
TIME-CRITICAL MODELING AND RENDERING:
GEOMETRY-BASED AND IMAGE-BASED APPROACHES

by

Tien-Tsin Wong

A dissertation submitted to the faculty of the Chinese University of Hong Kong in partial fulfillment

of the requirements for the degree of Doctor of Philosophy in the Department of Computer Science

and Engineering.

1998

Accepted by the Department of Computer Science and Engineering, The Chinese

University of Hong Kong, in fulfillment of the requirements of the degree of Doctor

of Philosophy.

Prof. Pheng-Ann Heng
(Principal Adviser)

Prof. Wai-Yin Ng
(Principal Adviser)

Prof. Qunsheng Peng

Prof. Hanqiu Sun

Prof. Kin-chuen Hui

ii

c Copyright 1998

Tien-Tsin Wong

ALL RIGHTS RESERVED

iii

To my parents,

Wong, Kun-Ming and Liu, Siu-Fen.

iv

Abstract

In this thesis, we describe two approaches, geometry-based and image-based, to address the problem

of time-critical modeling and rendering. Time-critical modeling and rendering aims to improve the

rendering speed using both modeling and rendering techniques. Improving the rendering time enables

interactive display of large scale complex scene. This is important in many applications such as virtual

reality, medical visualization, flight simulation, etc.

We first describe a new geometry-based simplification algorithm,adaptive skeleton climbing,

which generates simplified mesh directly from volume data. By partitioning the volume into variable-

sized rectangular boxes, the algorithm generates triangles to approximate the enclosed isosurface

adaptively (larger triangles approximate smooth regions and vice-versa). Since we apply binary tree

organization on each dimension of the rectangular boxes, it allows more flexibility in forming rect-

angular boxes which are not allowed in previous octree approaches. Therefore a coarser mesh can be

generated using the proposed algorithm.

Although generating simplified meshes can significantly reduce the rendering time, the rendering

speed is still dependent on the complexity of the scene. Note that the scene can be arbitrarily complex.

If the only goal of the graphics system is to provide the visual experience, we can model and render the

desired image using previously recorded images (reference images). This leads to our development of

image-based computer graphics. For pure image-based rendering, the rendering time will now only

depend on the resolution of the images.

Since the illumination of the scene is fixed during image capture, the illumination in the synthe-

sized images is also fixed. We propose a novel concept of measuring apparent BRDFs of image plane

pixels to overcome the unchangeable illumination problem in previous image-based approaches. By

treating the image plane pixel as an ordinary surface element and measuring its apparent BRDF from

the reference images, we can record thepixel BRDF. Using this apparent reflectance information, we

are able to re-render the image-based scene/object under any desired illumination condition.

The idea is verified by applying it to various image-based data structures, light field, Lumigraph

and panorama. We also devise apractical compression schemeto handle the huge amount of data of

pixel BRDFs.

v

adaptive skeleton climbing

 BRDF BRDF
BRDF

light field lumigraph

vi

Acknowledgements

I wish to thank my advisors, Pheng-Ann Heng and Wai-Yin Ng, for their guidance and support

throughout my graduate studies. Their advice and infallible judgment have been a tremendous in-

fluence and an invaluable resource for me. I am fortunate to have the chance to work with them

during my time at the Chinese University of Hong Kong. Without them, I may not be able to finish

the hard road in pursuing a PhD in Hong Kong. I would also like to thank my thesis committee,

Qunsheng Peng, Hanqiu Sun and Kin-chuen Hui for their comments and insights on my work.

I am especially grateful to Tim Poston of CieMed of National University of Singapore for his

endless suggestions and advice during our collaboration in the development of the simplification

algorithm,adaptive skeleton climbing. I also owe tremendous debts of gratitude to many department

colleagues, in particular, Siu-Hang Or, Wai-Shing Luk and Chi-Shing Leung for their collaborations

in the image-based rendering framework.

I have also benefited from interactions with many people during my graduate studies. I would

like to thank Chong-Yuen Li, Chi-Lok Chan, Chong-Kan Chiu, Sau-Yuen Wong, Chor-Tung Yau,

Wing-Kay Yip, Sau-Ming Lau, Yui-Wah Lee, Man-Leung Wong and Chi-Hong Leung.

Most of all, I am deeply grateful to my parents, Kun-Ming Wong and Siu-Fen Liu, for their

unlimited tolerance and patient for allowing their only son to finish the risky study. Without their

support and encouragement, I cannot finish my graduate studies.

vii

Contents

Abstract v

Acknowledgements vii

1 Introduction 1

1.1 Geometry-based and Image-based Approaches . 2

1.2 Thesis Contributions . 3

1.3 Thesis Outline. 5

I Geometry-based Approaches 7

2 Geometry-based Approaches 8

2.1 Geometry Representations . 8

2.2 Motivation . 10

2.3 Related Work . 11

2.3.1 View Independent Simplification . 12

2.3.2 View-Dependent Simplification . 13

2.4 Summary . 14

3 Volume Partitioning 16

3.1 1D Data Structures and Manipulation . 17

3.2 2D Adaptive Skeleton Climbing . 20

3.2.1 Data Structures . 21

3.2.2 Merging Plots to Form Padis . 22

3.2.3 Iso-line Generation . 24

3.3 3D Adaptive Skeleton Climbing . 27

3.3.1 3D Data Structures . 27

3.3.2 Merging Bricks to Form Highrices . 27

3.4 Summary . 30

viii

4 Triangular Mesh Generation 31

4.1 Sharing Information Between Highrices . 31

4.2 Extracting Triangles Within a Box . 32

4.2.1 Generating the Edge Loops. 32

4.2.2 Triangulating the Edge Loops 34

4.3 Extending to Arbitrary Volume . 35

4.4 Speeding Up the Algorithm . 36

4.4.1 Skipping Empty Blocks . 36

4.4.2 Indexing in Span Space . 37

4.5 Results . 38

4.6 Summary & Discussions . 41

II Image-based Approaches 48

5 Image-based Approaches 49

5.1 Motivation . 49

5.2 Related Work . 51

5.2.1 Finding the Correct View . 51

5.2.2 Re-rendering Under Different Illumination 53

5.3 Summary . 53

6 The Plenoptic Models 55

6.1 The Plenoptic Function . 55

6.2 Subsets of Plenoptic Function . 57

6.2.1 Perspective Projected Images . 58

6.2.2 Parallel Projected Images . 58

6.2.3 Panoramic Images . 59

6.2.4 Images With Any Type of Projection . 60

6.3 Comparing with Geometry-based Computer Graphics 61

6.3.1 Panning, Tilting and Zooming 62

6.3.2 Walkthrough .. 64

6.4 The Plenoptic-Illumination Function . 65

ix

6.5 Summary . 67

7 Pixel’s Bidirectional Reflectance Distribution Function 68

7.1 Illumination Models . 68

7.1.1 Local Illumination . 69

7.1.2 Global Illumination . 71

7.2 BRDF Representation . 73

7.3 BRDF of Pixel . 75

7.4 Measuring Pixel BRDF . 77

7.5 Manipulating the BRDFs . 81

7.5.1 Change of View Point . 82

7.5.2 Light Direction . 82

7.5.3 Light Intensity . 83

7.5.4 Multiple Light Sources. 83

7.5.5 Type of Light Sources . 84

7.6 A Subset of Plenoptic-Illumination Function . 87

7.7 Summary . 87

8 Applications of Pixel BRDF 89

8.1 Viewing Inward . 90

8.1.1 Light Slab Organization . 90

8.1.2 Illuminating Light Field . 94

8.1.3 Sampling Light Field With Illumination . 95

8.1.4 Sampling on a Sphere . 97

8.1.5 A Light Field Viewer with Controllable Illumination 100

8.2 Viewing Outward . 103

8.2.1 Panorama . 103

8.2.2 Illuminating Panoramic Image . 104

8.2.3 A Panoramic Viewer with Controllable Illumination 105

8.3 Summary . 110

9 Compression 111

9.1 Coherence Within a Pixel . 111

x

9.1.1 Spherical Harmonics . 112

9.1.2 Discrete Cosine Transform . 115

9.1.3 Comparison . 117

9.1.4 Preventing Discontinuity . 120

9.2 Coherence Among the Pixels . 120

9.2.1 Vector Quantization . 121

9.3 Summary . 123

10 Conclusions and Future Directions 124

10.1 Synopsis. 124

10.1.1 Pros and Cons of Geometry-based Approach 125

10.1.2 Pros and Cons of Image-based Approach 126

10.2 Future Work and Discussions . 126

10.2.1 Hybrid Approach . 126

10.2.2 View Dependence . 127

10.2.3 Capturing Real Life Data . 127

10.2.4 Global Illumination . 128

A Spherical Harmonics 138

xi

List of Figures

1-1 Geometry-based computer graphics. 2

1-2 Image-based computer graphics. 3

2-1 Volume partitioning schemes.. 11

3-1 Overview of adaptive skeleton climbing. 17

3-2 Glossary of various terminologies. 18

3-3 Basic 1D data structures. 18

3-4 Binary tree organization of 1D voxel data. 19

3-5 Subdivision of lign into length-maximal dikes.. 20

3-6 AlgorithmInitSimple . 21

3-7 The 2D data structures. 21

3-8 Length-maximal plots from consecutive ligns. 22

3-9 Merging plots to form padis. 23

3-10 AlgorithmASC2D. 23

3-11 Binary edge constraint applied to bothx andy dimensions. 24

3-12 Overlapping between two padis. 25

3-13 Example result of running algorithmASC2D. 25

3-14 Storing the padi layout in layout arrays. . .. 26

3-15 Configuration table for 2D isoline generation . 26

3-16 Bad ambiguity resolution by subsampling. 27

3-17 Data structures for the 3D algorithm. 28

3-18 AlgorithmASC3D. 29

3-19 Finding simple bricks byMAXoperations. 29

3-20 Merging bricks to form highrices . 30

3-21 Binary edge constraint applied toz dimension. 30

4-1 Sharing information between neighbor highrices.. 32

4-2 Gap is prevented by information sharing. 32

4-3 Tiling highrice’s surface with padis.. 33

xii

4-4 Assigning label to each unit dike.. 33

4-5 Edge tables. 33

4-6 AlgorithmGenLoop. 34

4-7 One vertex is removed in each iteration. . .. 35

4-8 Triangulate the edge loop to emit triangles.. 35

4-9 AlgorithmEmitTriangle . 35

4-10 The blocks are retrieved in a layer-by-layer fashion. 37

4-11 Graph of triangle count.. 39

4-12 Graph of CPU time. 40

4-13 Graph of time reduction. 41

4-14 Knot64 . 43

4-15 Mt. St. Helens . 44

4-16 Head1 . 45

4-17 Head2 . 46

4-18 Arteries . 47

6-1 Geometric elements of the plenoptic function. 56

6-2 The ray space.. 57

6-3 Perspective projected image as subset of plenoptic function. 59

6-4 Parallel projected image as subset of plenoptic function. 60

6-5 Panorama as subsets of plenoptic function. 61

6-6 Parameters of plenoptic function can express any ray. 62

6-7 Panning in plenoptic model. 63

6-8 Tilting in plenoptic model. 63

6-9 Zooming in plenoptic model. 64

6-10 Walkthrough in plenoptic model. 65

6-11 Geometry elements of plenoptic-illumination function.. 66

6-12 Querying the plenoptic value given the light vector~L. 67

7-1 How can we tell an object is red? . 69

7-2 Geometry relationship between elements in the local illumination model.. 70

7-3 Most surfaces are combination of pure diffuse and pure specular surfaces.. 71

7-4 Geometric relationship between elements in the radiosity equation. 72

xiii

7-5 BRDF . 74

7-6 Differential solid angle. 74

7-7 BRDF as a set of spherical functions (URDFs). 75

7-8 Aliasing problem. 76

7-9 Measuring the BRDF of apixel. 76

7-10 Capturing the BRDF of apixel. 78

7-11 Difference in the sampling direction for the neighbor pixel. 78

7-12 The image plane may not be parallel with the object surface. 79

7-13 Nonlinear relationship between pixel value and true radiance. 80

7-14 A 2D array of BRDFs. 80

7-15 Change of viewpoint. 82

7-16 Change of light direction. 83

7-17 Multiple light sources with different color. .. 83

7-18 Finding the correct light vector. 84

7-19 Point and directional light sources. 86

7-20 Spotlight. 86

7-21 Slide projector. 86

7-22 Pixel BRDF as subset of plenoptic-illumination function.. 87

8-1 An inward-viewing example. 90

8-2 The light slab. 91

8-3 Recording the light field or Lumigraph (top view). 91

8-4 The 2D array ofst images. 92

8-5 Synthesize the desired image using ray tracing. 93

8-6 Guessing the radiance value. 93

8-7 Constant basis vs. linear-bilinear basis. 94

8-8 Including illumination for light field.. 95

8-9 The two different sampling structures of the viewing and light vectors. 96

8-10 Re-render using set of pixel URDFs. 97

8-11 Sampling patterns on a sphere. 98

8-12 The interface ofslabview . 100

8-13 Drawing only the necessary. 101

xiv

8-14 Rotation of an image-based teapot. 102

8-15 Moving the light source from left to right. 102

8-16 An outward-viewing example. 103

8-17 Panorama. 104

8-18 Environment mapped cube. 105

8-19 Coordinate systems of pixel . 106

8-20 A panoramic viewer with controllable illumination.. 107

8-21 Panning and Zooming. 107

8-22 Changing the lighting setup of a panoramic image. 108

8-23 Chessboard. 108

8-24 Attic. 109

8-25 Attic illuminated by spotlights.. 109

9-1 Spherical harmonics. 113

9-2 Comparison of original and reconstructed URDF. 114

9-3 Visual difference in specularity. 115

9-4 Visual difference in shadow generation. 116

9-5 Mapping a hemisphere to a disc. 116

9-6 Stereographic projection. 117

9-7 Original and DCT encoded images. 118

9-8 Visual comparison of reconstructed images. 119

9-9 Preventing discontinuity. 120

9-10 Algorithm of LBG vector quantizer . 122

9-11 Contour artifact of VQ compression. 123

xv

List of Tables

4.1 Triangle Count and CPU Time Comparison between various ASC and MC. 39

4.2 Time reduced usingkd-tree indexing. 40

xvi

Chapter 1

Introduction

Since the introduction of Sketchpad [SUTH63] in the early sixty, technologies in modern interactive

computer graphics has been much improved. We now can render millions of antialiased, texture-

mapped polygons within a second using state-of-art graphics hardware [AKEL93, MONT97]. Radios-

ity development [GORA84, NISH85, COHE93, SILL 94] further allows us to render realistic images

that are nearly indistinguishable from real photographs. However, rendering realistic image of arbi-

trarily complex scene in real time is still far from satisfactory.

The ultimate goal oftime-critical modeling and renderingresearch is to allow rendering realis-

tic images in real time. Rendering algorithm alone is not enough to solve the problem, a suitable

modeling algorithm is also needed. It is a research problem of both modeling and rendering.

Time-critical modeling and rendering has been studied for a long period of time. Newell and

Blinn [NEWE77] have already pointed out the following problem in their 1977 review.

There is a huge disparity between the complexity of scenes in the real world and synthetic
scenes.

Ten years later, Heckbert [HECK87] further confirmed that even with faster computers and larger

memories, real time rendering of complex scene still cannot be achieved.

Since 1977 we have made considerable progress in complexity due to faster computers, larger
memories, improvements in algorithm efficiency, and increased use of procedural modeling, but
we cannot yet regard the complexity problem as solved. We have found that handling complexity
is as much of a modeling and logistics problem as it is a rendering problem.

Most common rendering algorithms used nowadays are dependent of the scene complexity. One

practical rendering algorithm is the depth-buffering, which has a time complexity ofO(n), wheren

is the number of primitives in the scene. Unfortunately, real world scene can be arbitrarily complex.

Imagine a scene of a forest, each tree is modeled with thousands of polygons. Even with the fastest

graphics engine, it is not possible to realistically render such a scene in real time.

Although the scene can be infinitely complex, the human perception is limited. The limitations

can be subdivided into two classes, the internal and external limitations. The internal limitation is due

1

Chapter 1. Introduction 2

to the number, sensitivity and distribution of the rod and cone sensors on the human retina [GOLD89].

On the other hand, external limitation is due to the physical laws of light propagation. For example,

object occluded by another opaque object cannot be seen from human eye since the light ray propa-

gates along a straight line.

By utilizing the various types of limitations, the scene can be rendered in a shorter period of time.

Hence, the research of time-critical modeling and rendering is basicallya research of how to make

use of limitations of human perception.

1.1 Geometry-based and Image-based Approaches

There are now two basic approaches to computer graphics, namely thegeometry-basedand theimage-

basedapproaches. Geometry-based computer graphics is the approach used by most of the computer

graphics systems nowadays. Figure 1-1 shows the geometry-based approach graphically. It is a

physical simulation of light propagation in the space. The geometry models (including the geometry

representation and the surface properties) and the physical laws are input to the simulation process.

The final result (desired image) is a synthetic image simulating the visual appearance of the scene

when physically viewed by the human eye.

Figure 1-1: Geometry-based computer graphics.

Geometry-based time-critical modeling and rendering can be done on the two inputs of the physi-

cal simulation and the rendering algorithm (the simulation process) itself. Using the simplified equa-

tions to approximate the physical laws, the simulation can be done more efficiently. The Phong’s

illumination model [PHON75] is a good example of approximating physical reflection by simpli-

fied formula. Even the infamous physical-based radiosity model [COHE93, SILL 94] involves certain

amount of simplification. However, simplifying the physical laws alone cannot achieve the goal.

Chapter 1. Introduction 3

Hence, simplification has also been applied on the geometry models. Various aspects of simplifica-

tion of geometry models will be described in Chapter 2. Another direction is to design a renderer that

can efficiently render large scale models using hierarchical rendering approach [GREE93, GREE96].

In this thesis, we will concentrate on simplification of models instead.

A completely different approach to computer graphics is the image-based approach. Figure 1-

2 illustrates the approach. Instead of going through a physical simulation, the desired images are

synthesized by means of warping and composition. A set ofreference imagesand minimal geometry

information are input to the system. The finaldesired imageis done by warping and compositing the

input reference images based on the minimal geometry information.

Figure 1-2: Image-based computer graphics.

One major reason of the emergence of image-based computer graphics is the need of time-critical

modeling and rendering. When using reference images as input, the rendering (warping and com-

positing) time is no longer associated with the scene complexity, instead it now depends on the reso-

lution of the images. Moreover, modeling is no longer a process of mimicking real world object using

geometry representation, instead modeling becomes taking photographs of the scene.

1.2 Thesis Contributions

The main contribution of this thesis is a collection of concepts and algorithms that model and render

realistic images efficiently in both geometry-based and image-based computer graphics. The intro-

duction of these concepts and algorithms pushes a step toward to the ultimate goal of time-critical

modeling and rendering.

Chapter 1. Introduction 4

The first contribution is a brand new geometry-based simplification algorithm, named asadaptive

skeleton climbing[POST98, POST97]. It generates simplified polygonal isosurface representation

directly from volume data. The coarsest mesh generated is about 4-25 times fewer triangles than

the existing common method. Nevertheless, the geometry details are preserved. In other words, the

resultant mesh can be displayed 4-25 times faster than that generated from the common approach.

At the same time, there is minimal loss in visual quality. More importantly, the proposed algorithm

generates simplified meshon-the-flyand runs in a short period of time. As opposed to the mesh

optimization approach [HOPP93] which is post-processing algorithm and requires tens of minutes to

execute. An attractive feature of the proposed algorithm is that it generates coarser mesh in a smaller

period of time than that of generating finer mesh.

The second contribution is aconcept of measuring pixel BRDF[WONG97b, WONG97a] in image-

based computer graphics. Most existing techniques concentrate on finding the correct view while

assuming the illumination of the scene is fixed. Hence there is no way to adjust the illumination in

the desired image. The image-based renderer can only change the viewpoint and but cannot change

the lighting condition. In other words, it is not a complete renderer. A few approaches have been

proposed to allow the adjustment of illumination in the desired image. However, they are either only

for still image or with a lot of restrictions, such as Lambertian object assumptions. More seriously,

most of them areuncontrollable(described detailly in Chapter 5). We proposed auniqueconcept

and algorithms that allow ageneral, controllableillumination for arbitrary image containing both

Lambertian or highly specular surfaces.

To control the illumination, we need to know the reflectance of the object surface. However,

for image-based computer graphics, we are no longer accessible to the geometry models and surface

descriptions. All we have are a set of reference images and minimal geometry information. We

proposed a new concept that regards a image plane pixel as an ordinary surface element and measures

its apparentreflectance. Extracting this reflectance information from the reference images, not just

allows the change of the illumination, but also allows us to correctly synthesize image of the same

scene illuminated by light source which does not present in the input reference images.

Using the proposed concept, we extend two major image-based representations to include illu-

mination which is not available before. The final contribution is that we apply a set of compression

schemes [WONG98], including spherical harmonics transform and LBG vector quantization, to com-

press the new pixel reflectance data in order to make itpractical.

Chapter 1. Introduction 5

1.3 Thesis Outline

This thesis is divided into two main parts. Part I describes our work in geometry-based time-critical

model and rendering while Part II describes the image-based approach. Readers are referred to Chap-

ters 2 and 5 for a quick overview of the motivations of our work.

