7(a)), which is unavoidable. Hard shadows will be smoothed out if

represented by a finite sum of harmonics (Figure 9-4(a), (b) & (c)).

9.2 Coherence Among the Pixels

Although DCT may produce more accurate result in term of root-mean-square error, it generates
more noisy image which is annoying. On the other hand spherical harmonic transform provides more
pleasant imagery result even though the error is larger. For the computer graphics applications, we
prefer to use spherical harmonics transform to compress the pixel URDFs. From now on, we will
only discuss how to further compress the data which have been compressed by spherical harmonic
transform.

Up to this moment, we only utilize the data coherence within a single pixel BRDF. We have not

yet utilized the coherence between data obadpt pixels.
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9.2.1 \Vector Quantization

By investigating the spherical harmonic coefficient vectors of adjacent pixels, we find that the values
of the coefficients of the neighbor pixels are usually very close. That means we can compress further
by utilizing this coherence.

One approach to do so is to ugector quantizatiorfvVQ) [GERSB2]. The basic idea of vector
guantization is like the following. To compress the data, sayectors, we first find out a set &f
representative vectors (this vector set is usually calleattioeboolkand the representative vector is
called thecode vectay, such that: < n. Then we represent each of thevectors by the closest code
vector inside the codebook and memorize only the index of that code vector. The final compressed
data only contains the codebodk ¢ode vectors) and all indexes. Sineés much smaller tham,
hence we can compress.

The main problem is how to find therepresentative code vectors. There are many algorithms
proposed. We have chosen a well-known algorithm, known as the LBG vector quantizer (LBG stands
for Linde, Buzo and Gray [IND80]) or £ means algorithm, due to its simplicity. Figure 9-10 shows
the LBG algorithm.

Given the sizé: of the codebook, the algorithm first randomly seldct®ctors as the initial code
vectors. In each iteration, the algorithm subdivides#th&ample vectors inté sets based on the
distancebetween the sample vector and the code vectors. The mean of the vectors inside each set
is then chosen to be the code vector for the next iteration. The process of finding the mean vectors
continues until the convergence occurs.

Figure 9-11(b) shows the reconstructed image after using vector quantization. Figure 9-11(a)
shows the reconstructed image if no vector quantization is used. The major difference is that inside
the reconstructed image from VQ compressed data, there exists contours in the regions of smooth
ramp (circled in Figure 9-11(b)). Note this is the common artifact of compressing images using VQ.
One way to improve it is to increase the size of the codebook.

Using VQ, we can significantly reduce the data size. The usual compression ratio which still

preserves an acceptable fiyas 10 to 1.



Chapter 9. Compression 122

Step 1: Selectk initial representative vectors. A good choice is to
choose them randomly from thevectors.

Cil == Xrandom
where C} is thei-th code vector out of initial code vectors,
1 <e <k,

Xrandom 1S the a sample vector chosen randomly from
then sample vectors.

Moreover, we also set upvector sets; and initialeach set to an

empty set.
Step 2: In them-th iteration, assign the sample vectdr to the the set
Si,
S; =S, U X,
if
X0 = Pl < |IXa = 77,
forall i #£ j.

Step 3: Update the code vectors to the means of the sample vectors in-
side the vector se};,

- 1
Ci i = |SZ| Z Xa

XE€S;

where |S;| is the number of vector in the s8f.

Step 4: Goto Step 2 until convergence is achieved.

Figure 9-10: Algorithm of LBG vector quantizer
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Figure 9-11: Contour artifact of VQ compression. (a) Without VQ compression, (b) with VQ com-
pression.

9.3 Summary

In this chapter, we have discussed one practical aspect in using pixel BRDFs, the compression. To
compress the URDF associating with a single pixel, we have tested two methods, hamely the spherical
harmonic and the discrete cosine transforms. Spherical harmonic transform usually gives smooth and
pleasant imagery result, although the re-rendered images may not be as accurate as that compressed
by discrete cosine transform. We further compress the data using vector quantization to utilize the
data coherence among the adjacent pixels. After applying a series of compression algorithms, we can

achieve an overall compression ratio of about 100 to 1.
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Conclusions and Future Directions

Anyone who attempts to simulate complex physical phenomena soon realizes that literal sim-
ulation is far beyond the capabilities of today’s hardware or software.