Part I begins by presenting the problem of geometry simplification and overviewing the related

work in Chapter 2. We will also discuss the motivation of introducing a new geometry-based algo-

rithm.

The following two chapters discuss the details of the newadaptive skeleton climbingalgorithm.

Chapter 3 first describes how the volume data is partitioned into variable-sized rectangular boxes

whose size is adaptive to the geometry of the enclosed isosurface. In Chapter 4, the process of

generating simplified triangular mesh is described.

Then, in Part II, we starts by introducing the current status of image-based computer graphics.

The missing of controllable illumination is discussed when reviewing the existing image-based tech-

niques. Our motivation to include illumination into image-based computer graphics will also be

described.

Since image-based computer graphics is a new area, many fundamental concepts are still being

developed. In Chapter 6, we first describe a fundamental model proposed by McMillian [MCMI97]

for image-based computer graphics. It is known asplenoptic function. We will later point out that the

original formulation of plenoptic function is not very suitable for computer graphics which requires

the control of illumination. By modifying the original plenoptic function, we propose to use a new

fundamental model for computer graphics, which we call aplenoptic-illumination function.

In Chapter 7, we introduce the concept of measuring pixel reflectance. The capturing of the pixel

reflectance and the manipulation of them to re-render the image-based scene will be discussed in

details. Some results are also shown to verify the concept.

Chapter 8 applies the proposed concept to two major image-based data structures, light field [LEVO96,

GORT96] and panorama [CHEN95a] in order to include illumination. Note that these two image-based

data structures do not allow any control of illumination originally.

To make the idea practical, we need a good compression scheme in order to store the pixel re-

flectance data efficiently. In Chapter 9, we describe a series of compression algorithms that can

compress the huge reflectance data to a compact size.

Chapter 1. Introduction 6

Finally, in Chapter 10, we conclude by comparing the geometry-based and image-based ap-

proaches. The pros and cons of the proposed concept and algorithms will be discussed in detail.

We will also discuss the future directions.

Part I

Geometry-based Approaches

7

Chapter 2

Geometry-based Approaches

The major key to geometry-based time-critical modeling and rendering isscene simplification. Al-

though we can also improve the rendering speed by simplifying the physical laws, this kind of sim-

plification also reduce the quality of the synthesized images. Moreover, it is still not very helpful in

rendering a very large scale scene.

As mentioned before, the research of time-critical modeling and rendering is a research of making

use of the limitation of human perception. The objects that are too small or too far away can be

simplified. The objects that are occluded can be simplified or even removed (if it does not contribute

any radiance in the final image). The portion of object with a smooth geometry can be represented

by larger simple geometry representation, such as planar surface. Small geometry details such as

cotton fibre can be approximated by texture mapping. All these approximations utilizing the human

perception limitations. The phrasemultiresolution representationis used to describe the data structure

used in achieving the mentioned effects. A review of previous work is described in Section 2.3.

Each simplification algorithm is specially designed for a specific geometric representation. Sev-

eral representations of geometry models are proposed. Each representation owns a unique feature

which is not replaceable by another. A brief look of the major geometry representations are described

in Section 2.1.

Without exception, we proposed a simplification algorithm which is specific to a representation,

the planar surface model. Planar surface model is the most popular geometry representation due to

its simplicity and the wide popularity of graphics accelerator. Our algorithm can also be regarded

as a converter which converts the volumetric representation to planar surface model. During the

conversion, simplification takes place to simplify the resultant planar surface representation.

2.1 Geometry Representations

A geometry representation can be characterized by its nature of describing (resembling) shapes in

three-dimensional Euclidean space. The major reason of using Euclidean geometry in modeling is

8

Chapter 2. Geometry-based Approaches 9

because three-dimensional Euclidean geometry is the geometry of our real world. We are familiar to

it. Moreover, we often model real world scenes in computer graphics.

Surface model is a popular model in computer graphics. It represents object as a set of two-

dimensional surfaces embedded in the three-dimensional space. The two-dimensional surface can

be planar or curved. Planar surface models, such as polygonal mesh and triangular mesh, are the

most popular geometry representation in current graphics system, due to their simplicity and the wide

availability of graphicsaccelerators which are specially designed for them. Curved surface models

are usually expressed in parametric forms and controlled by a set of control points. They are useful

in manual object modeling. Examples are Bezier, B-splines, and NURBS surface patches.

Solid representation describes model by a solid volume instead of hollow volume enclosed by

surfaces. There are many variants of solid representations. Constructive solid geometry (CSG) is one

such solid representation. It is a Boolean combination of primitive solids, such as sphere, box and

cone, etc. It is usually used in modeling mechanical components. However, it is not very useful in

representing object with irregular curved shape. Binary spatial partitioning (BSP) is another solid

representation which is very similar to CSG. But the only primitive allowed is the half-space, the half

space partitioned by a plane.

For the previous two representations, we can ask whether a point is inside or outside the enclosed

volume of the modeled object. There is a representation which does not allow the query of such ques-

tion. One such example is the implicit surface [BLOO97]. It does not define a surface explicitly, but

it defines a 3D field such that each point in space associates with a value. What we can ask is only the

value at a specific point. Implicit function is good at representing natural objects such as water, fire

and cloud, since natural objects do not have any rigid or solid shape. A discrete variant is the volumet-

ric data. It is a lattice of discrete values. Volume data is often collected from Computed Tomography

(CT). Another discrete variant is heightfield. Heightfield is a two-dimensional functionf(x; y)which

returns a scalar height value at each(x; y) position. In most cases, it is used in describing landscape.

Even though the planar surface model is the most popular, objects are seldom created directly in

planar surface representation due to the tediousness. If the object is modeled by hand, object is usually

created in curved surface representation and then converted to planar surface model. If the object is

acquired from 3D scanner such as CT or range scanner, it is first created in volumetric representation

and then converted to the planar surface model usingisosurface extractiontechnique.

Chapter 2. Geometry-based Approaches 10

2.2 Motivation

Our work concentrates on finding simplified planar surface model. Early surface models are mostly

constructed by hand. However, due to the increasing popularity of the 3D scanners, there is an

increasing trend in acquiring planar surface models from 3D scanning. Hence, the need of an efficient

isosurface extraction algorithm becomes apparent.

An isosurface extraction is an algorithm that given the volume data and auser-specified threshold,

it generates a planar surface representation that approximates the trueisosurface. An isosurface is a

surface that every point on the surface has the same value as the given threshold.

A common isosurface extraction algorithm is the marching cubes algorithm [LORE87]. It is a fast

and simple algorithm generating triangular mesh by looking up a 256-entry voxel-cube configuration

table. The major advantage of this algorithm is its speed. However, its major criticism is that it

produces exceedingly huge amount of triangles. Although there are several post-processing mesh

simplification algorithms [HOPP93, SCHR92, TURK92] that can reduce the triangles in the generated

mesh, they usually require tens of minutes to simplify the mesh.

An ideal isosurface extractor should produce minimum amount of triangles that can sufficiently

approximate the true isosurface and at the same time it can generate the mesh in a short period of time.

We designed a new isosurface extraction algorithm with an on-the-fly mesh simplification. That is,

given a volume data and the threshold, the algorithm directly converts it to a simplified triangular

mesh. Since the algorithm directly generates the simplified mesh, the algorithm is much faster than

those post-processing mesh reduction algorithms.

The problem of marching cubes is that it subdivides the volume into unit size voxel cubes (a voxel

cube composes of eight neighbor voxel samples) and then generates triangles within the cubes. The

number of triangles is clearly related to the size of the cubes. If larger cubes are used, the number

of triangles will reduce. Unfortunately the size of the cube is independent of the geometry of the

enclosed isosurface in the original algorithm. Therefore, even the enclosed isosurface is smooth

enough to be approximated by larger triangle, many small triangles are still generated due to the unit

size partitioning approach. Figure 2-1(a) illustrates the problem of unit size partitioning in 2D. In 2D,

the isosurface becomes iso-curve and cube becomes square. Even though longer edges can be used in

approximating the iso-curve in the diagram, the 2D marching cube algorithm still generates 7 edges

in this example.

Wilhelms and Van Gelder [WILH92] and Shekharet al. [SHEK96] noticed this problem. They

Chapter 2. Geometry-based Approaches 11

(a) (b) (c)

Figure 2-1: Volume partitioning schemes. (a) 2D marching cube, (b) quadtree (2D analogy of 3D
octree), (c) 2D adaptive skeleton climbing.

used octree to partition the volume data. The idea is to fit smooth region with large cubes while

complex region with small cubes. The 2D analogy of octree is quadtree shown in Figure 2-1(b).

However octree is still quite restrictive in partitioning the volume. The partitioned region should

always be a cube. Moreover, unnecessary fragmentation occurs in some cases due to the hierarchical

octree structure. In the 2D example of Figure 2-1(b), the quadtree algorithm still generates 6 edges.

To overcome the restriction imposed by octree organization. We apply binary tree organization

along each dimension of the partitioned boxes. This approach allows more flexibility in partitioning

the volume. The partitioned region needs not be a cube. It can be a rectangular box. This approach

also reduces the number of unnecessary fragmentation which is quite often in the octree scheme.

Figure 2-1(c) shows the 2D analogy of our partitioning scheme. Note the subdivided regions can now

be a rectangle. This flexibility further reduces the number of generated edge to 3 edges.

All adaptive marching cube approaches [SHU95, WILH92, SHEK96] face the problem of gap-

filling. Gap exists between a large box and its small neighbors. One more unique feature of our

algorithm is that it does not need to fill the gap because the gap is prevented by sharing information

among neighbor boxes. We will go through the details in the next two chapters. Before that, let us

review some of the related work.

2.3 Related Work

Due to the increase of computer power and capacity, more complex scene can be modeled and ren-

dered. However this increase does not satisfy the need of rendering complex scenes. Instead there is

Chapter 2. Geometry-based Approaches 12

an increasing demand of rendering even more complex scenes. But the increase in computer capa-

bility allows more sophisticated algorithms in the area of time-critical modeling and rendering to be

developed.

There is a significant amount of work have been done in this area. We will concentrate on the

work generating simplified planar surface models. These work can be roughly partitioned into two

major classes based on the view dependency of the algorithm. In the next two subsections, we will

try to classify the work along this criteria.

2.3.1 View Independent Simplification

Most early simplification algorithms are view independent. Williams [WILL 83] proposed an algo-

rithm which simplifies a polygonal mesh organized in grid structure. Due to the special structure of

the mesh, simplification can be easily done by low-pass filtering the vertices.

Another typical type of algorithms converts heightfield data to simplify polygonal mesh for dis-

play [SCAR92, POLI93]. This type of algorithm is commonly used for the application of real time

flight simulation. A common approach is first to use a large triangle patch to approximate the land-

scape. If the approximation error is greater than a user-specified threshold, the large triangle will be

subdivided into smaller patches. The process repeats until the error is below the threshold. This ap-

proach can be calledadaptive subdivision. DeHaemer and Zyda [DEHA91] developed an algorithm

that converts 3D range data to simplified polygon mesh. They used two approaches. One is the men-

tioned adaptive subdivision (top-down) approach. The another one is a polygon growing (bottom-up)

approach. The polygon growth algorithm starts from a small polygon, try to merge it with its neigh-

bors to form larger facets. The merging stops whenever the approximation error is greater than the

threshold.

Another common type of simplification algorithm converts volume data to simplified polygo-

nal mesh given a threshold [WILH92, SHEK96, SHU95]. Wilhelms and Van Gelder [WILH92] and

Shekharet al.[SHEK96] used octree partitioning to subdivide the volume into variable-sized cubes in

order to reduce the number of generated triangles.

Other algorithms accept general mesh as input. Rossignac and Borrel [ROSS93] presented an

algorithm that uses a signal processing approach. The algorithm treats the vertices on the mesh as

sample points in 3D. By grouping neighbor points and replacing them with a representative point, it

Chapter 2. Geometry-based Approaches 13

can then generate simplified models. Garland and Heckbert [GARL97] proposed to use the quadric er-

ror metrics in finding the representative vertices. Schroeder, Zarge and Lorenson [SCHR92] proposed

a mesh decimation algorithm. The algorithm removes less important vertices on smooth regions and

performs retriangulation to preserve the geometry details of the mesh. Cohenet al. [COHE96] used

a similar approach but the process is guided bysimplification envelopes(inner and outer envelopes).

Turk [TURK92] proposed another algorithm with a completely different approach. The algorithm

places sample points on the input dense mesh and re-tile the surface based on the distribution of the

sample points. To prevent non-uniform distribution of sample points, a repulsion force is applied at

each sample point. Hoppeet al.[HOPP93] applied the optimization technique to optimize the number

of triangles in the input mesh. Hence, the main problem is how to design a good objective function.

In general, view-independent algorithms simplify the objects only based on the geometry com-

plexity of the input object. Since they don’t make use of any viewing information to simplify the

object, the simplified object is hence view independent. That is, no matter where the viewpoint is,

there is no need to modify the simplified object.

To use the simplified objects in multiresolution modeling, the original high resolution object

is first converted to multiple simplified versions using any of the mentioned algorithms. During

rendering, high resolution version is displayed when the viewpoint is close to the object. On the

other hand, low resolution version is used when the viewpoint is far away. The criteria of choosing

which version depends on the distance between the viewpoint and the object. This capability of

switching different resolutions of the object is calledlevel of detail. This technique is first described

by Clark [CLAR76]. It is usually not very difficult to modify a renderer to support the level of detail.

This is another advantage of using view-independent algorithms. However, visual artifact may appear

when switching from one resolution to another. The magnitude of artifact depends on several factors:

the number of resolutions stored, the specific resolution chosen, the rendering algorithm and the

geometry complexity of the object. Funkhouser and S´equin [FUNK93] used constrained optimization

to choose a level of detail and rendering algorithm to generate images within the target frame rate.

2.3.2 View-Dependent Simplification

Viewing information, such as position of the viewpoint, viewing direction, and field of view, provides

extra information besides the geometry complexity of the object or scene. With this information, we

usually can simplify more. For example, scenes/objects outside the viewing frustum can be simplified

Chapter 2. Geometry-based Approaches 14

or removed. Objects closer to the eye should be represented in more detail while those far objects

can be simplified. The trade-off of designing a view-dependent algorithm is an increase in algorithm

complexity. When the viewpoint or the viewing direction changes, the simplification done for the

previous frame has to be adjusted. Hence the renderer used must be specially designed to forward

the viewing information to the simplification algorithm at the back end. Moreover, the data structure

storing the polygonal mesh is also specially designed to support theselective refinementon the mesh.

That is, to represent portion of the mesh in high resolution while the rest in low resolution.

Lindstromet al. [L IND96] proposed a view-dependent simplification algorithm for heightfield

data. The algorithm uses a regular grid to represent the heightfield and employs a screen-space thresh-

old to control the error of the projected image of the grid. By projecting the polygon to the screen

space, error can be measured in this space. Measuring error in screen space effectively make use of

the viewing information. The polygon will be further subdivided if the error exceeds the threshold.

For arbitrary mesh, a dedicated data structure is needed to support selective refinement. Such data

structure is basically ahistoryrecording how the highest resolution mesh is simplified to the lowest

resolution one. With this history, the mesh can be selectively refined by replaying the simplification

process for a selected region in the mesh. The criteria of refinement usually depends on a screen-space

threshold. Xia and Varshney [XIA96] usedecol/vsplittransformation (a step of simplification, for

example merging two vertices to one) during the simplification process. Hoppe [HOPP96, HOPP97]

proposed the progressive mesh which is constructed by simplifying the mesh using unconstrained,

geometrically optimizedvsplit transformation. Popovi´c and Hoppe [POPO97] used a more general

transformation known asgeneralized vertex splitin their simplification process.

Previously mentioned Rossignac and Borrel’s approach [ROSS93], which treats the mesh as a set

of unstructured vertices, can be extended to view-dependent version. Luebke and Erikson [LUEB97]

developed a view-dependent polygon simplification based on the similar idea by recording the process

of selecting the representative vertices.

2.4 Summary

In this chapter, we introduce the major key to geometry-based time-critical modeling and rendering,

scene simplification. Due to the simplicity and wide popularity of graphics hardware, the planar

surface model is the most popular geometry representation. Hence most of the research are done for

planar surface model. The motivations of our work is to generate simplified triangular mesh during

Chapter 2. Geometry-based Approaches 15

the isosurface extraction in a short period of time. Our algorithm is a view-independent simplification

algorithm.

Chapter 3

Volume Partitioning

We describe here a direct construction of isosurfaces with between 4 and 25 times fewer triangles

than marching cubes algorithms [LORE87, WYVI 90] (depending on the complexity of the volume),

in comparable running times. Hence more complexity can be handled at interactive speed. The

proposed algorithm is named asadaptive skeleton climbing. Since we construct the isosurfaces by

first finding iso-points on grid edges (1-skeleton), then iso-lines on faces (2-skeleton) and finally

isosurfaces within boxes (3-skeleton), it is known in topology asskeleton climbing. Moreover, the

size of the constructed boxes will adapt to the geometry of the isosurface (e.g. larger boxes enclose

smoother regions), hence it isadaptive.

The proposed algorithm can generate isosurfaces in multiple resolutions directly. The coarseness

of the generated meshes is controlled by a single parameter. The triangle reduction is done on the

fly as the isosurfaces are generated without going through a separate postprocess. The proposed on-

the-fly triangle reduction approach can preserve geometric details of the true isosurface and generate

more accurate meshes because it directly makes use of the voxel values in the volume. In contrast,

the postprocessing triangle reduction approaches [DEHA91, HOPP93, SCHR92, TURK92] usually use

the indirect geometrical information from the approximated dense meshes.

Our approach is quite different from the adaptive marching cubes algorithms [SHU95, SHEK96].

No crack-patching step is needed because we build compatibility (described shortly) into the faces

where cells meet before generating triangles.

The algorithm can be intuitively subdivided into four major steps:

1. 1D Voxel Analysis and Grouping.

2. 2D Adaptive Skeleton Climbing.

3. 3D Adaptive Skeleton Climbing.

4. Isosurface Extraction.

In order to fit large triangles to smooth isosurfaces, the content inside the volume must be first

analysed. Our goal is to find out the size-maximal boxes that enclose the smooth isosurfaces. To

16

Chapter 3. Volume Partitioning 17

find size-maximal boxes in 3D (step 3), we have to find the size-maximal rectangles in 2D (step

2). This further leads us to the need of finding out the length-maximal segments in 1D (step 1). In

step 3, we build 3Dsimpleboxes (described in Section 3.3) whose sizes are closely related to the

geometry complexity of the enclosed isosurface. Information is then shared between adjacent boxes

to prevent existence of gap. And finally in step 4, the triangular mesh is generated. Figure 3-1 shows

the processes of adaptive skeleton climbing graphically. The basic idea is to group voxels first in 1D

(segments), then in 2D (rectangles) and finally in 3D (boxes).

Figure 3-1: Overview of adaptive skeleton climbing.

In this chapter, we will describe the first three steps of the algorithm. The goal of executing

the first three steps is to partition the volume into size-maximal boxes. It is actually a bottom-up

construction process, instead of a top-down subdivision process. Section 3.1 describes manipulation

and grouping of the basic 1D data structures in detail. Section 3.2 carries on the grouping in 2D.

Section 3.3 discusses the construction of simple boxes. Details of triangular mesh generation are

described in Chapter 4.

3.1 1D Data Structures and Manipulation

We start the volume analysis in 1D,i.e. consider a linear sequence of voxel samples. Try to find out

the length-maximal subsequences of voxels withsimplestructure (described shortly).

It helps to think of the volume data as giving sampled values at points (dots in Figure 3-3), rather

than voxel values filling cubes. For the sake of discussion, let’s define the 1D terminologies and data

Chapter 3. Volume Partitioning 18

Figure 3-2: Glossary of various terminologies.

structures. To provide a quick reference to all terminologies (1D, 2D & 3D), a graphically-explained

glossary table is available in Figure 3-2. A line of2n+1 sample points is calledlign (Figure 3-3(a))

wheren is an integer� 0. A dike (Figure 3-3(b)) is a segment of lign which covers voxel samples

in the interval[a2m; (a+ 1)2m], where0 � m � n and0 � a < 2n�m, botha andm are integers.

That is, all dikes are organized in a binary tree (Figure 3-4). The reason to use binary tree on 1D

data instead of octree on 3D data [SHEK96] is that binary tree provides more flexibility in grouping

voxels.

Figure 3-3: Basic 1D data structures.

Figure 3-4(b) shows the binary tree organization of 15 dikes which covers 9 voxels. The voxels

Chapter 3. Volume Partitioning 19

covered by each dike are shown graphically in Figure 3-4(c). The nodes are labeled in a breadth-first-

search order, with the root node as 1. With this dike-labeling scheme for each lign, we can store two

length-(2n+1�1) arrays of dike information,occupancyandsimple dike, for a lign of2n+1 samples.

For simplicity, letN = 2n for short hand.

Figure 3-4: Binary tree organization of 1D voxel data.

Theoccupancy arrayof a lign describes the presence of iso-points (1D analogy of 3D isosurface)

on its dikes. With this occupancy array, we can accurately locate the position of iso-point and how

the isosurface crosses the lign. Now, let us denote the voxel sample with value above or equal to the

threshold (�) as�, and sample with value below� as�. Then the binary value of theith entry in the

occupancy array means:

occ[i] =

8<
:

002 all samples in dikei are on the same side of� .
012 if dike i is crossed by isosurface once, upward� ! �:
102 if dike i is crossed by isosurface once, downward� ! �:
112 if dike i is crossed by isosurface more than once.

Note the binary values symbolize the crossing conditions. For instance, if the isosurface crosses the

dike once and the voxels within the dike change from� (0) on the left to� (1) on the right, then the

value inocc[] is 012 (� ! �). Once the entries of unit dikes (leaf nodes of the binary tree) are

initialized directly from volume data, the entries of the non-unit dikes (upper interior nodes) can be

found by a recursive bitwise OR operations on the leaf nodes since the value inocc[] are specially

designed.

occ[i] := (occ[2i]) OR (occ[2i+ 1])

Another array issimple dike array. It tells us the length-maximalsimpledikes inside the lign. A

dikei is simpleif occ [i] < 112 ; that is, the dike is crossed at most once by the isosurface. The entry

simple[i] holds the index of the length-maximal simple dike with the same left end as dikei.

Chapter 3. Volume Partitioning 20

Intuitively speaking, simple dike array tells us which voxels can be grouped together without vi-

olating the binary boundary due to the tree organization (binary edgefor short) and the simplicity

constraints. The length-maximal simple step following dikei is the dikesimple[i+1] . By per-

forming the following pseudocode fragment, we can walk through the lign in steps of length-maximal

dikes in an efficient way.

current := simple[1]
while current 6= ”end of walk mark”

current := simple[current+1]

Figure 3-5(a) illustrates that a lign is subdivided into length-maximal dikes (shown in black in

Figure 3-5(b)). In this 9-voxel lign example, the lign is subdivided into 4 dikes. The first two dikes

are unit dikes, since the isosurface crosses both of them. Although the isosurface crosses the rest of

the segment only once, it is still subdivided into two dikes due to the binary edge constraint imposed

by the binary tree organization.

Figure 3-5: (a): The lign is subdivided into length-maximal dikes by algorithmInitSimple . (b):
The dikes visited when walking through the lign.

Values insimple[] are found by a binary tree depth-first-search traversal, whose pseudocode

is shown in Figure 3-6. Note that due to the binary edge constraint, the subdivisionmay not be always

minimal (Figure 3-5). But this restriction simplifies the merging process in the 2D adaptive skeleton

climbing discussed in next section.

3.2 2D Adaptive Skeleton Climbing

Next, we go on to the 2D data structure and find out the size-maximal rectangles of voxel samples

with simplestructure.

Chapter 3. Volume Partitioning 21

Input: initialized occupancy array and unfilled simple dike array
Output: filled simple dike array
Algorithm:
InitSimple(myID, legacy):

if current dike is a bottom node (unit dike)
returnmyID

if parent dike is simple
if current dike is right child, it must be simple

simple[myID] := myID
else /* inherit the simplicity */

simple[myID] := legacy
/* Propagate simplicity downward */
InitSimple(2*myID, simple[myID])
InitSimple(2*myID+1,simple[myID])

else /* parent is not simple */
if current dike is simple,i.e. occ[myId]< 112

simple[myID] := myID
/* Propagate simplicity downward */
InitSimple(2*myID,simple[myID])
InitSimple(2*myID+1,simple[myID])

else /* Is the left descendant simple? */
descendent := InitSimple(2*myID, dummy)
InitSimple(2*myID+1, dummy)
simple[myID] := descendent

/* Propagate simplicity upward */
returnsimple[myID]

Figure 3-6: AlgorithmInitSimple .

3.2.1 Data Structures

The 1D data structures allow us to group voxels into length-maximal simple segments (dikes). Sim-

ilarly, in the 2D, we want to group voxels to form size-maximalsimplerectangles. Consider a

(N+1)�(N+1) farm of voxel samples, withN+1 horizontal andN+1 vertical ligns, each with

its own occupancy and simple dike arrays. First, let’s define the 2D terminologies (Figure 3-2) and

data structures. Astrip (Figure 3-7(a)) consists of two consecutive ligns. Aplot (Figure 3-7(b)) is

analogous to the dike which consists of two consecutive dikes.

Figure 3-7: The 2D data structures.

Plots are also organized by a binary tree. Similarly a plot issimpleif and only if its two dikes

are also simple. Hence, we can define asimple plot arraywhich is similar to the simple dike array.

Chapter 3. Volume Partitioning 22

Since the shorter dike has a larger dike ID, the length-maximal simple plots can be easily found by

performing aMAXoperation on each pair of elements in the simple dike arrays of the two consecutive

ligns.

strip[j].simple[i] := MAX(lign[j].simple[i],
lign[j + 1].simple[i])

Figure 3-8 shows one such operation graphically. The calculated plots are overlaid with the voxel

samples in Figure 3-8(b). Note that each plot is crossed at most twice by the isosurface.

Figure 3-8: Length-maximal plots from consecutive ligns.

3.2.2 Merging Plots to Form Padis

A rectangle with dikes as sides is calledpadi(Figure 3-7(c)). A padi issimpleif all plots inside it and

its four side dikes are simple. Our goal is to subdivide the 2D farm of voxels into size-maximal padis.

To do so, neighboring simple plots are merged to form simple padis(Figure 3-9), as large as possible.

Note there is no unique way to merge plots. Different merging strategy gives different sets of padis.

Figure 3-9 shows two alternatives when merging the two consecutive strips. Even an optimal merging

is found for 2D, it may not yield an optimal merging in 3D (discussed in next section). Moreover, a

fast algorithm is crucially required since it will be frequently executed. A slow optimistic algorithm is

useless in this case. Hence we do not use any optimistic algorithm to search for the optimal merging.

A heuristic bottom-up merging (ASC2D, Figure 3-10) is used due to its efficiency and simplicity.

The algorithmASC2Daccepts2N initialized simple plot arrays as input. There areN arrays for

horizontal strips andN arrays for vertical strips. The array can be initialized by theMAXoperations

discussed previously. The basic idea of the algorithmASC2Din Fig 3-10 is as follows. Let us denote

the horizontal direction from left to right as directionx and vertical direction from bottom to top as

directiony. For each length-maximal plot on each horizontal strip (x-strip), expand it iny direction

Chapter 3. Volume Partitioning 23

Figure 3-9: Merging plots to form padis.

Input: 2N initialized simple plot or layout arrays.
N for horizontal strips &N for vertical strips.

Output: A set of size-maximal padis (and iso-lines).
Algorithm:
Initialize an empty candidate list of padis.
For eachx-strip (horizontal strip)

/* Expand the plots to form padis */
For each length-maximal simple plota

Let rectangler := a

While 9 neighbor simple plotb on the adjacent strip
r := r [b (Figure 3-9)

Subdivider in y-direction into pieces according to the
binary edge restriction and givek padisr1; r2; : : : rk (Figure 3-11)
For each generated padiri

For each padipj inside the candidate list
If pj enclosesri

Deleteri
If ri enclosespj

Removepj from the candidate list
If pj partially overlaps withri

Clip ri (Figure 3-12(a))
If ri is not removed

Add ri to the candidate list
/* Optional Iso-line Generation */
For each padipj in the candidate list

Generate iso-line forpj by looking up the table (Figure 3-15).

Figure 3-10: AlgorithmASC2D.

Chapter 3. Volume Partitioning 24

Figure 3-11: Plots are first merged to form rectangle. The rectangle is then subdivided alongy

direction to satisfy the binary edge constraint applied to they direction.

by merging it with consecutive plots having the same length (Figure 3-9). Note the neighboring plots

need not be length-maximal. With the binary edge constraint, it is more likely to find neighbor plots

with same length and align to each other. A candidate rectangle is then formed. Since the binary edge

constraint is also applied to the vertical direction, this rectangle is subdivided to form size-maximal

padis (Figure 3-11).

During the execution of the algorithmASC2D, many padis will be generated. They may overlap

with each other or one may enclose another. All padis which are enclosed by any other padi will

be removed. Those overlapping padis will be clipped with each other. This seems to be tricky.

Instead, only 9 overlapping cases will exist (Figure 3-12(a)). Overlapping cases like Figure 3-12(b)

do not exist. Once again this is the advantage of applying binary edge constraint on both dimension.

Figure 3-13 shows an example result of running the algorithmASC2D. The generated padis are shown

as rectangles among the voxel samples.

A layout of padi is generated as the result ofASC2D. This layout information is stored implicitly

in the layout arrays. Layout array is very similar to the simple plot array but with the constraint that

no plot may cross the boundary of any generated padi on the layout. For a farm of(N +1)� (N+1)

voxels,2N layout arrays are defined,N x-strips andN y-strips. Theith entry inx-strip (y-strip)

stores the index of the length-maximal plot that fits into the padi layout and shares its left (bottom)

end with ploti. Figure 3-14 shows the padi layout of a5�5 xy-farm, which is represented byx-strips

(Figure 3-14(b)) andy-strips (Figure 3-14(c)). The reason to store the layout in this way is to simplify

the simple box construction discussed in Section 3.3.

3.2.3 Iso-line Generation

Once the size-maximal padis are found, we can generate 2D iso-lines which separate� voxels from

those� voxels. Although we will not generate any iso-lines until the 3D boxes have been constructed

(discussed in next section). For the sake of discussion, it is more convenient to discuss it here.

Chapter 3. Volume Partitioning 25

Figure 3-12: Overlapping between two padis.

Figure 3-13: Example result of running algorithmASC2D.

Chapter 3. Volume Partitioning 26

Figure 3-14: Storing the padi layout in layout arrays.

The iso-line can be efficiently generated by looking up a 2D padi configuration table in Fig-

ure 3-15, instead of a 3D voxel cube configuration table as in marching cubes algorithms [LORE87,

WYVI 90]. Figure 3-15 shows all possible padi configurations and their corresponding iso-lines. Note

the padi need not be a square. Similar to the 3D voxel configurations, ambiguity also exists on 2D

padi configurations (the two lower left configurations in Figure 3-15).

Figure 3-15: Generate iso-lines by a 16-entry table. Two ambiguous cases lead to subsampling.

The ambiguity with two diagonally opposite� corners can sometimes be resolved by subsampling

at the center of the padi. However, wrong iso-lines still be generated in some cases (Figure 3-16).

Where connectivity is crucial, software should warn the user of ambiguous cases and offer finer,

more CPU-costly tools for local investigation. In many cases the warning is as useful to the surgeon,

geologist or other user as any silently-attempted best guess by the software.

The generated padis (shown as rectangles) and iso-lines (shown as thick lines) are overlaid on the

Chapter 3. Volume Partitioning 27

Figure 3-16: Bad ambiguity resolution by subsampling.

2D voxel grid in Figure 3-13. The algorithm isolates� from � voxels, with 30 edges on 23 adaptive

padis rather than the 46 edges on 64 unit squares. This is the key how we can reduce the number of

triangles.

3.3 3D Adaptive Skeleton Climbing

By manipulating these 1D and 2D data structures, enough information is provided for us to construct

3D simpleboxes. The information is implicitly stored as the 2D padis. Using this information, we go

on to construct simple boxes by stacking simple padis.

3.3.1 3D Data Structures

Consider a(N+1)� (N+1)� (N+1) voxel sample grid. For the sake of discussions, we now define

the 3D terminologies (Figure 3-2) and data structures. All terminologies are graphically illustrated

by a3� 3� 3 volume in the Figure 3-17(a). Afarmcontains(N+1)� (N+1) voxels on a 2D grid.

A slab, analogous to a strip containing two consecutive ligns, consists of two consecutive farms. A

brick in the slab has two matching padis in two consecutive farms as faces. Ahighriceis a rectangular

box composed of stacked bricks.

It is convenient to call a farmxy-farm,xz-farm oryz-farm, according to which plane the farm is

parallel to (Figure 3-17(b)). Similarly, a brick is calledxy-brick if it is parallel to thexy plane.

3.3.2 Merging Bricks to Form Highrices

Our goal is to construct 3Dsimplerectangular boxes. We start by findingsimplebricks. A brick is

simpleif the two padis forming it are also simple. A highrice issimpleif all its component bricks are

simple, and its six faces aresimplepadis.

Firstly, simplexy-bricks are identified. Then these simplexy-bricks will be stacked one by one to

construct the simplexy-highrice. Note a highrice can be treated as composing ofxy-bricks,xz-bricks

Chapter 3. Volume Partitioning 28

Figure 3-17: Data structures for the 3D algorithm.

or yz-bricks, depends on which dimension the bricks are stacked. We call a highrice thexy-highrice

if it is constructed by stacking simplexy-bricks. In our algorithm, we only interest in finding the

simplexy-highrices.

Figure 3-18 outlines the main algorithm. The first step generates the padi layout oneach farm

by algorithmASC2Dwithout the iso-line generation step. Then we identify the simplexy-bricks by

performing simpleMAXoperations for each pair of corresponding entries in the layout arrays on two

consecutive farms. Just like the 2D version. An example is shown graphically in Figure 3-19.

xy-slab[k].x-strip[j].layout[i] :=
max(xy-farm[k].x-strip[j].layout[i],

xy-farm[k+ 1].x-strip[j].layout[i])
xy-slab[k].y-strip[j].layout[i] :=

max(xy-farm[k].y-strip[j].layout[i],
xy-farm[k+ 1].y-strip[j].layout[i])

Next, neighbor bricks merge to form highrices in 3D (Figure 3-20), analogous to merging plots

to form padis in the 2D case (Figure 3-9). Again there is no unique merging rule (Figure 3-20),

and again we prefer a fast heuristic to a search for a suboptimal subdivision. For each size-maximal

xy-brick on each slab, we stack thexy-bricks upward alongz direction until no more simple bricks

Chapter 3. Volume Partitioning 29

Input: An (N+1)� (N+1)� (N+1) 3D voxel grid.
Output: A set of maximal highrices and isosurface triangular mesh.
Algorithm:
/* Generate the padis on each farm */
For each farm out of (xy-farm,xz-farm andyz-farm)

Find size-maximal padis byASC2D.
Set layout arrays according to the padi layout on eachxy-farm.
For eachxy-slab

Find the layout ofxy-bricks byMAXoperations. (Figure 3-19)
Initialize an empty candidate list of highrices.
/* Stack the bricks to form highrice */
For eachxy-slab

For eachxy-brick a
Let rectangular boxr := a

While 9 neighbor simplexy-brick b on the adjacentxy-slab
r := r [b (Figure 3-20)

Subdivider into xy-highrices with the binary restriction
applied alongz and givek xy-highricesr1; r2; : : : ; rk (Figure 3-21)
For each generatedxy-highricerk

For eachxy-highricehl in the candidate list
If hl enclosesrk

Deleterk .
If ri encloseshl

Removehj from the candidate list.
If hl partially overlaps withri

Clip rl.
If rk is not removed

Add rk to the candidate list
/* Sharing information among highrices */
For each farm (xy-farm,xz-farm,yz-farm)

Reinitialize layout array to fitxy-highrice boundaries (Figure 4-2)
Find a padi layout withASC2Dusing new layout values

/* Iso-line Generation */
For eachxy-highrice in the final candidate list

For each padi on the surface of thexy-highrice
Generate iso-lines. (Figure 3-15)

Connect the iso-lines to form loops
For each edge loop on the surface ofxy-highrice

Triangulate it and emit the triangles.

Figure 3-18: AlgorithmASC3D.

Figure 3-19: To find the simple bricks inside the slab,MAXoperations are done on each pair of the
layout arrays of neighboring farms.

Chapter 3. Volume Partitioning 30

available. Then this temporary box is subdivided alongz direction to fulfill the binary edge constraint

(Figure 3-21). During the highrice formation, the generated highrices may overlapped with each other

or one may be enclosed by another. Any enclosed highrice will be removed. Overlapping highrices

are clipped. Just like the 2D cases, the overlapping cases are quite restrictive due to binary edge

constraint. Hence simplifies the clipping process.

Figure 3-20: Merging bricks to form highrices

Figure 3-21: Bricks are first merged to form box. Then the box is subdivided alongz to form highrices
in order to fulfill the binary edge constraint.

3.4 Summary

In this chapter, we described the detail steps to partition the volume into size-maximal boxes. The

partition process is basically a bottom-up approach. The goal is to fit smooth region with larger boxes.

To increase the flexibility on the shape of the boxes, we apply binary tree partition on the 1D data,

instead of applying the octree partition on the 3D data. First, we partition the 1D lign into length-

maximal dikes. Then, we go on to 2D to partition the 2D farm into area-maximal padis based on the

1D partition information. Finally, the partition is performed in 3D to find out the size-maximal boxes

using the 2D partition information. We will continue to describe the generation of triangular mesh in

the next chapter.

Chapter 4

Triangular Mesh Generation

Once the volume has been partitioned into size-maximal rectangular boxes, we can generate triangles

withineach box. Since the size of the rectangular box reflects the geometry complexity of the enclosed

isosurface, hence the generated triangles will also adapt to the geometry. That is, larger triangles are

generated to approximate smooth isosurface regions.

In this chapter, we will describe the mesh generation process in details. One important step

to prevent the occurrence of gap isinformation sharingdescribed in Section 4.1. After that, we can

generate triangles for each box in Section 4.2. Section 4.3 discusses how to apply the original adaptive

skeleton climbing algorithm, which only works forN �N �N volume, to volume of any size. We

will also describe how to generate the isosurface in multiresolution. Then, in Section 4.4, we discuss

the techniques to speed up the algorithm. Section 4.5 shows the results and compares them with the

classic marching cubes algorithm.

4.1 Sharing Information Between Highrices

At this moment, we can immediately generate triangles inside eachxy-highrice with the padi layout

on the surface on thexy-highrices. This will yield triangular mesh with crack, just like the cases of

Shuet al. [SHU95] and Shekharet al. [SHEK96], since the boxes may not be unit cube.

Figure 4-1(a) shows a large highrice next to a small one. The isosurface crosses the plane separat-

ing the two highrices (Figure 4-1(b)). If triangles are emitted foreach highrice without the knowledge

of their neighbors, gaps will appear in the generated triangular mesh. This is because the linear iso-

lines generated on the highrice surfaces may not match each other geometrically (Figure 4-1(c)), even

though they are topologically correct. To prevent this mismatch, information must be shared between

adjacent highrices.

In our algorithm, the neighbor information can be shared by manipulating the basic data struc-

tures. Recall that we store the padi layout of each farm in layout arrays in Section 3.2.2. Layout arrays

are variants of simple plot arrays. We can reuse these arrays with the new constraint that no plot may

31

Chapter 4. Triangular Mesh Generation 32

Figure 4-1: Sharing information between neighbor highrices.

cross the boundary of any face of any generatedxy-highrice. That is, we store the 3D highrice layout

in these arrays this time. Figure 4-2 shows the farm between the two highrices in Figure 4-1. The

surface boundary of the larger highrice is shown as thick dark gray line in the farm of Figure 4-2(b),

while that of the smaller highrice is shown as thick light gray line.

Figure 4-2: Once we reinitialize the layout arrays to store the 3D highrices’ layout,ASC2Dcan be
run to generate padis that fitted into the surface boundaries of both highrices.

Once the layout arrays are reinitialized, algorithm ASC2D is executed on them (instead of simple

plot arrays) to give a new set of padis. Since the length-maximal plots represented by the layout

arrays are not allowed to cross any boundary, the generated padis will also fit inside these boundaries.

Figure 4-2(c) shows the generated padis for the discussed example. After generating iso-lines on each

padi, three segments of iso-lines will be generated in the example (Figure 4-2(d)), therefore no gap

will exist.

4.2 Extracting Triangles Within a Box

4.2.1 Generating the Edge Loops

Instead of thinking the padis are laid on the farm, they can also be regarded as padis laid on the

six faces of eachxy-highrice. Each face of thexy-highrice may contains more than one padis as in

Figure 4-3.

Chapter 4. Triangular Mesh Generation 33

Figure 4-3: The six faces of a highrice aretiled with padis after information sharing.

To generate the isosurface, we first generate iso-lines on padis by looking up the 2D padi config-

uration table in Fig 3-15, and connect them to form closed edge loops (Figure 4-8(a)). Note that in

our algorithm, we only need a 2D padi configuration table, no 3D voxel cube configuration table is

needed.

Even though iso-lines (edges) are generated by looking up the configuration table, the edge loop

is not yet available since the edges are not yet connected. Hence the next step is to connect the

disjointed edges.

First, we need to label all unit dikes on the surfaces of the highrice (Figure 4-4). A highrice of

sizep�q�r containsl = 4(pq+qr+rp) distinct unit dikes. An edge can then be represented by an

unordered pair(a; b),a andb are the ID of the unit dikes where the edge begins and ends respectively.

Figure 4-4: Each unit dikes on the surface of the highrice is assigned with a distinct label.

Figure 4-5: To connect the edges, two length-l edge tables are used.

Secondly, two length-l tables are used to connect the edges (Figure 4-5). For each unordered pair

(a; b), fill the ath entry withb and thebth entry witha. For example, if there is an edge(1; 3), the

Chapter 4. Triangular Mesh Generation 34

tables will look like Figure 4-5(a). If the entry in the first table (edgetable1) is already occupied,

we fill the corresponding entry in the second table (edgetable2). For instance, a new edge(3; 5)

is generated, the two tables will become Figure 4-5(b).