——James F Blinn, 1988.

Geometry-based computer graphics has been practiced for a long period of time in the history
of computer graphics. By approximating the real world or imaginary world using geometry models,
geometry-based computer graphics gives us a visual experience of the world being modeled. Geom-
etry representation contains not just enough information to provide us the visual experience, but also
extra information that human may not perceive. In principle, a goal of geometry-based time-critical
modeling and rendering is to minimize or simplify this extra (visually imperceptible) information in
order to speed up the simulation process. Ideally, the graphics system should contain no extra infor-
mation which slows down the simulation if the system’s only goal is to provide the visual experience.

Image representation can be thought as an extreme case that contains only information to give us
the visual experience and no extra information is present. Instead of modeling the world, image-based
computer graphics directly models the radiance energy impinging on the human eye. Therefore, it

fulfills what the human perception needed without storing any extra information.

10.1 Synopsis

In this thesis, we have contributed a collection of concepts and algorithms for speeding up the mod-
eling and rendering. Firstly, we have introduced a new geometry-based simplification algorithm that
generates simplified triangular meshes directly from the volume data. The flexibility in partitioning
the volume allows further simplification of the triangular mesh. The algorithm has the ability of
generating isosurface representation in multiple resolutions which can be used for level-of-detail ren-
dering. Itis a fast heuristic algorithm, rather than a path to a strict optimum. Instead of the optimality
of the generated mesh, the speed of the algorithm is our main concern.

Then we proposed a new concept of measuring the apparent BRDF of a pixel in the field of image-

based time-critical modeling and rendering. Without the geometry representation, we no longer have
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access to the geometry models and surface properties. Hence no way to learn the surface reflectance
which determines the amount of reflected radiance from the surface element. The abstraction of mea-
suring pixel BRDF provides us the fundamental model in image-based computer graphics which can
be manipulated to synthesize image viewed from any desired direction under any desired illumina-
tion. To verify the concept, we apply it to two major image representations. Without much difficulty,
both of them can be extended to include illumination. Finally, we also provide a series of compression
schemes which compress the huge pixel BRDF data to a manageable size.

In the rest of this section, we will list the pros and cons of both the geometry-based and image-

based approaches.

10.1.1 Pros and Cons of Geometry-based Approach

Geometry-based computer graphics aputation-intensivapproach. Object/scene is represented

in a very compact form, geometry representation. However, rendering of geometry models usually

requires more computation than that in image-based computer graphics. More importantly, the ren-

dering time depends on the scene complexity. This dependence makes the real-time rendering of
arbitrarily complex scene nearly impossible. No matter how fast the rendering softwares and hard-

wares are, the scene still can be complex enough to slow down any geometry-based modeling and
rendering algorithms.

Modeling is also a major problem of geometry-based computer graphics. Most of the early ge-
ometry models are constructed by hand. Even though the three-dimensional digitizers are becoming
more popular, constructing the geometry representation of an object/scene is still labor intensive. The
geometry models acquired from these digitizers usually contain noise and are in high resolution for-
mat. They required further modification and simplification. Moreover, not all objects can be scanned
due to their size, weight and rigid location. Imaginary objects/scenes still have to be constructed
manually. Therefore, modeling will still be one time-consumin@nd labor-intensivestep in the
geometry-based computer graphics.

Besides these disadvantages of geometry-based computer graphics, geometry representation pro-
vides extra information that can be usedsimulation(not just visual simulation). For instance,

a computer program can be used to physically simulate the air dynamics surrounding the modeled
wing of a flight. In this case, the visual result becomes a visualization tool, not the final goal. In

entertainment industry, if the computer-animated movie characters are geometrically represented, the
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geometry models can be directly (or with little modification) used for toy manufacturing.

10.1.2 Pros and Cons of Image-based Approach

The emergence of image-based computer graphics is due to the demand of real-time display of arbi-
trarily complex scene. The approach detaches the dependency of the modeling and rendering time on
the scene complexity. Rendering speed is now only dependent on the resolution of the image represen-
tation. Image-based approach successfully transforms an infinite problem (infinite scene complexity)
to a finite problem (finite image resolution). Once the computer power and capacity reach a threshold,
image-based computer graphics will allow us to display arbitrarily complex scene in real time due to
the finite nature of the problem.