When all edges are entered into the tables. The edge loops can be retrieved from the table by the

algorithmGenLoop in Figure 4-6. This algorithm contains a simple loop which steps through all

nodes inside the edge loop. It works whenever the edge loop is closed and each node in the loop is

connected by two edges. It can also handle multiple edge loops within the same highrice. The time

complexity of this algorithm is obviously linear.

Input: Two filled edge tables.
Output: A sequence of unit dike ID representing the edge loop.
Algorithm:

current := ID of first non-empty entry inedgetable1
start := current
prev := -1 // invalid value
next := -1 // invalid value
while next 6= start

if edgetable[current] 6= prev
next := edgetable1[current]

else
next := edgetable2[current]

outputcurrent
prev := current
current := next

Figure 4-6: AlgorithmGenLoop.

4.2.2 Triangulating the Edge Loops

Given an edge loop consistingof several verticesvi, we emit triangles using the algorithmEmitTriangle

in Figure 4-9. In each iteration, three consecutive verticesvi, vi+1 andvi+2 are selected and one tri-

angle is generated (Figure 4-7). The vertexvi+1 is then removed from the edge loop. The algorithm

continues until only two vertices are left.

An edge loop can be triangulated in multiple ways. Different sequences give triangular meshes

with identical triangle counts, but with different geometry (Figure 4-8(b) and (c)). To generate a mesh

that closely approximates the true isosurface, we make use of the gradient. As shown in algorithm

EmitTriangle in Figure 4-9, we reject any triangle with planar normal vector~nt that largely

deviates from the gradients~gi at three vertices. The deviation is measured by the dot product of~nt

and~gi. A threshold is used as a criteria. The threshold constraint will be relaxed if no triangle can be

generated under the current constraint.

Chapter 4. Triangular Mesh Generation 35

Figure 4-7: In each iteration, one triangle is emitted and one vertex is removed.

Figure 4-8: Triangulate the edge loop to emit triangles.

4.3 Extending to Arbitrary Volume

The proposed algorithm handles volume with the size of(N + 1)� (N + 1)� (N + 1), i.e. a cubic

block. To handle volume with different size, we can simply tile the blocks to cover the whole volume

and applyASC3Don each block. Recall that gaps will appear if no information is shared between

adjacent highrices. Similar cracks will appear if information is not shared between adjacent blocks.

Unlike the case of variable-sized highrices, each block has the same size. This simplifies the process.

To share information between blocks, we simply performMAXoperations on each pair of layout arrays

on the surfaces (which are also farms) of two adjacent blocks. The simpleMAXoperations effectively

find out the largest padis that fit the constraints. This information sharing process must be done just

Input: An edge loop and an initial deviation thresholdT
Output: A triangular mesh.
Algorithm:
Put all vertices on the edge loop into an order preserving list.
While the list contains more than 2 vertices

Pick three consecutive vertices(vi; vi+1; vi+2) to form a triangle
If the deviation is too large,~nt � ~gi < T or ~nt � ~gi+1 < T

or ~nt � ~gi+2 < T

Reject this triangle
Else

Emit this triangle
Remove vertexvi+1 from the list

If no triangle can be generated above current thresholdT

Decrease the value ofT

Figure 4-9: AlgorithmEmitTriangle .

Chapter 4. Triangular Mesh Generation 36

after the information sharing among highrices.

Up to this moment, we have not yet discussed the effect of using different values ofN , i.e. the

size of the block. The block size constrains the maximum size of the highrices. When the block size is

small, sayN = 1, the largest highrice contains2�2�2 voxels,i.e. same as standard marching cubes.

When a larger block size is used, larger highrices are allowed to be generated, hence larger triangles.

In other words, by controlling the valueN , we can generate isosurfaces in multiple resolutions. Note

that parameterN is an indirect control, the actual mesh generated will also depend on the geometry

of the real isosurface. More triangles will still be generated if the isosurface geometry is complex.

Figures 4-14 to 4-18 show the results of using different block sizes. From (a) to (b), the values ofN

are 1, 2, 4 and 8. As the block size increases, larger triangles are generated to approximate the smooth

surface.

Unlike the triangle reduction algorithms [DEHA91, HOPP93, SCHR92, TURK92] which gener-

ate coarser mesh based on the high resolution mesh, the proposed approach generates coarser mesh

directly from the original volume data. This ensures no distortion or error is introduced before the

triangle reduction. More importantly, the proposed algorithm is an on-the-fly process which requires

no time-consuming postprocessing triangle reduction. In fact, the algorithm produces coarser mesh

in a smaller amount of time (see Table 4.1). Although our approach may not reduce triangles as much

as mesh optimizer does, it is a cost effective method to significantly reduce triangles in a short period

of time.

4.4 Speeding Up the Algorithm

4.4.1 Skipping Empty Blocks

In practice, there is no need to process every block of voxels. Since many blocks are empty,i.e.

contains no isosurface, we can simply ignore them without performing the computational intensive

merging processes. This can be done in the early stage of the algorithm. Once we have initialized the

values inocc[] for each lign in the block, the emptiness of the block can be immediately identified.

With this simple technique, the execution time of the algorithm can be reduced to about 25% of the

original execution time. The actual speedup depends on the geometry complexity of the isosurface.

Chapter 4. Triangular Mesh Generation 37

4.4.2 Indexing in Span Space

Skipping empty blocks can significantly reduce the computational time. However it still requires the

initialization of the occupancy array (occ[]) for every block. A further speedup can be achieved

by indexing the block in span space. Livnatet al. [L IVN96] indexed the voxel cubes usingkd-

tree [BENT75]. By indexing the minimum and maximum values among the eight voxels within

the voxel cube, the non-empty voxel cubes can be rapidly located using theO(
p
c + k) searching

algorithm [LEE77], wherec is total number of voxel cubes andk is the number of cells intersecting

the isosurfaces.

In our case, indexing the unit voxel cubes is not enough since we need to locate non-empty blocks

of various sizes ((N +1)� (N+1)� (N +1)). Moreover, the original method retrieves voxel cubes

in an arbitrary order. That means, if two neighboring voxel cubes are intersected by the isosurface,

the method cannot ensure these voxel cubes are retrieved one by one. The retrieval order is important

in our case, since information sharing has to be done between neighboring blocks to prevent gaps. To

perform information sharing efficiently, the non-empty blocks must be retrieved in a layer-by-layer

fashion. Two more keys are added to construct a 4d-tree, in order to solve the mentioned problems.

For each block, four keys are defined.

(Vmin, Vmax, N , L)

KeyVmin andVmax are the minimum and maximum values of voxels within a block. KeyN is the

block size. With this key, we can store blocks of different sizes in a singlekd-tree. When querying

the blocks of specific size, the search keyN must be set to the corresponding value. KeyL is the

number of the layer where the block is located (Figure 4-10). By querying the blocks in an increasing

order ofL, we can retrieve them in a layer-by-layer fashion. Hence, information sharing can be done

without storing all the non-empty blocks in the memory.

Figure 4-10: The blocks are retrieved in a layer-by-layer fashion.

Chapter 4. Triangular Mesh Generation 38

4.5 Results

Table 4.1, Figures 4-11 and 4-12 quantify for various datasets the results of our implementation of

adaptive skeleton climbing with four block sizes,N = 1, 2, 4 and8. Triangle counts and CPU

times on a SGI Onyx are compared with the Wyvill implementation [WYVI 90] of marching cubes

algorithm. The timing results shown Table 4.1 has been sped up by skipping the empty blocks.

Thekd-tree indexing is disabled since it is not fair to compare it with the original marching cubes

algorithm which includes no indexing scheme. Figures 4-14 to 4-18 show the corresponding images.

Only the meshes generated by our algorithms are shown. Gouraud shaded isosurfaces are overlaid

with triangle edges for clarity.

The “knot” data sets are sampled from an algebraic function, at three resolutions,64� 64 � 64,

128�128�128and256�256�256. Figure 4-14 shows the extracted isosurfaces from the64�64�64

volume in multiple resolutions. Volume “Mt. St. Helens” (Figure 4-15) is a landscape heightfield

dataset. We also tested three medical computed tomography (CT) datasets, “Head1” (Figure 4-16),

“Head2” (Figure 4-17) and “Arteries” (Figure 4-18). The data set “Arteries” contains no large smooth

sheets, and its geometrical complexity inherently requires a finer mesh for topological correctness.

In general, as the block sizeN increases, both the CPU time (Figure 4-12) and the triangle count

(Figure 4-11) decrease. There are about four to twenty-five times reduction in the triangle count.

Figures 4-14 to 4-18 reveal little change in shape as the triangle count decreases. Note that in some

cases increasing the block sizeN may slightly increase the triangle count when the complex geometry

of the isosurface requires sufficient triangles to represent it. In three out of seven tested cases, the

optimal block size (in terms of triangle count) isN = 4. Depend on the geometry complexity of

the true isosurface, the optimal value may vary. From the experiments, the proposed algorithm is not

efficient to generate the highest resolution mesh as the marching cubes algorithms do. However, it

can generate coarser meshes in an amount of time comparable to that of marching cubes algorithms.

In the test cases of “knot256” and “Mt. St. Helens”, the running times of generating coarse meshes

(N = 8) are even faster than that of the marching cubes.

Table 4.2 shows the reduction (in percentage) of execution time ifkd-tree indexing is used to

locate the non-empty blocks. There is about 10-60% reduction depending on the volume complexity.

Figure 4-13 shows the same results graphically. From the graph, it shows that the reduction decreases

as the block size increases. As the block size increases, more unit voxels will be involved in the

merging process even though they are not intersected by the isosurface.

Chapter 4. Triangular Mesh Generation 39

Data Set ASC,N = 1 ASC,N = 2 ASC,N = 4 ASC,N = 8 MC
knot64 12,7124 3,6824 1,7724 2,0544 13,9684

64�64�64 8.16sec. 3.61sec. 2.59sec. 2.43sec. 1.79sec.
knot128 44,7604 13,0884 4,6924 3,9184 56,2084

128�128�128 61.52sec. 24.00sec. 15.61sec. 14.31sec. 12.81sec.
knot256 152,0804 48,5624 15,3704 8,8294 225,7364

256�256�256 470.95sec. 178.54sec. 105.31sec. 87.78sec. 94.62sec.
Mt. St. Helens 335,0964 119,0454 83,5384 92,7404 335,0084
258�258�256 495.17sec. 195.45sec. 137.45sec. 120.80sec. 219.87sec.

Head 1 580,7714 186,3314 136,9094 159,2074 592,3684
256�256�113 339.21sec. 138.59sec. 97.31sec. 100.55sec. 61.91sec.

Head 2 98,3974 58,2444 60,8854 63,5824 95,3624
128�128�57 44.42sec. 20.93sec. 17.51sec. 19.27sec. 8.00sec.

Arteries 263,6864 131,7694 139,6364 149,2514 263,4384
256�256�148 311.97sec. 134.00sec. 103.68sec. 128.07sec. 56.09sec.

Table 4.1: Comparison of adaptive skeleton climbing, with block sizesN = 1; 2; 4; 8, and marching
cubes, in terms of triangle number (4) and CPU time.

Figure 4-11: Graph of triangle count in Table 4.1.

Chapter 4. Triangular Mesh Generation 40

Figure 4-12: Graph of CPU time in Table 4.1.

Data Set ASC,N = 1 ASC,N = 2 ASC,N = 4 ASC,N = 8

knot64 59% 53% 40% 30%
Head 1 46% 38% 29% 23%
Head 2 42% 32% 19% 13%
Arteries 67% 58% 40% 26%

Table 4.2: Reduction (in percentage) of execution time after indexing with thekd-tree.

Chapter 4. Triangular Mesh Generation 41

Figure 4-13: Reduction (in percentage) of execution time after indexing with thekd-tree. (Graphical
presentation of Table 4.2.)

4.6 Summary & Discussions

Adaptive skeleton climbing produces isosurfaces in times comparable to marching cubes [LORE87],

with substantially fewer triangles, and without the gap-filling problems of adaptive marching cube

methods [WILH92]. It directly uses the volume data and produces isosurface in multiple resolutions.

Althoughoptimal coarse meshes can be found by postprocessingmesh reduction algorithm [HOPP93],

significant computational time is needed. Moreover, the optimality of the mesh representation is not

the main concern of the people such as surgeons. Instead, the speed of the algorithm, the accuracy

and the triangle count of the generated meshes are more important to a surgeon who may have to try

different threshold values to explore the tumor surfaces and interact with them. Our algorithm can be

served for such purpose.

Since we use simple rectangular boxes instead of octree cubes, this approach provides more flex-

ibility in partitioning the volume, hence captures more isosurface regions with simple geometry. It

is faster than postprocessing mesh simplification methods [HOPP93, SCHR92, TURK92, DEHA91],

though the mesh may not be optimally reduced. The proposed algorithm can serve as a companion

to the mesh optimizer, since the coarse mesh produced can be a better initial guess for the optimizer.

Chapter 4. Triangular Mesh Generation 42

Adaptive skeleton climbing is a fast heuristic algorithm, rather than a path to a strict optimum.

Currently, the proposed algorithm subdivides the volume into sub-volumes based on the simplicity

criteria suggested in Section 3.1. It is a topological criteria instead of a geometrical criteria. This leads

to a difficulty in measuring and controlling the geometric error between the generated mesh and the

true isosurface being represented. To use the generated meshes in the level of detail applications, an

error measurement is needed. This can be done if the finest mesh is treated as the “true” isosurface.

Then the geometric error can be estimated by comparing the generated mesh with the “true” mesh.

A more direct approach to generate mesh with desired geometric error is to modify the subdivision

criteria in the adaptive skeleton climbing to a geometrical criteria.

Chapter 4. Triangular Mesh Generation 43

(a) (b)

(c) (d)

Figure 4-14: Visual comparison of the effects of block size for an algebraic surface, ”knot64”. (a)
N=1, (b)N=2, (c)N=4, (d)N=8.

Chapter 4. Triangular Mesh Generation 44

(a) (b)

(c) (d)

Figure 4-15: Visual comparison of the effects of block size for landscape data ”Mt. St. Helens”. (a)
N=1, (b)N=2, (c)N=4, (d)N=8.

Chapter 4. Triangular Mesh Generation 45

(a) (b)

(c) (d)

Figure 4-16: Visual comparison of the effects of block size for a CT data of human head, ”Head1”.
(a)N=1, (b)N=2, (c)N=4, (d)N=8.

Chapter 4. Triangular Mesh Generation 46

(a) (b)

(c) (d)

Figure 4-17: Visual comparison of the effects of block size for another CT data of human head,
”Head2”. (a)N=1, (b)N=2, (c)N=4, (d)N=8.

Chapter 4. Triangular Mesh Generation 47

(a) (b)

(c) (d)

Figure 4-18: Visual comparison of the effects of block size, for a CT data of blood vessels in the
head, ”Arteries”. (a)N=1, (b)N=2, (c)N=4, (d)N=8.

Part II

Image-based Approaches

48

Chapter 5

Image-based Approaches

In Part I of this thesis, we introduce a geometry-based simplification algorithm which generates sim-

plified mesh directly from the volume data. Take example “Head 1” from Table 4.1. The coarsest

resolution of the model requires 159,207 triangles to represent. This is only the number of triangles

for one object. If the scene contains thousands of such objects, real time rendering will be impossible

given the current technology. Using the view-dependent simplification algorithms can improve the

rendering speed by displaying coarser mesh when it is far away or occluded. However, if the scene

contains thousands of semi-transparent skull models overlapping each other and it is viewed from a

close distance, any view-dependent algorithm is helpless in this case.

There is an increase in believing that geometry-based approach will not achieve the goal of real-

time display of arbitrarily complex scene. The time complexity of any geometry-based renderer is

a function ofn, the number of primitives in the scene, which may be arbitrarily large and slows

down the rendering. The solution to this problem is to design a renderer with a time complexity

independent ofn. This leads to the research ofimage-based modeling and rendering, modeling and

rendering using images only.

Besides time complexity, another major reason for the emergence of image-based computer

graphics is the difficulty in modeling real world scenes/objects. As mentioned in Chapter 1 and

illustrated by Figure 1-2, image-based computer graphics synthesize desired images by warping and

compositing the reference images. No explicit geometry model exists during the synthesis. Modeling

becomes a process of taking photographs. Taking photographs of real world scene is usually easier

than constructing the geometry representation.

5.1 Motivation

Previous work (described in Section 5.2) mainly focus on finding the correct view given a set of ref-

erence images. The illumination of the scene captured by the reference images is commonly assumed

unchanged and carefully designed. Hence the illumination in the final desired image will also be

49

Chapter 5. Image-based Approaches 50

fixed. In other words, we have a renderer that supports the change of viewpoint, viewing direction

and field of view, but not the change of illumination. Apparently, such renderer isincompletefor the

computer graphics usage. Our motivation is based on the need of acompleteimage-based renderer.

There are a few work done on the illumination of images. Unfortunately, all of them has some

restrictions or limitations. One common limitation is that all object surfaces visible in the image

must beLambertian. This is a very strong assumption which is impractical for real world image

containing specular surfaces. Another limitation is theviewpoint is commonly assumed fixed. That

is, although we can change the lighting, we cannot change the viewing direction. One of the previous

work restricts the type of illuminationto only outdoor illumination. Therefore it can only render

the scene under the sunlight. One more problem is that some of themdo not allow controllable

illumination even though they can change the illumination. We will discuss it in detail in the next

section. Generally speaking, all previous work are not general enough.

In this thesis, we will introduce a completely new andgeneralconcept that allows the re-rendering

of arbitrary image under any illumination. There isno assumption on the surface propertiesseen in

the image. There isno restriction on the type of illumination. At the same time, theviewpoint of

the image can be changedas well. One more importance is that our approach offers acontrollable

illumination.

To calculate the reflected radiance outgoing from a surface element, we need to know the re-

flectance of that surface element. A general description of reflectance is thebidirectional reflectance

distribution function(BRDF). It is actually a table of reflectance values recording the reflectances of

the surface when the surface is viewed from different direction and illuminated by a light source from

various direction.

Without the geometry, there is no way to measure or specify the BRDF of a surface element seen

in the image. To allow the illumination to be done in image-based systems, we introduce the concept

of measuring the apparent BRDF of a pixelby treating a pixel as an ordinary surface element. We

will show later in this thesis how these pixel BRDF can be used in re-rendering of any image-based

scene under any lighting condition. A series of techniques will also be introduced to make the idea

practical.

Chapter 5. Image-based Approaches 51

5.2 Related Work

Previous work can be roughly classified into two main streams. The first stream focuses on determin-

ing the correct perspective view. The second stream of research focuses on re-rendering the scene

under different illumination.

5.2.1 Finding the Correct View

Images have long been used in computer graphics as an approximation of surface details. This appli-

cation is commonly known as texture mapping. Its simplicity and efficiency make it popular. The ba-

sic idea of texture mapping is to modulate various surface properties of the object according to the tex-

ture image. Many variants of texture mapping are proposed during the past three decades. The origi-

nal texture mapping [CATM74] changes only the color parameter of the surface. If the specular reflec-

tion is changed according to the texture, it is known as environment mapping [BLIN76, GREE86a].

If the normal vector is perturbed according to the texture, it is known as bump mapping [BLIN78b].

Others change the glossiness coefficient [BLIN78a], transparency [GARD84, GARD85], diffused re-

flection [MILL 84], surface displacement [COOK84a], shadows [COOK84a, REEV87, SEGA92], and

local coordinate system [KAJI85, CABR87]. Heckbert [HECK86] provided a comprehensive survey

of various usage of texture mapping. Most of texture mapping techniques treat images as an ap-

proximation of small geometry details. Images are frequently used as a component of the geometry

models. Since the small geometry details being approximated by the texture image are in microscopic

scale, they can be regarded as fixed even the viewpoint changes.

Recently, researchers generalized the idea and began to use images to approximate larger geom-

etry. In other words, images are used to model the whole object, not just a component. To do so,

one major issue has to be solved,finding the correct images when the viewpoint changes. Foleyet

al. [FOLE90] developed a system which can rotate raytraced voxel data interactively by interpolat-

ing images captured from certain viewing direction. The interpolation method used is not physically

correct. Chen and Williams [CHEN93] interpolated views by modeling pixel movement, resulting in

physically correct interpolation. Missing pixels due to occlusion are filled by partial rendering. Max

and Ohsaki [MAX95] used a similar approach in modeling trees.

Later, Chen [CHEN95a] described an image-based rendering system, QuickTime VR, which gen-

erates perspective views from cylindrical panoramic image data by warping [CHEN95b]. Note that

the panorama is actually the texture image used in previous environment mapping research [BLIN76,

Chapter 5. Image-based Approaches 52

GREE86a]. The perspective view can also be achieved by drawing a sphere from inside with the envi-

ronment texture mapped onto the sphere. McMillan and Bishop [MCMI95] also used panoramic im-

age as the fundamental images in their image-based renderer. They also mentioned that image-based

rendering is a problem of sampling and manipulating the plenoptic function [ADEL91]. A method to

sample and reconstruct this plenoptic function is proposed. Faugeras and Robert [FAUG93] applied

the epipolar geometry to reconstruct the desired image using only a few reference images.

Image morphing [BEIE92] can be classified as a special type of image-based rendering. The

major goal is to find a smooth interpolation from one image to another one. The interpolated images

need not be physically correct. Interpolation is done by first warping the shape of object in both the

source and target images. Then these two warped images are cross-dissolved to produce the desired

image. If extra geometric information (such as camera parameters) can be determined, the morphing

can produce physically correct images. Seitz [SEIT96] extracted the camera information from the

reference images and then used it to produce morphed frames which are physically correct.

Levoy and Hanrahan [LEVO96] and Gortleret al.[GORT96, GU97] reduced the 5D plenoptic

function to a 4D light field or Lumigraph. They used two planes to parameterize any ray passing the

volume (light slab) enclosed by these two planes. The light field or Lumigraph is actually a table of

radiances along the rays passing through the light slab. The table is hence indexed by four parameters

(each plane requires two parameters to address a position on the plane). This simplification allows

the view interpolation to be done by standard texture mapping techniques, which can be further ac-

celerated by hardware. This two-plane organization will be described in more detail in Section 8.1.1.

Instead of two-plane structure, Ihmet al. [I HM97] used spherical structure to record the radiances.

Debevecet al. [DEBE96] used a hybrid approach (both geometry and image) to model architec-

tural objects. Geometry representation is used to approximate larger structure while image is used to

approximate smaller geometry. This approach is very similar to early texture mapping. One unique

feature of their work is that the geometry surface is not only mapped with one single texture image,

but with multiple texture images captured from different viewpoints. During rendering, the textures

will be blended to give a smooth realistic 3D rotation. A similar method is also proposed by Pulliet

al. [PULL97].

Recently, animated image-based objects are developed by Live Picture [LIVE97].

Chapter 5. Image-based Approaches 53

5.2.2 Re-rendering Under Different Illumination

Another stream of research focuses on re-rendering the image under different illuminations. Hae-

berli [HAEB92] re-rendered the scene using simple superposition property. However, the direction,

the type and the number of the light sources are limited to the lighting setup during the image cap-

turing. Nimeroffet al.[NIME94] efficiently re-rendered the scene under various natural illumination

(overcast or clear skylight) with the knowledge of the empirical formulæ that model the skylight

in mind. Hence the illumination in the desired image is restricted to the outdoor illumination,i.e.

illuminated by the sunlight only. Moreover, the viewpoint is always fixed.

Belhumeur and Kriegman [BELH96, ZHAN98] used singular value decomposition to extract a set

of basis images from the input reference images. The desired image can be synthesized by linear com-

bination of these basis images given a set of coefficients. In other words, the illumination is changed

through controlling the values of the coefficients. Since there is no intuitive relationship between the

values of the coefficients and the direction of the light source, they cannot control the direction of the

light source in the desired image. That is, the illumination isuncontrollable. Moreover, they assumed

the objects in the scene must beLambertian. This is a very strong assumption and nearly impractical

for real world images. In Belhumeur and Kriegman’s work, the viewpoint is also assumed fixed.

Seitz and Kutulakos [SEIT98] proposed an interesting “image-based” editing framework. The

algorithm first constructs an intermediate voxel data structure (geometry representation) using the

voxel-coloring technique [SEIT97]. Then the voxel data is used for editing. With the voxel data,

they can re-render the scene under a different illumination. However, they still have a Lambertian

surface assumption during the voxel-coloring process. Hence, the framework only work for limited

surface types. Strictly speaking, their framework involves a reconstruction phase, voxel-coloring,

which reconstructs an intermediate geometry representation. Therefore, the rendering complexity

will still depend on the complexity of the reconstructed scene, in this case, it is the resolution of the

voxel representation.

5.3 Summary

In general, the first stream of previous work focuses only on the correct view synthesis and neglects

the illumination capability. On the other hand, the work in the second stream is not general enough

to allow re-rendering of arbitrary images under arbitrary lighting condition. More importantly, the

Chapter 5. Image-based Approaches 54

illumination is not controllable. Starting from the next chapter, we will introduce the general concept

of measuring apparent BRDF of pixel. This allows us to re-render arbitrary images under arbitrary,

controllable illumination.

Chapter 6

The Plenoptic Models

In traditional geometry-based computer graphics, the scene is first modeled as a set of geometrical

entities. Then a physical simulation of light propagation takes place to approximate the image of the

scene formed on our retinas. Hence the fundamental computation model of geometry-based com-

puter graphics is a physical simulation. It allows us to evaluate the correctness of the modeling and

rendering techniques.

For image-based computer graphics, a fundamental computation model is also needed to allow us

to evaluate the usefulness of various image-based techniques and to develop new techniques based on

it. McMillan [M CMI97] suggestedplenoptic function[A DEL91] to serve as the fundamental model.

In this chapter, we will introduce the plenoptic function in details. By comparing its capability

with the physical simulation in the traditional geometry-based computer graphics, we demonstrate

the generality of this model.

The plenoptic function is first proposed as a model for evaluating various human vision model,

not for computer graphics. Although the original formulation is very general, it is not convenient to

express one crucial factor in traditional computer graphics, namelyillumination. In this chapter, we

propose an extended formulation of plenoptic function which includes illumination as well.

6.1 The Plenoptic Function

Adelson and Bergen [ADEL91] proposed a seven-dimension function known asplenoptic function1.

Plenopticis the combination of a Latin rootplenusmeans plenty or complete, and the wordoptic. It

describes the irradiance from any direction~V arriving at any point_E in space, at any timet and over

any range of wavelengths�. They formulate the function as follows,

I = P(�v; �v; Ex; Ey; Ez; t; �); (6.1)

1A similar terminology known aslight fieldwas coined by A. Gershun [GERS39] to describe the radiometry properties
of light in a space.

55

Chapter 6. The Plenoptic Models 56

or in the short form,

I = P(~V ; _E; t; �); (6.2)

where I is the irradiance,

_E = (Ex,Ey, Ez) is the position of the center of projection or the eye,

~V = (sin �v cos�v , cos �v , sin �v sin �v) specifies the viewing direction originated

from the eye,

t is the time parameter.

Basically, the function is formulated to mimic the idealized human eye. This idealized eye can be

placed at any point_E in the three dimensional Euclidean space. We then can place the reference axes

at this position to define the coordinate system with the idealized eye being the origin. In graphics

terminology, the space associated with this coordinate system is known as theeye space. A viewing

direction~V originated from the eye_E can be specified by an azimuth angle�v and a zenith2 angle

�v, measured from reference axesî and ĵ respectively. Figure 6-1 shows the geometric relationship

between these parameters.

Figure 6-1: Geometric elements of the plenoptic function.

Two parameters are not shown in figure 6-1. Parameter� specifies the wavelength of the light

while parametert specifies the time. In most computer graphics applications, we are only interested

2Note in Adelson and Bergen’s original formulation [ADEL91], they use the elevation angle instead of the zenith angle.
There is no functional difference between these two types of angle specification. The reason we use zenith angle in
this thesis is because it is more convenient when discussing computer graphics related problems, since zenith angle is
conventionally used in radiosity literatures [COHE93, SILL 94].

Chapter 6. The Plenoptic Models 57

in sampling color according to a particular color space, such as red, green and blue (RGB). Others

applications such as color publishing may interest in sampling at four wavelengths (CYMK). For an

in-depth discussion of color theory in computer graphics, readers are referred to [HALL 89]. The time

parametert actually models all other unmentioned factors such as the change of the scene or the

change of illumination. Whent is constant, the scene and illumination are fixed. Theoretically, the

plenoptic function can be continuous over the range of all its parameters.

Geometrically, the parameters (Ex, Ey, Ez) define the Euclidean position of the center of pro-

jection. Parameters (�v , �v) define a ray originated from the center of projection. The geometric

structure of this ray space is equivalent to a unit sphere. Figure 6-2 shows the space graphically.

The complete plenoptic function can be imagined as infinite number of such sphere placing all over

the Euclidean space. Each sphere fires infinite number of rays from the center of projection in all

directions. From now on, let’s call the sphere asplenoptic sphere.

Figure 6-2: The ray space.

Finding the complete plenoptic function is not possible since it is defined all over a continuous

parameter space. However, we can sample those regions that we are interested. Basically, finding the

plenoptic function is a problem ofsampling.

6.2 Subsets of Plenoptic Function

A digital image is a set of adjoined pixels, usually (not always) organized in rectangular form. The

value of each pixel is dependent on the type of projection used during the scene capturing. Hence

Chapter 6. The Plenoptic Models 58

a digital image representing a captured scene is not just a set of adjoined pixels, but also includes

a projection. The most common type of projection is perspective projection since it mimics the

projection that takes place in the human eyes. Another useful projection type is orthogonal or parallel

projection which is commonly used in engineering drawing. Other types of projection like fish-eye

and panoramic projections are also used for specific applications. In this section, we will demonstrate

that an image with any type of projection can be regarded as a partial sampling of the complete

continuous plenoptic function.

6.2.1 Perspective Projected Images

The most popular type of projection used in image capture is perspective projection. Its incorpo-

ration of foreshortening allows human to perceive depth in a two dimensional image. To specify a

perspective projection, we need acenter of projectionandprojection plane. The center of projection

is simply a position _C in the Euclidean space. The projection plane can be defined by the viewing

vectorD̂, the upward vector̂U , the vertical�v and the horizontal�h field of view angles.

By fixing the parameter_E of the plenoptic function at_C and restricting viewing direction (�v ,�v)

to be within the viewing frustum defined by the perspective projection, we have a partial plenoptic

function that is equivalent to a perspective projected image.

_E = _C; î = D̂; ĵ = Û ;

��h

2
� �v � �h

2
; ��v

2
� �

2
� �v � �v

2
:

Figure 6-3 illustrates the point graphically. The region with noisy pattern on the plenoptic sphere

contains the irradiance values that can be represented by a perspective projected image. Hence a

perspective projected image is only a subset of the plenoptic function.

6.2.2 Parallel Projected Images

Another useful projection is parallel projection or orthogonal projection which is often used in engi-

neering drawing as it preserves the length. Parallel projection is specified by a rectangular viewing

box defined by two extrema points (xmin, ymin, zmin) and (xmax, ymax, zmax) as in Figure 6-4. One

surface of the box is defined as the projection plane. To generate the image, all points inside the

viewing box are projected onto this plane along the normal vectorD̂ of projection plane.

Chapter 6. The Plenoptic Models 59

Figure 6-3: The set of irradiance values represented by a perspective projected image.

By fixing the viewing direction (�v, �v) of the plenoptic function along the projection direction

and restricting the center of projection_E on the projection plane, we get a partial plenoptic function

that can represent any irradiance values shown in a parallel projected image.

î = D̂; ĵ = Û ; �v =
�

2
; �v = 0; D̂ � _E = 0;

Ex = xmin; ymin � Ey � ymax; zmin � Ez � zmax:

Figure 6-4 illustrates the concept graphically. Each sphere in the image represents one instance

of the plenoptic sphere at different location_E. Once again we show that the parallel projected image

is only a subset of plenoptic function.

6.2.3 Panoramic Images

Panoramic image is first used in computer graphics as the texture map used in environment map-

ping [BLIN76, GREE86b]. Recently, Chen [CHEN95a] introduced a commercial image-based ren-

derer which efficiently warps [CHEN95b] the cylindrical panoramic image to perspective image. Due

to wide availability of these panoramic image viewers, such as QuickTime VR [CHEN95a] and Re-

alSpace VR [LIVE97], there is a growing need of producing panoramic images [MCMI95, SZEL97].

Most currently available panorama are in cylindrical form (the central cylinder in Figure 6-5(a)) since

it can easily unfolded to a rectangular image. On the other hand, spherical panorama (the central

sphere in Figure 6-5(b)) requires special handling and more computation.

Chapter 6. The Plenoptic Models 60

Figure 6-4: Parallel projected image as subset of plenoptic function.

Panoramic image is also a subset of plenoptic function. By fixing the parameters_E at the center of

projection of the panorama, this partial plenoptic function can represent any irradiance values shown

in the spherical panoramic image (Figure 6-5(b)).

_E = _C:

For cylindrical panorama, we can further restrict the viewing direction parameter�v to be within

the vertical field of view (�v) and align̂j with the cylinder axiŝU .

_E = _C; ĵ = Û ;

��v

2
� �

2
� �v � �v

2
:

The region with noisy pattern in Figure 6-5(a) shows the subset of plenoptic function that is

represented by a cylindrical panorama. Spherical panorama can be represented by a plenoptic sphere

(Figure 6-5(b)).

6.2.4 Images With Any Type of Projection

No matter what kind of projection is used during the scene capture, the irradiance should be recorded

by shooting aray from the center of projection or along a given projection direction into the scene.

Therefore if the parameter space of the plenoptic function can express any ray in the space, the

plenoptic function should be able to capture any irradiance coming along that ray. Hence an image

Chapter 6. The Plenoptic Models 61

(a) (b)

Figure 6-5: Subsets of plenoptic function represented by (a) cylindrical panorama and (b) spherical
panorama.

with any type of projection should be a subset of the plenoptic function. Any ray~R can be represented

in a parametric form composing of an origin_C and a unit directional vector̂D.

~R = _C + toD̂;

where _C is the origin,

D̂ is the ray direction, normalized,

to is a parameter.

By fixing the parameter_E of plenoptic function at_C and the direction parameters (�v ,�v) along

the directionD̂, the plenoptic function is able to capture irradiance along any ray~R. To simplify

the formulation, we align the reference axis with global coordinate system. Hence, direction�v = 0

aligns withy axis and direction�v = 0 aligns withx axis. Figure 6-6 illustrates the idea graphically.

_E = _C;

~V = D̂:

6.3 Comparing with Geometry-based Computer Graphics

In the last section, we show that images captured by any kind of projection are only subsets of the

plenoptic function. Now we push a little bit further to see whether image-based computer graphics

Chapter 6. The Plenoptic Models 62

Figure 6-6: Parameters of plenoptic function can express any ray.

based on plenoptic function can perform all the functions that traditional geometry-based computer

graphics can do. To simplify the discussion, we assume the geometry-based systems use only per-

spective projection.

6.3.1 Panning, Tilting and Zooming

When the center of projection is unchanged, geometry-based camera model can perform three basic

operations, namely panning, tilting and zooming. To do panning in image-based model, we can

simply adjust the range of parameter�v. Figure 6-7 shows the original (a) and the changed (b)

regions in the plenoptic function when panning takes place. By gradually changing the value of the

panning parameter� in the following inequality, a smooth panning can be performed.

��h

2
+ �p � �v � �h

2
+ �p;

where �h is the horizontal field of view,

�p is the parameter to pan,

�v is azimuth angle in the plenoptic function.

Similarly, tilting can be done by controlling the range of parameter�v using the following in-

equality. Figure 6-8 shows the regions of plenoptic function affected before (a) and after (b) tilting.

��v

2
+ �t � �

2
� �v � �v

2
+ �t;

where �v is the vertical field of view,

�t is the parameter to tilt,

�v is zenith angle in the plenoptic function.

Chapter 6. The Plenoptic Models 63

(a) (b)

Figure 6-7: Panning in the plenoptic model. (a) Original (b) After panning.

(a) (b)

Figure 6-8: Tilting in the plenoptic model. (a) Original (b) After tilting.

Chapter 6. The Plenoptic Models 64

Zooming can also be done by controlling the ranges of both the parameters�v and�v . By increas-

ing the value of the zooming parameter�z , we can perform zoom out. On the other hand, decreasing

the value of�z allows us to zoom in. Figure 6-9 shows the various regions covered in the plenop-

tic sphere when zooming in and out. Zooming in and out is easily controlled by the following two

inequalities.

��h

2
�z � �v � �h

2
�z ; ��v

2
�z � �

2
� �v � �v

2
�z ;

where �h is the horizontal field of view,

�v is the vertical field of view,

�z is the parameter to zoom,�z � 0,

�v is the azimuth angle in the plenoptic function,

�v is the zenith angle in the plenoptic function.

(a) (b) (c)

Figure 6-9: Zooming in the plenoptic model. (a) Original, (b) zoom in, and (c) zoom out.

6.3.2 Walkthrough

Walking through a static scene is another basic operation that can be easily done in geometry-based

computer graphics. In image-based computer graphics, this can also be done by translating the center

of projection _E along the translational vector~T as follows,

_E0 = _E + ~T ;

Chapter 6. The Plenoptic Models 65

where _E is the original position of the center of projection,

_E0 is the new position of the center of projection after translation,

~T is a translational vector.

Figure 6-10 shows the walkthrough done in plenoptic function graphically.

Figure 6-10: Walkthrough in plenoptic model.

6.4 The Plenoptic-Illumination Function

The original formulation of plenoptic function is very general and complete. Since its introduction is

used for evaluating human vision model, the scene is almost always assumed fixed and the illumina-

tion is unchanged. Hence the time parametert is fixed in most cases. However, for computer graphics,

what we concern is the synthesis of thedesiredimages. The capability of changing the lighting setup

is essential. Unfortunately, the illumination and other scene changing factors are embedded inside a

single time parametert. In this section, we modify the original plenoptic formulation to include the

factor of illumination.

What we do is to extract the illumination factor fromt. To do so, we extend the original formula-

tion to allow an explicit specification of the illumination component, the direction of the light source,

~L. The new formulation is calledplenoptic-illumination function.

I = PI(~L; ~V ; _E; t0; �); (6.3)

Chapter 6. The Plenoptic Models 66

where I is the irradiance,

~L = (sin �l cos�l, cos �l, sin �l sin�l) specifies the direction of a directional light

source,

~V = (sin �v cos�v , cos �v , sin �v sin �v) specifies the viewing direction originated

from the eye,

_E = (Ex,Ey, Ez) is the position of the eye or center of projection,

t0 is the time parameter which embeds all other scene changing parameters.

The difference between this new formulation and the old one (Equation 6.1) is the explicit in-

clusion of parameter light vector~L which specifies the direction of a directional light which emits

unit radiance. The function tells us the radiance coming from a viewing direction~V arriving at our

eye _E at any timet0 over any wavelength� when the whole scene is illuminated by a directional

light source from direction�~L with unit radiance emission. Graphically, it can be illustrated by

Figure 6-11. Comparing to Figure 6-1, a new light vector~L is added.

Figure 6-11: Geometry elements of plenoptic-illumination function.

The reason to specify the function using a directional light source is to simplify the construction.

Moreover, even a directional source is used for parameterization, we shall see in Section 7.5.5 that it

can be converted to other type of light source if extra geometric information is given. Since we are

using a directional light source, there is no difference in saying where the light vector~L is originated

from. Therefore we choose to say the vector~L is originated from the eye_E. This is simply a notation.

Chapter 6. The Plenoptic Models 67

With the new formulation, we can easily pose the followingquestion.What will we see if the scene

is illuminated by the sun at 10:00 am and at 6:00pm ?By changing light vector~L and fitting it into

the plenoptic-illumination function, we can retrieve the required answer. Figure 6-12 demonstrates

such query.

Figure 6-12: Querying the plenoptic value given the light vector~L.

6.5 Summary

In this chapter, we describe the plenoptic function which is suitable to act as the fundamental model

for image-based computer graphics. Any image can be regarded as a subset of the complete plenop-

tic function. To demonstrate the generality of the plenoptic model, we compare the capability of

image-based computer graphics based on plenoptic model and the traditional geometry-based com-

puter graphics. The original formulation of plenoptic function allows standard camera motion such

as panning, tilting, zooming and walkthrough. For scene and illumination changing, even though the

original formulation can still express them using a single time parametert, it is very inconvenient

to query what the scene looks like when the scene is illuminated by a light from a given direction.

Illumination is one crucial parameter in image synthesis. Therefore, we modify the original formula-

tion of the plenoptic function to include an explicit illumination parameter. The new formulation is

plenoptic-illumination function. We shall see in the next few chapters how useful this new formula-

tion is when explaining our new image-based techniques that allow controllable illumination.

Chapter 7

Pixel’s Bidirectional Reflectance Distribution Function

In Chapter 5, we mention that previous work in image-based computer graphics can be subdivided

into two major streams. The first stream focuses on determining the correct perspective view while

the second stream focuses on re-rendering the static scene under different illumination. In the first

stream of previous work, the illumination of the scene is usually assumed to be fixed and carefully

designed. On the other hand, the viewpoint is assumed fixed in the second stream. Some previous

work [BELH96, ZHAN98] can re-render image under auncontrollablelight source. Other [NIME94]

re-renders images under outdoor illumination only. Moreover, theycannothandle scene withhigh

specularitydue to their fundamental assumptions. For examples, scenes including a shiny glass or

mirror cannot be correctly re-rendered using their approaches.

In this chapter, we present a new representation of image data that allows the change of viewpoint

as well as the change of illumination. It is known aspixel BRDF. One thing we want to emphasize

is that in our new approach the illumination iscontrollableandgeneralenough to allow re-rendering

of any scene (including highly specular scene) under any lighting environment. It can be thought as

a special digital holographic stereogram that gives 3D illusion whenever the viewing direction or the

illumination changes.

One major goal of image-based rendering is to minimize the use of geometrical information while

generating physically correct images. With this goal in mind, the proposed image representation

allows the viewer to change the viewpoint and the scene lighting without knowing geometrical details

(say, geometry model) of the scene.