Image-based computer graphics idata-intensivapproach. It needs more memory, more stor-
age and more bandwidth in order to store and transfer the image data. It is our belieétbaas still
space to improve the storage and bandwidth of current computer systems while the speed of computer
processor tends to a limitin the near future.

Modeling real world object/scene in image-based computer graphics is usually easier since model-
ing becomes taking photographs. However, object/scene not exist will still need the help of geometry-
based computer graphics. One more problem of image-based modelinféxithiéity. For example,
if two objects are being modeled, we have to make a decision whether to model them in one single
image representation or to separate them into two image representations. The former will reduce the
storage but remove the flexibility, since we cannot change the relative distance of these objects. If we
choose the later one, we can have more flexibility in controlling their relative position. But the later
approach will also imply that the rendering time will associate with the scene complexity again.

Since the image representation only models the radiance impinging on our eyes and no geometry
model exists, there is no way to perform simulation as in the geometry-based approach. Therefore,

image-based computer graphics can only be used for providing the visual experience.

10.2 Future Work and Discussions

10.2.1 Hybrid Approach

As discussed above, we cannot say any one of the two approaches is superior. Instead, we believe

both approaches will continue to be used in different computer graphics systems. A hybrid approach
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will probably become more popular in the future. There are already some graphics systems devel-
oped using both approaches. Nimereftfal. [NIME96] accelerated the radiosity softwafRADI-
ANCE [WARD94], using depth image with radiance values. In another application, Lengyel and
Snyder [LENGI7] applied the image warping techniques to warp a rendered image fragment in order
to make it looks affinely transformed. Their idea is to substitute the portion of the image with a pre-
viously rendered image fragment and try not to render that portion unless the error exceeds the given
threshold. This image caching approach significantly improves the rendering speed of the animation
sequences.

The mentioned systems are still geometry-based systems in nature. They only use image as
a temporary representation of the geometry object. We believe that in the future there will be an
increase in modeling object/scene with image representations. Hence a hybrid system, which renders

image-based entities as well as geometry-based entities, is needed.

10.2.2 View Dependence

View-dependence simplification techniquesupB97, HorPM7, XIA96] has been shown useful in
representing portion of the object by dense mesh while the rest of the object are represented by coarse
mesh. They have an application in speeding up the rendering while preserving the image quality. The
well known time-consuming problem of the radiosity applications will be benefited by applying the
view-dependence techniques.

The geometry-based simplification technique proposed in Part | is a view-independent algorithm.
No viewing information is used in guiding the simplification process. Only the geometry complexity
of the enclosed isosurface is used. We believe that a view-dependent approach will further improve
the algorithm in term of triangle count. However, the algorithm will be complicated to support the

feature of selective refinement. Moreover, a specially designed renderer is also needed.

10.2.3 Capturing Real Life Data

We have demonstrated the usefulness of measuring pixel BRDF for synthetic data. The next step will

be the capturing of pixel BRDF from the real life data. Developing a capturing system for real world

object/sceneis a challenge. It relies on many computer vision techniques which are sensitive to noise.
One of the important information in measuring pixel BRDF is the direction information, both the

light and viewing vectors. A method that can extract accurate direction information is needed in order
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to prevent blurry image result. Standard pose estimation techniques can be used to extract the pose of
the camera. For the light vector, a camera can be tied with the spotlight to extract the direction of the
light source.

With extra depth information, the image-based object/scene can be correctly illuminated with
light source other than the directional light. The depth information can be converted from the cor-
respondence information which is able to be extracted from images by employing various vision
techniques [BsL88, BoLL87].

Another problem is our current approach is that we need a dense image set in order to accurately
record the pixel BRDF. Acquiring a dense image set from real life data is labor intensive. Therefore,

one future direction is to construct the pixel BRDF using sparse image set.

10.2.4 Global lllumination

In this thesis, we proposed a local illumination model (Equation 7.6) for re-rendering of image-based
object/scene. The natural extension is to design a global illumination model for the image-based
object/scene.

The basic difference between the local and global illumination models is that global illumination
accounts for the radiance contribution of each element in the environment. A simple extension is
to treat every element in the environment as a light source and sum their contributions using the
Equation 7.6. However, this approach will be prohibitively slow. Moreover, occlusion is another
missing information in image-based approach. Without it, the final radiance calculated will not be
correct.