7.1 Illumination Models

To design an image-based representation that supports illumination, we need to know how illumina-

tion is done. For surfaces that do not emit light, they reflect the incoming light. Objects with different

surface properties reflect different amount and proportion of light energy. This derivation allows us

to distinguish surfaces with different color, shininess and surface roughness. For example, the reason

68

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 69

we can tell the object is red is because the surface reflects only the energy of the components around

the red light and absorbs energy of other components in the light spectrum. Figure 7-1 shows how the

light spectrum has been changed after reflection.

Figure 7-1: How can we tell an object is red?

Besides the surface properties, we know that the reflected light is also dependent on the direction

of the incoming light and the direction of the viewing. The details of how a surface reflects light are

described by various illumination models.

7.1.1 Local Illumination

In early years, most of the proposed illumination models are empirical. They are designed to mimic

what human observed at different lighting condition. They are usually not physical-based. The most

popular illumination model used (even in nowadays) is the Phong’s illumination model [PHON75]. It

is formulated as,

I = Ia�a +
X

Ip[�d(~N � ~L) + �s(~R � ~V)n]; (7.1)

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 70

where Ia is the intensity of the ambient light,

Ip is the intensity of a point light source,

�a is the ambient reflection coefficient,

�d is the diffuse reflection coefficient,

�s is the specular reflection coefficient,

~N is the unit surface normal vector,

~L is the unit light vector,

~R is the unit mirror reflection vector,

~V is the unit viewing vector,

n is the specular reflection exponent.

Figure 7-2 illustrates the geometric relationship among elements in the above formula. There are

many variations in the formulation of the Phong’s illumination model. All variations must include

three basic reflection components, namely the ambient, diffuse and specular reflections.

Figure 7-2: Geometry relationship between elements in the local illumination model.

Diffuse reflection component, sometimes called Lambertian reflection, accounts for the dull,

matte reflection of surfaces, such as chalk. Diffuse surface reflects equal amount of light intensity

in all directions. Diffuse reflection is view-independent. It is proportional to the the dot product

(~N � ~L). Figure 7-3(a) shows a diffuse surface which reflects equal intensity in all directions (repre-

sented by the spherical gray region). On the other hand, specular reflection component accounts for

the highlight on the shiny surfaces. Specular surface reflects unequal amount of intensity in different

directions. Most intensity are reflected along the mirror reflection direction (Figure 7-3(b)). There-

fore specular component is view-dependent. It is proportional to the power of dot product(~R � ~V)n.

Mirror is one extreme case that its reflection contains mostly specular component. However, most

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 71

surfaces in the real world are in between diffuse and specular surfaces (Figure 7-3(c)). Although

the Phong’s model is empirical, it turns out that the physical-based models [TORR67, COOK81] only

have a little difference in the formulation of the diffuse and specular components. In most cases, the

empirical Phong’s illumination model can still give a realistic appearance of surface.

Figure 7-3: Most surfaces are combination of pure diffuse and pure specular surfaces.

The last reflection component is the ambient reflection (the termIa�a). It accounts for all the

indirect intensity contribution reflected from nearby surfaces. Traditionally, it is assumed to be con-

stant, since the true value is very difficult to find. It is this constant ambient assumption characterizes

the illumination model aslocal. Since the reflected intensity can be calculatedlocallywith the knowl-

edge of local surface properties (�a, �d & �s) and the geometric relationship between the interested

surface element and the light sources. There is no need to know the surrounding geometry (global)

since no indirect intensity contribution is accounted by the formulation.

7.1.2 Global Illumination

The lack of indirect contribution makes the early synthetic image looks artificial. This artifact leads to

the research ofglobal illumination. One famous technique is ray tracing [WHIT80] which produces

more realistic images. In the middle of 1980’s, researchers [GORA84, NISH85] began to apply radios-

ity methods to computer graphics and produced the state-of-the-art realistic imagery. Radiosity meth-

ods were first developed for computing the radiant energy interchange between surfaces [SIEG81].

These methods are used in various engineering applications, such as the analysis of radiative transfer

between panels on spacecraft.

Early illumination models useintensityas one measurement of amount of light contribution. This

quantity is usually not well-defined. Different models usually have different interpretation on this

quantity. One of the contributions of applying radiosity methods to image synthesis, is radiosity

methods use radiometry for measurement of radiant energy transfers. Radiometry provides a set

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 72

of physical and objective quantities. From now on, we will replace “intensity” with radiometric

quantities, such as radiance and radiosity, in the following discussions.

The details of radiosity methods is out of the scope of this thesis. Interested readers are referred

to the more complete literatures [SIEG81, COHE93, SILL 94]. Here we will only provide a general

idea of radiosity methods. The radiosity (total power) coming out from a surface element can be

calculated by the followingRadiosity Equation,

B(x) = E(x) + �(x)

Z
y2S

B(y)
cos � cos �0

�r2
V (x; y)dy; (7.2)

where x is the surface element of interest,

y is any other surface element in the environmentS,

B(x) is the radiosity (total power leaving) of the surface elementx,

E(x) is the exitance (emitted energy) of the surface elementx,

V (x; y) is the visibility betweenx andy,

� is the angle between the normal atx and the line connectingx andy (Figure 7-4),

�0 is the angle derivation aty (Figure 7-4),

r is the distance between thex andy,

� is the bidirectional reflectance.

Figure 7-4 shows the geometric relationship between each elements in the radiosity equation.

Figure 7-4: Geometric relationship between elements in the radiosity equation.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 73

Intuitively speaking, the radiosity equation tells us that the radiosity of a surface elementx is the

sum of the radiant energy it emits (the first term on the right side of Equation 7.2) and the reflected

radiant energy (the second term) which is contributed by all other surface elementsy in the scene.

Just like the previous local illumination model, the reflected radiant energy is also dependent on the

surface properties� and the geometric relationship between the interested surface elementx and its

surrounding. But here, we are not just accounting for one or more specialized light sources, but all

surfaces. In other words, every surface can be regarded as “light source”.

7.2 BRDF Representation

By inspecting the illumination models described in Section 7.1, we can find that the elements charac-

terizing the appearance of a surface are the reflectances (reflection coefficients in local illumination

models). To calculate the light going out from a surface element in a specific direction, the reflectance

of this surface element must first be determined.

The most general form of representing surface reflectivity is thebidirectional reflectance dis-

tribution function(BRDF) [KAJI85]. It describes the directional distribution of reflected light. In

radiometry, BRDF is defined as the ratio of radiance in the outgoing direction and the radiant flux

density (irradiance) along the incoming direction. It is a function of four angle parameters (�v , �v , �l,

�l) or two vector parameters~V and~L which specify the direction of the viewing vector and the light

vector respectively.

�(~V ; ~L) = �(�v; �v; �l; �l) =
Lr(x; �v; �v)

Lr(x; �l; �l) cos �ld!
; (7.3)

whereLr(x; �; �) is the radiance atx along direction (�,�),

(�v ,�v) specifies the viewing direction~V ,

(�l,�l) specifies the light source direction~L,

d! is the differential solid angle.

Figure 7-5 illustrates the geometric relationship among the elements in the BRDF formulation. In

the above formula, there is a basic radiometric quantity we have not yet explained. It is theradiance.

RadianceLr(x; �; �) is defined as the amount of energy traveling at some pointx along a specified

direction (�,�), per unit time, per unit area perpendicular to the direction of travel, per unit solid angle.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 74

Figure 7-5: BRDF

Although it seems complex, BRDF can intuitively be regarded as the ratio of energy leaving in direc-

tion ~V and entering from direction~L (Figure 7-5). The termd! in the denominator is the differential

solid angle (a differential area on the unit sphere, see Figure 7-6). It is equal tosin �ld�ld�l. The

termcos �l is used to project the differential area (solid angle) onto the surface plane. Therefore the

aggregate termcos �ld! (projected solid angle) can be thought as a weight to normalizeLr(x; �l; �l).

The BRDF is basically a table of reflectances indexed by four angles or two vectors.

Figure 7-6: Differential solid angle.

Since the BRDF is a four-parameter function, it is not straightforward to imagine what will it

looks like in 3D. It will be easier to visualize if one of the two vector parameters is fixed. When we

fix one vector parameter, the BRDF reduces to a spherical function or a unidirectional reflectance

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 75

distribution function (URDF) which only depends on one vector parameter. When~L is fixed, it

becomes a function of~V only. It tells us the reflectance of the interested surface when we are looking

from various viewing direction inside the hemisphere enclosing the surface element. In most cases,

the spherical functions will be very similar to the reflectance function (Figure 7-3(c)) in the empirical

Phong’s illumination model. Figure 7-7 shows a set of spherical functions (URDFs) of~V when we

fix the ~L at various directions. Note each one of them is quite similar to the one in Figure 7-3(c).

Figure 7-7: BRDF as a set of spherical functions (URDFs).

7.3 BRDF of Pixel

The most straightforward approach to include the illumination variability of the image-based com-

puter graphics is to measure the BRDF of each object material visible in the image. However, this

approach has several drawbacks. While the BRDFs of synthesized object surfaces may be assigned

at will, measuring those of all objects in a real scene is tedious and often infeasible. Imagine a scene

containing thousands of small stones, each with its own BRDF. The situation worsens when a single

object exhibits spatial variability of surface properties. Furthermore, associating an BRDF toeach

object in the scene causes rendering time to depend on the scene complexity.

One might suggest, for each pixel in each view, to measure the BRDF of the object surface seen

through that pixel window. This approach breaks the link to the scene complexity, but introduces

an aliasing problem. Consider pixelA in Figure 7-8: multiple objects are visible through the pixel

window. Note that this will frequently happen in images showing distant objects. Even if only one

object is visible, there is still the problem of choosing surface normal for measuring BRDF when the

object silhouette is curved (see pixelB in Figure 7-8).

Our solution is to treat eachpixelon the image plane as a surface element with anapparentBRDF.

Imagine the image plane as just an ordinary planar surface, and each pixel can be regarded as a surface

element. Each surface element emits different amounts of radiant energy in different directions under

different illuminations. In order to measure the (apparent) BRDF ofeach pixel, the location of the

image plane must be specified (see Figure 7-9), not just the direction. By recording the BRDF of a

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 76

Figure 7-8: Aliasing problem of measuring BRDF of object surface visible through the pixel win-
dows.

pixel (Figure 7-9), we capture theaggregate reflectanceof objects visible through that pixel window.

The light vector~L from the light source and the viewing vector~V from the viewpoint _E define the

two directions of the BRDF. This approach does not depend on the scene complexity, and removes

the aliasing problems described before. It is also a unified approach for both virtual and real world

scenes.

Note that the apparent BRDF represents the response of the object(s) within a pixel to light in each

direction,in the presence of the rest of the scene, not merely the surface reflectivity. If the captured

images (natural or rendered) include shadows, shadows will appear in the re-rendered result. We will

show some example scenes that contain shadows later in this chapter.

Figure 7-9: Measuring the BRDF of apixel.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 77

7.4 Measuring Pixel BRDF

To measure BRDF of a physical surface sample, the surface sample is first positioned in a goniore-

flectometer [WARD92, MC90]. By illuminating the sample from different direction on the hemi-

sphere and detecting the reflectance with a sensor from another direction. The apparatus can record

a table of reflectances indexed by light vector~L and the viewing vector~V . BRDF of synthetic sur-

face [CABR87] can also be recorded using similar approach using an imaginary gonioreflectometer.

In our case, the apparent BRDF of pixel can also be sampled similarly. Of course we cannot phys-

ically position the imagery pixel patch inside a gonioreflectometer and capture its BRDF. But we can

take photographs (render images) of the real world scene (virtual scene) under various illuminations.

To do so, we first fix the direction of a directional light source. Then photographs of the scene are

captured from various viewing directions over the sphere enclosing the pixel. Then the directional

light source is fixed at another direction and images are captured from various viewing directions

again. This process continues until the the directional light source has been placed all over the sphere

enclosing the pixel. Figure 7-10 illustrates the process. The process is,

For each direction (�l; �l) or ~L of the directional light source

For each viewing direction (�v ; �v) or ~V

Render the virtual scene or take photograph of the

real world scene illuminated by this directional

source and denote the image as I�v;�v;�l;�l .

One choice for sampling pattern is the spherical grid as shown in Figure 7-10. Sampling on the

grid points of the spherical grid allows us to calculate the solid angle conveniently.

Careful readers may find that the above approach can only sample the BRDF of a center pixel

from each grid point on the spherical grid. For its neighbor pixel, which is not located at the center

of the sampling sphere, we cannot sample the BRDF of this neighbor pixel using the same set of

directional vectors. Figure 7-11 illustrates the difference between the center pixel and its neighbor in

2D. That is why we use a directional light source to illuminate the scene, since the light vector for

every point in space should be the same when using a directional light source. In real life, a directional

light source can be approximated by placing a spotlight at a sufficient distance from the scene. For

the viewing direction, we can use orthogonal projection to project the 3D scene onto the 2D image.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 78

Figure 7-10: Capturing the BRDF of apixel.

In real life, this can be done by placing the camera at a sufficient distance from the scene. We shall

cover more practical issues on sampling in the next chapter.

Figure 7-11: Difference in the sampling direction for the neighbor pixel.

Traditionally, the BRDF is sampled only over the upper hemisphere of the surface element, since

reflectance must be zero if the light source is behind the opaque surface element. However in the case

of pixel BRDF , the reflectance may be nonzero even the light source is from the back of the image

plane. This is because the actual object surface may not align with the image plane (Figure 7-12).

Instead, the whole sphere surrounding the pixel has to be sampled for recording its BRDF. Therefore,

the range of zenith angle� should be[0; �].

If the pixel is real surface element, the pixel BRDF should be defined as follows,

�(�v; �v; �l; �l) =
radiance passing through the pixel in I�v;�v;�l;�l

(radiance due to light source) cos �ld!
: (7.4)

However, since the pixel is only an imaginary surface, the physical reflection does not take place

at the pixel window. Instead the reflection is taken place at the real surface behind the pixel window.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 79

Figure 7-12: The image plane may not be parallel with the object surface.

It is meaningless to scale the radiance due the light source by the termcos �ld!, which is the projected

solid angle. Hence, we drop this term and simply calculate the pixel BRDF as follows.

�(�v; �v; �l; �l) =
radiance passing through the pixel in I�v;�v;�l;�l

(radiance due to light source)
: (7.5)

One assumption is that there is no intervening medium, which absorbs, scatters or emits any

radiant energy. Moreover, the pixel value in the captured image is simply assumed to be linear to the

true radiance. For synthetic images, this may not be a problem, since the pixel value is linear to the

computed radiance. For real world photographs, there is a non-linear relationship between the pixel

value and the radiance (Figure 7-13). To remove this assumption, we can apply the radiance recovery

process proposed by Debevec and Malik [DEBE97]. Although they have pointed out the quantity

recovered is not the true radiance, it is linear to the radiance. Unfortunately, more photographs need

to be captured in order to perform the recovery process.

Once the recording is finished, we have a 2D array of BRDFs. One BRDF for one pixel on the

image plane. Figure 7-14 shows an example 3� 3 image. It can be thought as aspecial digital holo-

graphic stereogram[BENT83]. Normal holographic stereogram shows a different image whenever

the viewing direction change in order to give an illusion of 3D. Our “holographic stereogram” gives a

different image not just when the viewing direction changes but also when the light source direction

changes to give us an illusion of 3D object with adjustable illumination.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 80

Figure 7-13: Nonlinear relationship between pixel value and true radiance.

Figure 7-14: A 2D array of BRDFs.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 81

7.5 Manipulating the BRDFs

Once the BRDFs are sampled and stored, they can be manipulated. Using the property of superposi-

tion [BUSB60], the final radiance (or simply value) of each pixel can be computed. We proposed a

local illumination model (Equation 7.6) that makes use of superposition to re-render the image-based

scene from different point of view under different illumination.

radiance through pixelx =
nX
i

�(�v ; �v; �
i
l ; �

i
l)Lr(x; �

i
l; �

i
l); (7.6)

where n is the total number of light sources,

(�v; �v) specifies the viewing direction~V ,

(�il ; �
i
l) specifies the direction,~Li, of thei-th light source,

Lr(x; �il; �
i
l) is the radiance along(�il ; �

i
l) due to thei-th light source,

x is the position of the pixel.

Note the above illumination model is local. That is, it onlyaccounts for the direct radiance

contribution from the light sources. No indirect radiance contribution is accounted for. One may say

that the pixel is not a physical surface element but a window in space, how come we can borrow the

illumination model which models the light reflection from real surface. Thisillumination model is

notthe result of borrowing the existing illumination model but isa result of utilizing the superposition

property of images.

In Section 7.3, we mentioned that the pixel BRDF is actually an aggregate BRDF of all visible

objects behind the pixel. We will show here that how this aggregate BRDF can give us correct

image. Considerk unoccluded objects1 , visible through the pixel viewed from direction~V and are

illuminated byn light sources. The radiance passing through the pixel window in this view will be,

nX
i

�1iL
i
r +

nX
i

�2iL
i
r + � � �+

nX
i

�kiL
i
r

=
kX
j

�
j
1L

1
r +

kX
j

�
j
2L

2
r + � � �+

kX
j

�jnL
n
r

1If there exist objects that occlude each other, we can always subdivide the objects into visible (unoccluded) portions
and invisible (occluded) portions. Invisible portions will never contribute any radiance to the final image. Hence we can
consider only the unoccluded objects without loss of generality.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 82

= �1L
1
r + �2L

2
r + � � �+ �nL

n
r

where �ji is the reflectance of thej-th object when illuminated by thei-th light source,

Li
r is the short hand ofLr(x; �

i
l ; �

i
l), the radiance due to thei-th light source,

�i =
kX

j=1

�
j
i is the aggregate reflectance we recorded when measuring the BRDF

of the pixel.

The first row shows the sum of reflected radiances from allk unoccluded objects. Due to linearity

of illumination models, we can reorder the terms to give the result on the third row which is the sum

of multiplications of the aggregate reflectances and the radiance ofeach light source.

7.5.1 Change of View Point

Using Equation 7.6, we can change the point of view by substituting a different viewing vector~V

or (�v ; �v). Figures 7-15 shows an image-based teapot from different point of view. Note that we

don’t have the geometry of the teapot. What we have is a 2D array of BRDFs or a ”special digital

holographic stereogram”.

(a) (b)

Figure 7-15: Change of viewpoint. (a)Front view, (b)Looking from the bottom.

7.5.2 Light Direction

With Equation 7.6, the light direction can also be changed by substituting a different value of(�l; �l).

Figures 7-16(a) and (b) show an image-based teapot illuminated by a light source from the top and

the right respectively. Again, we don’t have any geometry model.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 83

(a) (b)

Figure 7-16: Change of light direction. (a)Light from the top of the teapot. (b)Light from the right
hand side

7.5.3 Light Intensity

Another parameter to manipulate in Equation 7.6 is the intensity of the light source. This can be

done by changing the value ofLi
r for thei-th light source. Figure 7-17(a) shows the Beethoven statue

illuminated by a blue light from the left.

(a) (b)

Figure 7-17: Multiple light sources with different color. (a)Left: Beethoven statue illuminated by a
single blue light from the left. (b)Right: One more red light comes from the right.

7.5.4 Multiple Light Sources

We can arbitrarily add any number of light sources. The trade-off is the computational time. An

additional multiplication and addition have to be computed in evaluating Equation 7.6 foreach newly

added light source. In the Figure 7-17(b), the Beethoven statue is illuminated by a blue light from the

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 84

left and a red light from the right simultaneously.

7.5.5 Type of Light Sources

Up to now, all light sources we mentioned previously are directional. It is very efficient to evaluate

Equation 7.6 if the light source is directional, because all pixels on the same image plane areillumi-

nated by light source from the same direction(�il ; �
i
l). Moreover, no geometry information is required

to re-render scene when it is illuminated by directional sources.

However, the method is not restricted to directional light. It can be extended to point source,

spotlight or more general light source as well. It will be more expensive to evaluate Equation 7.6

for other type of light sources, since(�il ; �
i
l) will need to be recalculated from pixel to pixel. Since

the image plane where the pixels are located is only a window in the 3D space (Figure 7-18), the

intersecting surface element that actually reflects the light may be located on any point along the ray

~V in Figure 7-18. To find the light vector~L correctly for other types of light sources, the intersection

point of the ray and the object surface have to be located first. Note there is no such problem for

directional source, since the light vector is identical for all points in the 3D space. One way to find~L

is to use the depth image. While this can be easily done for synthetic scenes, real world scenes may

be more difficult. Use of a range scanner or computer vision techniques may provide a solution.

Figure 7-18: Finding the correct light vector.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 85

Without the depth map, the re-rendered image is physically correct only when the scene is illu-

minated by directional sources. With the additional depth map, we can correctly re-render the scene

illuminated by any type of light source by finding the correct light vector~L using the following

equation,

~L = _S � _E +
~V

j~V j
d (7.7)

where ~L is the light vector,

_S is the position of the non-directional light source,

_E is the position of the eye,

~V is the viewing direction,

d is the value from the depth map.

It can be a point source, a spotlight or even a slide projector source. Figures 7-19(a) and (b) show

a box on a plane illuminated by a point source and a directional source respectively. Note that all

input reference images capture the sceneonly illuminated by a directional light source. No other type

of light sources are used in the input reference images. Surprisingly, with the extra depth information,

we can synthesize the image-based scene illuminated by other types of light sources.

As we have mentioned before, the re-rendered image can contain shadow if it is recorded in the

pixel BRDFs during sampling. Note the difference in the shadow cast by these sources. Figure 7-

20 demonstrates the re-rendered result of the same scene illuminated by a spotlight. The intensity

ramp on the protrusive box surface is differentiable from that on the background plane in Figure 7-

20(a). Figure 7-21 shows the result of casting slide images onto the same scene. It demonstrates

that the reconstruction process is independent of the type of light source. Theoretically, we can even

illuminate the scene with area light source by trading off the computational time.

However, just as we discussed in Section 7.2, there is an aliasing problem in finding the correct

intersection positions. Imagine a scene of a furry teddy bear; thousands of objects may be visible

through one pixel window.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 86

(a) (b)

Figure 7-19: Point and directional light sources. (a)Left: shadow cast by a point source. (b)Right:
shadow cast by a directional source.

(a) (b)

Figure 7-20: Spotlight. (a)Left: Scene illuminated by a spot light source from the left. (b)Right:
Same scene illuminated by a right spot light source.

(a) (b)

Figure 7-21: Slide projector. (a)Left: Scene illuminated by a slide projector source from the right.
(b)Right: Same scene illuminated by another slide projector source.

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 87

7.6 A Subset of Plenoptic-Illumination Function

In Section 6.4, we proposed a new formulation of plenoptic function, the plenoptic-illumination func-

tion, as the fundamental computational model for image-based computer graphics due to its capability

of specifying the lighting. We have also shown that standard perspective images and panoramic im-

ages are subsets of the complete plenoptic function. In this section, we will show that the proposed

pixel BRDF is also a subset of the plenoptic-illumination function.

Since the light source we used for sampling the pixel BRDF is directional, the light vector for

any point in the space should be the same. There is no difference in saying whether light vector~L

is originated from the pixel or from the viewpoint_E (Figure 7-22). For each value�(~V ; ~L) in the

pixel BRDF, we can always express it in the form of plenoptic-illumination function in the following

manner,

�(~V ; ~L) = PI (~L;�~V ; _E; t0; �):

We simply translate the light vector~L from the pixel to _E and invert the viewing vector~V .

Figure 7-22: Pixel BRDF as subset of plenoptic-illumination function.

7.7 Summary

In this chapter, we introduce the concept of measuring BRDF of a pixel. This concept is useful in

representing reflectance in the image-based computer graphics. In image-based computer graphics,

we are no longer accessible to the geometry of the scene, hence no way to measure and model the

BRDF of a surface element on the object. By measuring the BRDF of pixel, we can re-render the

Chapter 7. Pixel’s Bidirectional Reflectance Distribution Function 88

scene from different point of view under different lighting environment, just like what we do in the

geometry-based computer graphics. We also show that the pixel BRDF is actually a subset of the

proposed plenoptic-illumination model.

Chapter 8

Applications of Pixel BRDF

We have proposed the concept of measuring pixel BRDF in Chapter 7. The definition of pixel BRDF

does not restrict the camera model to be used. A camera model defines the portion of the scene

to be visible through a pixel window. For example, an image captured by a planar pinhole camera

(perspective projection) should be different from another image captured by a camera with fisheye len

(distorted fisheye projection). For the simplicity of discussion in Chapter 7, we assume the camera

used is parallel projected model (so that the viewing vector~V will be the same for each pixel). In this

chapter, we will show that the representation of pixel BRDF is applicable to other camera models as

well.

We will show how to extend the usage of pixel BRDF to both perspectively projected and panoramic

images. Instead of discussing these two camera models one by one, this chapter is organized in a dif-

ferent way. We will discuss the two major actions in image-based computer graphics. The first is

the inward-viewingaction and the other is theoutward-viewingaction. An inward-viewing action is

an action that holds an object in hand and allows to change its orientation in order to investigate it.

For example, manipulating a diamond in hand to examine its various sides. On the other hand, an

outward-viewing action is an action that stands at a fixed point and looks around in an environment.

For example, standing in a museum and looking around to view the artworks. The commercial soft-

ware QuickTime VR [CHEN95a] defines two types of VR movies, namely the object movie and the

panoramic movie. The object movie is actually an inward-viewing application while the panoramic

movie is an outward-viewing application.

We first describe two existing image-based representations that are useful for implementing inward-

viewing and outward-viewing applications. Both representations allow the viewer to change his/her

viewpoint only. They do not support the change of illumination. We then apply the concept of mea-

suring pixel BRDF to both of them in order to include the illumination.

89

Chapter 8. Applications of Pixel BRDF 90

8.1 Viewing Inward

Figure 8-1 illustrates what is an inward-viewing action. Basically, it is an action that looks at a fixed

point in 3D from different viewing directions. The goal is to give a visual effect of holding an object

in hand and allowing the object to rotate in any direction. To achieve an effect of inward-viewing us-

ing image-based computer graphics, the most straightforward approach is like the following. Firstly,

images of the object viewing from different points of view are captured. Then, interpolation is used to

warp the reference images to give desired image if the desired view is in between the sampled view-

ing directions. Various organizations of reference images have been proposed [FOLE90, LEVO96,

GORT96, IHM97]. Among them, the light slab organization [LEVO96, GORT96] is a promising ap-

proach due to its capability of being rendered using graphics hardware.

Figure 8-1: An inward-viewing example.

8.1.1 Light Slab Organization

Levoy and Hanrahan [LEVO96] and Gortleret al. [GORT96] reduced the plenoptic function to a 4D

light slab organization. It is also known as two-plane parameterization [GORT96, GU97] because the

light slab is composed of two parallel planes. One plane (focal plane) is closer to the object/scene

while the other (camera plane) is closer to the viewer. Let’s denote the camera and focal planes asuv

andst planes respectively. Figure 8-2 shows the light slab geometry.

Any ray ~V entering the light slab volume from thest plane and exiting throughuv plane can be

represented by the quadruple(u; v; s; t). Therefore we can record the radiance coming along the ray

Chapter 8. Applications of Pixel BRDF 91

Figure 8-2: The light slab.

~V in a table indexed by the quadruple(u; v; s; t). Levoy and Hanrahan called this table thelight field

while Gortleret al. called it theLumigraph.

To record the radiances along any ray passing through the light slab, every point on theuv andst

planes should be sampled. That is, for every point(ui; vi) on theuv plane, we should take a look at

every point(sj ; tj) on thest plane and record its radiance. Of course, this is impractical. Instead, we

will position the camera at the grid point of asparsegrid on the camera plane, and take photographs

of the focal plane. That means, we take sparse samples on theuv plane butdensesamples on thest

plane (due to the high resolution of the film). Figure 8-3 shows the process of recording the light field

(or Lumigraph) from the top.

Figure 8-3: Recording the light field or Lumigraph (top view).

In Figure 8-3, all cameras are pointing at the center of the focal plane to capture thest samples on

Chapter 8. Applications of Pixel BRDF 92

the wholest plane. To do so, nearly all cameras (except the center one) have to rotate slightly away

from the normal of the camera plane (Figure 8-3).

To visualize the recorded light field, we can organize the radiances in a 2Duv array ofst images

(Figure 8-4). Each image in the array represents the radiance coming from different points on the

st plane arriving at one specific point on theuv plane. It also looks like an array of the same scene

viewed from various directions.

Figure 8-4: The 2D array ofst images captured at the grid points of a 5� 5 uv grid.

With the light field, we can synthesize an image viewed from the desired viewpoint using back-

ward ray tracing. Figure 8-5 shows how we generate a desired image. To fill the color of a pixel

in the desired image, we fire a ray�~V from the desired viewpoint into the light slab. As we have

mentioned before, this ray can be represented by the quadruple(u; v; s; t). Using the quadruple, we

can retrieve a value from the light field table. This value tells us the radiance coming out from the

camera plane along the direction~V . Repeating this process for every pixel in the desired image, we

finish the image synthesis.

However, we usually take sparse samples on theuv plane. Therefore, we have to estimate the

radiance value when the ray shot does not pass through theuv sample point. One simple way to

estimate is to use radiance of the nearest sample. In the example of Figure 8-6, the ray sample “�”

Chapter 8. Applications of Pixel BRDF 93

Figure 8-5: Synthesize the desired image using ray tracing.

does not coincide with any recordeduv sample. In this case, we use of the value atuv sample 6.

Figure 8-6: Guessing the radiance value.

This is actually a constant basis approach [GORT96]. If we estimate the radiance in this manner,

there is no need to use ray tracing. Using texture mapping can give us the same result. Consider the

example in Figure 8-7(a), we have taken 4� 4 uv samples on theuv plane. Theuv plane is first

subdivided into 4� 4 equaluv rectangles. To synthesize the projection (shaded region on the desired

image) of the rectangle on the desired image, we first mount thest image associating with thisuv

sample on thest plane. Then we draw theuv rectangle with a texture mapped. The texture will be

the associatedst image. The texture coordinates are calculated by firing four rays through the four

Chapter 8. Applications of Pixel BRDF 94

corners of theuv rectangle and intersecting with thest plane.

(a) (b)

Figure 8-7: Constant basis (a) vs. linear-bilinear basis (b)

Constant basis will give annoying discontinuity when moving the viewpoint gradually from left

to right. A smoother approach is suggested by Gortleret al. [GORT96], called linear-bilinear basis

(Figure 8-7(b)). Basically, it uses weighted sum of neighbor samples to estimate the radiance. The

linear-bilinear basis approach uses six more neighbor samples to interpolate the radiance values. The

rendering is can be done by drawing texture mapped polygons with alpha blending. The gray ramp

in the span on theuv plane shown in Figure 8-7(b) indicates the weight. The darker the color is, the

higher its weight is.

8.1.2 Illuminating Light Field

The light field model only supports the change of viewpoint. It does not support any change of

illumination. We now apply the proposed pixel BRDF concept to the light field data structure. In the

light field, the viewing direction~V is implicitly specified by the quadruple(u; v; s; t)as in Figure 8-8.

What is missing is the light vector~L. Therefore, by extending the light field with one more dimension

(the dimension of the light vector), it can then support illumination. The new formulation of light field

is a function of six elements, instead of four elements in the original light field function.

f(u; v; s; t; �l; �l) or f(u; v; s; t; ~L); (8.1)

where (u; v; s; t) specifies the viewing direction~V ,

(�l; �l) specifies the light vector~L.

Chapter 8. Applications of Pixel BRDF 95

Figure 8-8: Extending the light slab based systems to allow change of illumination.

Note that Equation 8.1 is very similar to the pixel BRDF (Equation 7.3). The only difference is

the viewing vector is now replaced by(u; v; s; t).

8.1.3 Sampling Light Field With Illumination

The basic idea to sample the light field with illumination is the same as the sampling mentioned in

Section 7.4. That is, for each light direction~L, we capture images from a different viewing direction

~V . Then change the light to another direction and capture the images from the same set of viewpoints.

The process repeats until all light directions are captured.

In Section 7.4, we suggest to sample both the viewing and light directions on the spherical grid.

Here, we separate the sampling patterns of viewing vectors from those of light vectors. We preserve

the sampling pattern of the original light field for sampling the viewing vector. That is, placing the

camera only at the rectangular grid points on theuv plane. On the other hand, we still sample the light

vector over the sphere enclosing thest plane. Figure 8-9 shows the two different sampling structures

for the viewing and light vectors. This arrangement allows us to re-render the desired image using

hardware texture mapping capability (discussed shortly).

Each image (st image) in the light slab structure can be captured using perspective projection

(Figure 8-3). Moreover, images are only captured at certainuv samples. That means, the sampling

pattern of the viewing vector~V will not be the same for each pixel, just like the case in Figure 7-11.

One solution is to perform resampling to evaluate the values on the grid points. This will introduce

errors.

A better solution that does not need resampling on thest plane, is not to record the pixel BRDFs,

but to record the sets of pixel URDFs. As mentioned in Section 7.2, BRDF can also be represented

Chapter 8. Applications of Pixel BRDF 96

Figure 8-9: The two different sampling structures of the viewing and light vectors.

as a set of URDFs (spherical functions) (Figure 7-7). To record the set of pixel URDFs, we first fix

the camera at oneuv sample point (freeze the~V at one direction). Then we illuminate the scene

with a directional light source from a specific direction (which is equivalent to a sample point on the

unit sphere) and take a photograph. Next, the light source is changed to another direction (another

sample on the sphere) and another photograph is taken. The process continues until desired number

of samples on the sphere are sampled. Once the sampling is finished, we have recorded a spherical

function (URDF) of radiance for each pixel on thest image. Next we move the camera to anotheruv

sample point and repeat the process. Again, for each pixel on thest image, we have captured another

spherical function of radiance. If we taken uv sample points, we will haven spherical functions for

each pixel.

To re-render the scene using the set of pixel URDFs, we first generates an image (may not be the

desired one) for eachuv sample point using Equation 7.6. That is, if there are 4� 4 uv samples, we

first generate 4� 4 images as looking from theseuv sample positions. Then these images are blended

together using the constant or quadralinear blending methods (Figure 8-7) proposed by Gortleret

al. [GORT96] to give the desired image. Figure 8-10 shows 4 images on the left are first re-rendered

given the light source information and then blended to give the desired image on the right.

Therefore, we actually separate the re-rendering process into two steps. While the first step is

done purely by software, the second step which involves drawing of texture mapped polygons can be

accelerated by graphics hardware. This approach will give faster interactive feedback if the viewer

Chapter 8. Applications of Pixel BRDF 97

Figure 8-10: Re-render using set of pixel URDFs.

changes the viewpoint more frequent than the lighting.

8.1.4 Sampling on a Sphere

For the light direction, we still sample it over a sphere (Figure 8-9). Sampling the directional vector

over a sphere is equivalent to sampling points on the surface of a unit sphere. The simplest sampling

pattern is the spherical grid (Figure 8-11(a)). However, the sample points are not uniformly distributed

on the sphere. More samples are located on the south and north poles while fewer samples are on the

equator (see Figure 8-11(a)). Moreover, regular pattern is usually more sensitive to the problem of

aliasing. An opposite approach is to sample randomly, which may give a uniformly distributed pattern

and less sensitive to aliasing(Figure 8-11(b)). However, it gives noisy result. Several techniques in be-

tween random and regular sampling have been proposed. The thesis of Shirley [SHIR91b] surveys the

common sampling techniques, including jittered [COOK84b], semi-jittered, Poisson disk and N-rooks

sampling. Cychosz [CYCH90] generated sampling jitters using look-up tables. Chiuet al. [CHIU94]

combined jittered and N-rooks methods to design a new multi-jittered sampling. Cross [CROS95]

used a genetic algorithm to find the optimal sampling pattern for uniformly distributed edges. All

these methods make tradeoffs between noisiness and aliasing.

Discrepancy analysis measures sample point equidistribution, that is, measures how uniformly

distributed the point set is. Shirley [SHIR91a] first applied it to the sampling problem in computer

graphics. The possible importance of discrepancy in computer graphics is also pointed out by Nieder-

reiter [NIED92]. Dobkinet al. [DOBK93a, DOBK93b, DOBK96] proposed various methods to mea-

sure the discrepancy of sampling patterns and to generate the patterns [DOBK96]. Heinrich and

Keller [HEIN94a, HEIN94b, KELL95] and Ohbuchi and Aono [OHBU96] applied low discrepancy

sequences to Monte Carlo integration in radiosity applications. The termquasi-Monte Carlois used

Chapter 8. Applications of Pixel BRDF 98

(a) (b) (c)

Figure 8-11: Sampling patterns on a sphere. (a) Spherical grid, (b) random sampling, (c) quasi-Monte
Carlo sampling.

to describe applications which apply the low discrepancy sequences in solving the sampling problem.

We have applied a low discrepancy sequence, namely the Hammersley point set, in sampling

the light vector [WONG97c]. Hammersley points have been used in numerical [PASK95, TRAU96,

CASE95] and graphics [HEIN94a, HEIN94b, KELL95, OHBU96] applications, with a significant im-

provement in terms of error.

Hammersley point set is a uniformly distributed and stochastic point set generated by adetermin-

istic equation. Let’s define the Hammersley point set. Each nonnegative integerk can be expanded

using a prime basep:

k = a0 + a1p+ a2p
2 + : : :+ arp

r: (8.2)

where eachai is an integer in[0; p� 1]. Now define a function�p of k by

�p(k) =
a0

p
+

a1

p2
+
a2

p3
+ � � �+ ar

pr+1
: (8.3)

If p = 2, the sequence of�2(k), for k = 0; 1; 2; : : :, is called the Van der Corput sequence [TEZU95].

Let d be the dimension of the space to be sampled. Any sequencep1; p2; : : : ; pd�1 of prime num-

bers defines a sequence�p1 , �p2 , . . . ,�pd�1 of functions, whose correspondingk-th d-dimensional

Hammersley point is�
k

n
;�p1(k);�p2(k); : : : ;�pd�1(k)

�
for k = 0; 1; 2; : : : ; n� 1: (8.4)

where p1 < p2 < � � �< pd�1,

n is the total number of Hammersley points.

Chapter 8. Applications of Pixel BRDF 99

To evaluate the function�p(k), the following algorithm can be used.

p0 = p , k0 = k , � = 0

whilek0 > 0 do

a = k0 modp

� = �+ a
p0

k0 = int (k
0

p)

p0 = p0p

whereint (x) returns the integer part ofx.

The above algorithm has a complexity ofO(logp k) for evaluating thek-th point. Hence the worst

case bound of the algorithm for generating(N + 1) points is,

logp(1) + logp(2) + � � �+ logp(N � 1) + logp(N)

� logp(N) + logp(N) + � � �+ logp(N) + logp(N)

= N logpN:

A Pascal implementation of this algorithm can be found in [HALT64]. In most computer graphics

applications, the dimension of the sampled space is either 2 or 3. In our application, we concentrate on

the generation of a uniformly distributed point set on the surface of a unit sphere. Higher dimensional

sets can be similarly generated using formulæ (8.2–8.4).

To generate uniformly distributed point set on a unit sphere, we first generate uniformly dis-

tributed points on a 2D plane. Then they are mapped to the surface of the sphere. On the 2D plane,

formula (8.4) simplifies to

�
k

n
;�p1(k)

�
for k = 0; 1; 2; : : : ; n� 1: (8.5)

The range ofk
n

is [0; 1), while that of�p1(k) is [0; 1]. For computer applications, a good choice

of the primep1 is p1 = 2. The evaluation of�2(k) can be done efficiently with aboutlog2(k) bitwise

shifts, multiplications and additions: no division is necessary. To generate directional vectors, or

(equivalently) points on the spherical surface, the following mappings [SPAN69] is needed:

�
k

n
;�p(k)

�
7! (�; t) 7!

�p
1� t2 cos�;

p
1� t2 sin �; t

�T
: (8.6)

Chapter 8. Applications of Pixel BRDF 100

The first, from
�
k
n ;�p(k)

�
to (�; t), is simply a linear scaling to the required cylindrical do-

main,(�; t) 2 [0; 2�)� [�1; 1]. The mapping from(�; t) to (
p
1� t2 cos�;

p
1� t2 sin�; t)T is

z-preserving radial projection from the unit cylinderC = f (x; y; z) j x2 + y2 = 1 jzj � 1g to the

unit sphere.

Figure 8-11(c) shows the generated Hammersley points withp1 = 2 on a sphere. Compared to

the regular sampling (Figure 8-11(a)), the Hammersley point set is uniformly distributed without a

perceptible pattern. Compared to the random sampling (Figure 8-11(b)), the Hammersley point set

gives a pleasant, less clumped pattern. One evidence of uniformly distribution is that there is no

way to tell where on the sphere are the poles or the equator. It has been recently found [CUI97]

that mapping Hammersley points with base of 2 to the surface of a sphere gives the best uniformly

distributed directional vectors among several common approaches.

8.1.5 A Light Field Viewer with Controllable Illumination

We have implemented an interactive image-based renderer,slabview , that displays the light field

with controllable illumination. Figure 8-12 shows the interface of the viewer. The user can change the

viewpoint by dragging inside the right viewing window. Through the left light source control panel,

the user can control the direction, the intensity, the number and the type of the light sources.

(a) (b)

Figure 8-12: The interface ofslabview . (a) The light source control panel, (b) the viewing window.

Chapter 8. Applications of Pixel BRDF 101

Figure 8-13 shows how a desired image is synthesized through drawing texture mapped polygons.

In Figure 8-13(a) example, constant basis approach is used. Theuv plane in the front is subdivided

into several rectangles. Each rectangle is associated with ast image (the image ofst plane viewed

from the center of that rectangle). When thest plane (the smaller rectangle behind) overlays withuv

plane, the intersection region (dark gray region in Figure 8-13(b)) will be the region that the light slab

has recorded the radiances. In other word, we can see something. Therefore, we only need to draw

texture mapped polygons that overlap with this intersection region, just like Figure 8-13(a). This will

significantly improve the efficiency of the program.

(a) (b)

Figure 8-13: Drawing only the necessary.

Whenever the user drags inside the right viewing window, suitable polygons are drawn and

blended to give a smooth rotation. Since the texture mapping and blending are done by graphics

hardware, rotation of the image-based object (or change of viewpoint) can be done in real time.