Global illumination in image-based computer graphics is a difficult problem since one of the
major component, form factor [@HE93, SLL 94], of the radiosity equation is missing. Form factor
is basically a geometry factor. Without the geometry model, there is no enough information in any
projected images to allow us to calculate the crucial component. One possible solution is to calculate

the form factor using the depth or the correspondence information extracted from images.
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Appendix A

Spherical Harmonics

Spherical harmonics have been used in solving various physical problems. The spherical harmonics
Y1, (0, ¢) are the solution to Laplace’s equation in spherical coordinates. They are functions of two
angular parameters, the zenith angland the azimuth angke, specifying a position on the surface

of the sphere. Each harmonic is represented by two indie@slz. Index! is known as the spherical
degree whilen as the azimuthal order. The spherical harmonics are formulated to associate with the

Legendre polynomials

20+ 1 (I — m)!

’ o ()t Lmleos O)e?, A1

where P, ,,, (z) are the associated Legendre polynomials,
andm = —{,(=l+1),---,0,---,({ = 1),1.
Here the first term of the equation on the right is the normalization coefficient which normalizes

the spherical harmonics. The integration of a normalized spherical harmonic over a sphere is unity.

27 1
/ / Y5t o (60, 6) Vi (60, 8)d cos B = b,y (A.2)
0 —1

whered,,,,, is called the Kronecker Delta, The asterisk denotes the complex conjugation.

Spherical harmonics obey the following three properties,

Uiy,
Vii(0.0) = oy [ CEE D it et (A3)
(20 + 1
)/},0(07 ¢) = Ar ]DZ,O(COS 0)7 (A4)

Yi—m(8,0) = (=1)"Y],.(6, ), (A.5)

LAfter the French mathematician Adrien-Marie Legendre (1752-1833)
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Appendix A. Spherical Harmonics 139

The third property in Equation A.5 can be used so that the spherical harmonics always related to
an associated Legendre polynomial with> 0.

There are three modes for the spherical harmonics. The mode is depending on the atder of
Whenm = 0, itis called the zonal mode. The harmonics with= 0 are called zonal harmonics and

are in the following form,

kzonal]DI,O (COS 0)7 (A6)

wherek,.na1 IS a coefficient.
Whenm = [, the harmonics are called sectoral harmonics and are in the following form,

ksectoralSin(m¢)]DI7l(COS 0) or k/

sectora

jcos(me) P (cos ), (A7)

In other casesyn # 0 andm # [, the harmonics are called tesseral harmonics and in the form of

ksectoral sin (m¢) ]Dl,m (COS 0) or k/

sectora

1cos(me) P, (cos b), (A.8)

wherel # m.
The spherical harmonics form a complete orthonormal basis. Hence any real spherical function

f(8, ¢) can be expanded in term of complex spherical harmonics.

o0 [
F0.6)=> > CiYim(8, ), (A.9)

(=0 m=-1

whereC7, are the coefficients.
Moreover, the real spherical functigité, ¢) can also be expanded in term of real spherical har-
monics using the same summation equation as in Equation A.9. The real spherical harmonics can be

expressed as follow,

N P (cos 8) cos(me) if m>0
Y (0,0) =3 NioPio(cos)/v2 if m=0 (A.10)
Ny By ) (cos ) sin(|m|¢) if m <0,

204+ 1 (1 — |m|)!
Nim = )
’ 2 (I +|m])!

Note this is the formulation used in Chapter 9.

where,
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The major computation of evaluating spherical harmonics is the evaluation of the Legendre poly-
nomials. For simplicity, let's substitute = cos 6, the ordinary Legendre polynomials are defined

by,

Pin(@) = ()™ (1 = 23)"/2L_py(a). (A.11)

dx™
The Legendre polynomials can be evaluated numerically using the explicit expression. However,
this a bad approach in writing computer program. A better approach is to express the Legendre in

recurrence form.

(1—=2m)V1—2a2P,_1 ;_1(2) if l=m
Prm() =19 a(2m+ 1) Py n(2) if l=m+1 (A.12)

20—-1

wl—m

P_im(z) - H2=Lp_, . () otherwise.

The above expression of the Legendre polynomial can be efficiently coded in computer languages.