Figures 8-14(a) and (b) show two frames from the rotation of an image-based teapot. Whenever

the user drags the light source (small sphere) in the left light source control panel, pixel values

are re-calculated using Equation 7.6 to re-render the image under the user-specified lighting con-

dition. Note that the illumination in our system iscontrollable, as opposed to those uncontrollable

approaches [BELH96, ZHAN98]. Only the views (st images) that are relevant (overlap with the gray

intersection area in Figure 8-13(b)) are re-rendered. They are then drawn and blended by graphics

hardware. Since the pixel value calculation is done purely by software, changing the illumination

is slower than changing the viewpoint. The more the number of light sources used, the slower the

Chapter 8. Applications of Pixel BRDF 102

re-rendering is. Nevertheless, our prototype viewer can still re-render image-based scene illuminated

by three to four light sources in real time. Figure 8-15 (a) and (b) show two frames from moving one

light source from left to right.

Actually, images inside Figures 7-15 to 7-17 and Figures 7-19 to 7-21 are all generated by our

prototype viewer. These results show that the concept of measuring pixel BRDF can support the

illumination of variable lighting condition. If the reference images contain shadow, the re-rendered

image will also include shadows (Figure 7-19).

(a) (b)

Figure 8-14: Rotation of an image-based teapot.

(a) (b)

Figure 8-15: Moving the light source from left to right.

Chapter 8. Applications of Pixel BRDF 103

8.2 Viewing Outward

An outward-viewing application is nearly the opposite of the inward-viewing one. Instead of looking

at a fixed point in 3D, we “fix” the eye at a point in 3D and allow the eye to look around. The reason

we use the quotes for the word “fix” is because the eye is not actually fixed but is allowed to move

within a small region. In the case when we look at far scene, our eye can be assumed fixed, since the

movement of our eyes is negligible relative to the distance from our eyes to the far scene. Figure 8-16

illustrates this action. The goal is to give an immersive feeling. One example application is in virtual

reality. The CAVE [CN92] is a virtual reality application that allows the user to stand in a display

chamber and looking around in order to give him/her an immersive feeling.

Figure 8-16: An outward-viewing example.

8.2.1 Panorama

Theoretically, the light slab organization can also be used from the outward-viewing application. In

the inward-viewing applications, thest plane is usually smaller than theuv plane. However, in the

outward-viewing applications,st plane has to be enlarged while theuv plane has to be shrinked. In

the extreme case,uv plane shrinks to a infinitesimal point. Unfortunately, light slab representation is

not very good for outward-viewing application because in most cases we want to look at far scenery.

Even thest plane is enlarged to infinite size, a single light slab can only represent a field of view of

180 degree. To support a full 360 degree, at least two light slabs are needed.

A more efficient approach is to usepanoramic image. It is an image of 360 degree as viewed

Chapter 8. Applications of Pixel BRDF 104

from one fix point in space. Figure 8-17(a) shows the structure of a spherical panorama. Note that

a spherical panorama can record the radiances represented by a plenoptic sphere (see Section 6.1).

However, storing a spherical image in computer is less natural. The image has to be either distorted

or cut since a spherical surface is not developable1. Another type of panorama is the cylindrical

panorama (Figure 8-17(b)). It composes of a cylinder and two discs. This type of panorama is more

popular in computer graphics applications because a cylinder can be unfolded to a rectangular image

without any distortion.

Figure 8-17: Panorama. (a) Spherical, (b) Cylindrical

For a virtual scene, a cylindrical panorama can be directly obtained by ray tracing. To shade

a pixel, we fire a ray through each pixel on the cylinder. If raytracing capability is not available,

six perspective images forming a cube (Figure 8-18) can also be used to resample the cylindrical

panorama. Note this method is actually the environment mapping [GREE86a, GREE86b].

For a real scene, we can first capture the scene using a camera. That is capturing the scene as a set

of perspective images. Each image should have a significant region of overlapping. Image registration

can then be used to stitch [CHEN95a, SZEL97] them together to form a continuous panoramic image.

8.2.2 Illuminating Panoramic Image

Although a panoramic image is not an image with perspective or parallel projection, we still can

record the BRDF of each pixel in the panoramic image. From now on, we focus onillumination

of cylindrical panoramic image due to its efficiency and simplicity. However, the technique being

described is not restricted to cylindrical panorama, but also applicable to spherical panorama.

1A developable surface is a surface that can be unfolded to a planar surface without infinite stretching or squeezing.

Chapter 8. Applications of Pixel BRDF 105

Figure 8-18: Environment mapped cube.

Again, the basic idea is to record the radiance passing through the pixel window under different

illumination. One difference is that the viewpoint is always fixed for a panoramic image. That is, one

vector parameter of the pixel BRDF,~V , is constant. The pixel BRDF reduces to a single pixel URDF

(not a set). Therefore, recording pixel BRDF of a panorama is simpler than that for the light field,

because we only need to record a single spherical function (URDF) for each pixel.

There is still one problem to overcome. In the case of the illumination of the light field, we

record the set of pixel URDFs with a coordinate system relative to the pixel as in Figure 8-19(a). For

panorama, if we still measure it on the pixel’s frame like Figure 8-19(b),each pixel has a different

coordinate system. That means, when querying a value in the URDF given a light vector, we need

to transform the vector to the local coordinate system of each pixel before getting the answer. This

is exactly the case of directional light source. Given a light vector of a directional light source, the

light vector has to be transformed to the local coordinate system for finding the radiances. This

is very inefficient when transformation has to be done for every pixel in the panoramic image. A

more efficient approach is to use a common coordinate system for every pixel in the panorama as in

Figure 8-19(c). The common coordinate system free us from transformation. For other types of light

sources, the light vector for each pixel is still different. But at least it is efficient for directional lights.

8.2.3 A Panoramic Viewer with Controllable Illumination

An experimental panoramic viewer,panoview , that supports controllable illumination has been

developed to verify the idea. Figure 8-20 shows the user interface of this program. The interface is

Chapter 8. Applications of Pixel BRDF 106

(a) (b) (c)

Figure 8-19: Coordinate systems. (a) Pixel coordinate system on a planar image, (b) Pixel coordinate
system on cylindrical panoramic image, (top view) (c) Common coordinate system for all pixels in
cylindrical panorama.

very similar to the one in Figure 8-12. But this time when the user drags inside the right viewing

window, it pans to other viewing direction. The user can also zoom in and out the scene. Again the

light sources are controlled by the light source control panel on the left.

Figures 8-21(a) and (b) show two frames when panning the view from left to right while Figure 8-

21(c) zoom in the view of Figure 8-21(b). To render the panorama, we map the cylindrical panorama

to the surface of a cylinder. The texture mapped cylinder is then rendered by graphics hardware.

Therefore, the panning and zooming can be done in real time. When the user changes the lighting,

pixel values are calculated using Equation 7.6. This is again done purely by software. Figure 8-22

shows two frames from changing the direction of a light source in the image-based attic environment.

Note how the illumination is done even no geometry is present. The original geometry-based attic

scene requires about 2 minutes to render on SGI Octane. Using the image-based approach the scene

can be rendered within a second. This demonstrates the potential of image-based rendering.

Figure 8-23(a) and 8-24(a) shows the unfolded cylindrical panoramas of a chessboard and an attic

scenes respectively. The bottom three images are the perspective snapshots of the panorama, they

can be obtained by warping the panorama. Figure 8-25 shows the same attic scene as in Figure 8-

24, but illuminated by four spotlights,each with a different color. Note how the spotlight correctly

illuminated the image-based attic. Again non-directional light sources illumination requires the depth

information.

Chapter 8. Applications of Pixel BRDF 107

(a) (b)

Figure 8-20: A panoramic viewer with controllable illumination.

(a) (b) (c)

Figure 8-21: Panning and Zooming. (a) Original, (b) pan to right, (c) zoom in.

Chapter 8. Applications of Pixel BRDF 108

(a) (b)

Figure 8-22: Changing the lighting setup of a panoramic image.

Figure 8-23: Chessboard.

Chapter 8. Applications of Pixel BRDF 109

Figure 8-24: Attic.

Figure 8-25: Attic illuminated by spotlights.

Chapter 8. Applications of Pixel BRDF 110

8.3 Summary

In this chapter, we have discussed how to apply the concept of measuring pixel BRDF to two major

actions of image-based computer graphics, namely the inward-viewing and the outward-viewing ac-

tions. Although we have applied the idea on two image data representations which have substantial

difference, there is not much problem in extending these two representations to include illumination.

We believe the concept of pixel BRDF is general enough to be applied to other image representations,

such as spherical light field [IHM97], as well.

Chapter 9

Compression

Storing the pixel BRDFs requires an enormous storage space. Assume we represent the pixel BRDF

as a set of pixel URDFs. For a single pixel, if the URDF is sampled in the polar coordinate system

with 20 samples along both the azimuth (�l) and zenith (�l) dimensions, there will be 400 floating

point numbers stored for each pixel. A single view of a 256� 256 image plane will require 100Mb

of storage.

In this chapter, we will investigate various approaches to compression of pixel BRDF data. All

compression techniques identify some forms of coherence among data in order to compress it. We

will first explore the data coherence of the radiance values associated with a single pixel. Then, we

will explore the data coherence between adjacent pixels. Utilizing these two types of data coherence,

we can compress the pixel BRDFs with a compression ratio of about 100 to 1.

There are two main criteria in choosing a good compression scheme:

� High compression ratio.

� Fast decoding algorithm.

Both criteria are equally important. A scheme with high compression ratio but cannot decode

quickly is not very useful for our application. Since the decoding has to be done purely by software,

a fast decoding algorithm is necessary for an interactive application.

9.1 Coherence Within a Pixel

In the following discussions,we will concentrate on compressing sets of pixel URDFs, instead of pixel

BRDFs. As we have mentioned in the previous chapter, storing pixel URDF allows the separation of

the re-rendering process into two steps. The first step is done purely by software while the second step

can be accelerated by graphics hardware, hence speedup the user interaction. Although we believe

compressing the complete pixel BRDF will significantly improve the compression ratio, the decoding

will be much slower since it cannot utilize the existing graphics hardware.

111

Chapter 9. Compression 112

To represent the URDFs more efficiently, the tabular data is transformed to the frequency domain

and quantization is performed to reduce storage. We have tested two types of transforms, spherical

harmonic transform and discrete cosine transform.

9.1.1 Spherical Harmonics

Spherical harmonics [COUR53] are analogous to Fourier series, but in the spherical domain. Cabral

et al.[CABR87] proposed the representation of BRDF using spherical harmonics. The work is further

extended by Sillionet al.[SILL 91] to model the entire range of incident angle. It is especially suitable

for representing smooth spherical functions. Appendix A will give a more detail description of the

spherical harmonics. In our approach, the viewing direction~V for each pixel is actually fixed. Hence,

the unidirectional function� can be transformed to spherical harmonics domain using the following

equations directly, without considering how to represent a bidirectional function described by Sillion

et al. [SILL 91].

Cl;m =

Z 2�

0

Z �

0
�(�l; �l)Yl;m(�l; �l) sin �ld�ld�l; (9.1)

where

Yl;m(�l; �l) =

8>>><
>>>:

Nl;mPl;m(cos �l) cos(m�l) if m > 0

Nl;0Pl;0(cos �l)=
p
2 if m = 0

Nl;mPl;jmj(cos �l) sin(jmj�l) if m < 0;

Nl;m =

s
2l + 1

2�

(l� jmj)!
(l+ jmj)! ;

and

Pl;m(x) =

8>>><
>>>:

(1� 2m)
p
1� x2Pm�1;m�1(x) if l = m

x(2m+ 1)Pm;m(x) if l = m+ 1

x2l�1
l�mPl�1;m(x)� l+m�1

l�m Pl�2;m(x) otherwise.

where the base case isP0;0(x) = 1.

FunctionsYl;m’s are the basis functions (or spherical harmonics). Figure 9-1 shows the first few

spherical harmonics. The first basis function is a sphere. It has equal magnitude in any direction,

hence no directional preference. All other basis functions have directional preferences.

Chapter 9. Compression 113

l=0, m=0

l=1, m=0 l=1, m=1

l=2, m=0 l=2, m=1 l=2, m=2

l=3, m=0 l=3, m=1 l=3, m=2 l=3, m=3

l=4, m=0 l=4, m=1 l=4, m=2 l=4, m=3 l=4, m=4

Figure 9-1: Spherical harmonics.

Chapter 9. Compression 114

Cl;m’s are the coefficients of the spherical harmonics which are going to be stored for each pixel.

The more coefficients are used, the more accurate the spherical harmonics representation is. Accuracy

also depends on the number of samples in the(�l; �l) space. We found 9 to 16 spherical harmonic

coefficients are sufficient in tested examples containing no shadow. More coefficients are needed to

accurately represent scenes containing shadows.

To reconstruct the reflectance given the light vector(�l; �l), the following equation is solved for

each pixel in each view.

�(�l; �l) =
lmaxX
l=0

lX
m=�l

Cl;mYl;m(�l; �l): (9.2)

where(lmax)
2 is the number of spherical harmonic coefficients to be used.

Figure 9-2 shows the original tabular reflectance distribution of a pixel on the left and its corre-

sponding reconstructed distribution on the right. There are 1800 samples (30 along�l in the range

[0; �
2
] and 60 along�) in the left original distribution. The reconstructed distribution on the right is

represented by 25 spherical harmonics coefficients only.

Figure 9-2: Original sampled (left) and reconstructed (right) distribution. Note the lower hemisphere
of the reconstructed distribution is interpolated to prevent discontinuity.

The more coefficients are used, the more accurate the reconstructed images are. Figure 9-3 shows

the visual difference of representing the same pixel URDFs using different number of spherical har-

monic coefficients. From left to right, the number of coefficients used are 1, 4 and 25. All images are

re-rendered under thesamelighting condition. It seems that as the number of coefficients increases

the teapot becomes more shiny. Since the recorded teapot is highly reflective, the correct teapot should

be shiny. One interesting observation is that as the number of coefficient decreases, the shiny object

becomes duller. It seems that the specular component is represented by the high-order coefficients.

This can be explained by the shape of the spherical harmonics basis functions mentioned before. The

Chapter 9. Compression 115

first basis function is a sphere with no directional preference (Figure 9-1). It actually captures the

diffuse component in the illumination model. Other higher order basis functions contain directional

bumps. The higher the order is, the sharper the bumps are. These high-order basis functions hence

capture the directional specular component.

(a) (b) (c)

Figure 9-3: Specularity difference of using different number of spherical harmonic coefficients. (a) 1
coefficient, (b) 4 coefficients, (c) 25 coefficients.

Another visual artifact when less coefficients are used is the smoothing-out of shadow. If the

reference images contain shadow (especially the hard shadow), the URDFs are discontinuous. A

discontinuous signal requires infinite number of spherical harmonic coefficients to represent. Of

course, we can only afford finite number of coefficients. Any finite representation will certainly

smooth out the signal. Figure 9-4 shows three reconstructed images using three different number

of coefficients. As the number of coefficient increases from left to right, the reconstructed images

become more accurate in term of shadow representation.

Using the example mentioned in the beginning of this chapter, a 256� 256 image which originally

requires 100 Mb of storage can now be compressed to 18.75 Mb if 25 spherical harmonics coefficients

are used for encoding one URDF. The compression ratio is roughly 5 to 1.

9.1.2 Discrete Cosine Transform

Although spherical harmonics can efficiently represent smooth spherical functions, it is inferior in

representing discontinuous function which is quite common if the scene contains shadow. This phe-

nomenon motivates us to try another compression scheme.

The second compression scheme we have tested is the discrete cosine transform (DCT). One

reason to choose DCT is that hardware DCT codec is becoming widely available. Same as before, we

Chapter 9. Compression 116

(a) (b) (c)

Figure 9-4: Shadow difference of using different number of spherical harmonic coefficients. (a) 16
coefficients, (b) 25 coefficients, (c) 49 coefficients.

do not compress the four dimensional BRDFs. Instead, the two dimensional URDFs are compressed.

Since the URDF is a spherical function, it is first mapped to a 2D disc (Figure 9-5), before applying

the standard 2D discrete cosine transform to the disc image.

Figure 9-5: Mapping a hemisphere to a disc.

To map a spherical function to a plane, the mapping should be done in two passes, namely, one

for the upper hemisphere and one for the lower half. The mapping from a hemisphere to a disc is done

by stereographic projection [HILB52]. To project the lower hemisphere, the point of projection_C is

first placed at the pole of upper hemisphere and the plane is placed underneath the lower hemisphere

(Figure 9-6). A point _S on the hemisphere is mapped to point_P on the plane by firing a ray from_C

through point _S and intersects the plane at point_P . The upper hemisphere can be mapped to plane

similarly. The polar coordinate(�l; �l) on a hemisphere is mapped to the 2D coordinate(x; y), within

a unit square by

x =
1

2
[tan(�l=2) cos(��l) + 1] (9.3)

Chapter 9. Compression 117

y =
1

2
[tan(�l=2) sin(��l) + 1] (9.4)

Figure 9-6: Stereographic projection.

The resultant disc image after projecting the upper hemisphere of the URDF of an example pixel

is shown in Figure 9-7(a). The example pixel is extracted from the test scene in Figure 9-8(a). In

Figure 9-7(a), the white region near the image center indicates the specular highlight. The polygonal

black hole on the right is due to the shadow cast by the box in Figure 9-8(a).

Once the spherical function is projected to 2D image, discrete cosine transform (DCT) can be

applied to transform the image and the resulting DCT coefficients are zonal sampled and quantized.

TheN �N cosine transform matrix,c(i; j) is defined as,

c(i; j) =

8<
:

1p
N
; i = 0; 0 � j � N � 1;q

2
N

cos �(2j+1)i
2N

; 1 � i � N � 1; 0 � j � N � 1:
(9.5)

Figure 9-7 shows the images before (a) and after (b) the quantization in DCT domain. Only 64

coefficients are retained for the image in Figure 9-7(b), while the image in Figure 9-7(a) is represented

by 50� 50 floating point data.

9.1.3 Comparison

Figure 9-8 visually compares the reconstructed images of different compression schemes. Figure 9-

8(a) shows the test scene containing a box which cast shadow on a plane. The square region in

Figure 9-8(a) is enlarged for visual comparison. The ideal result is generated by looking up the orig-

inal tabular BRDFs (Figure 9-8(b)). Note that the hard shadow is preserved. After the stereographic

Chapter 9. Compression 118

(a) (b)

Figure 9-7: Before (a) and after (b) quantizing the disc image in frequency domain. Original data in
(a) is represented by 50 x 50 floating point data. The number of coefficients to represent the image
(b) is 64.

projection, some errors are introduced. It is because the mapping process is actually a resampling

process. Blurring is found around the shadow in Figure 9-8(c). This error can be reduced by increas-

ing the resolution of the disc image,i.e. increasing the number of samples. However, the storage size

will also be increased. Figure 9-8(d) shows the reconstructed image generated from data compressed

using spherical harmonics. The error in this image is purely due to the quantization taken place in

the spherical harmonic domain. Figure 9-8(e) shows the reconstructed image generated from data

compressed using DCT. The errors in this image include quantization error in frequency domain and

the resampling error during stereographic projection.

In order to have a fair comparison, equal number of coefficients (64 floating point coefficients)

are used to compress the data in both compressed cases (Figures 9-8(d) & (e)). Comparing Figure 9-

8(d) to Figure 9-8(e), the image generated from DCT is noisier than that of spherical harmonics.

However, the shadow in the image generated from DCT is a better approximation of the true shadow

in Figure 9-8(b). The sharp corner of the shadow becomes a round corner in the case of spherical

harmonics, while the corner is still observable in the case of DCT. This is also confirmed by the RMS

of error statistics. The RMS of error of image generated from spherical harmonic data is 0.1043 while

that of image generated from DCT data is 0.0865. From this experiment, DCT compression scheme

is preferred if the scene contains hard shadows and a close approximation to the true image is needed.

On the other hand, spherical harmonics is preferred if the scene contains not much hard shadow and

a pleasant (smooth) visual result is a main concern.

Chapter 9. Compression 119

(a)

(b) (c)

(d) (e)

Figure 9-8: Visual comparison of reconstructed images. (a) Test scene. (b) Image generated using
original tabular BRDFs. (c) Result after projecting spherical function to a disc, also uncompressed.
RMS(err.)=0.0979. (d) Result from data compressed using spherical harmonics. RMS(err.)=0.1043.
(e) Result from data compressed using DCT. RMS(err.)=0.0865.

Chapter 9. Compression 120

Figure 9-9: The boundary value along the equator is linearly interpolated to prevent equatorial dis-
continuity in the sampled BRDF.

9.1.4 Preventing Discontinuity

Truncating the spherical harmonic series or discrete cosine series gives persistent Gibb’s ringing ar-

tifacts. One source of discontinuity is the incomplete sampling of light directions (boundary discon-

tinuity). Incomplete sampling is sometimes necessary for fast scene capture. From our experience,

there is no need to sample the whole range of�l, i.e., [0; �]. Usually the range[0; �
2
] is sufficient.

Zeroing all the unsampled entries introduces discontinuity along the equator of the sampling sphere.

To avoid this sharp change, the boundary value along the equator is linearly interpolated to a constant

value at the south pole (see Figure 9-9 and the right diagram in Figure 9-2). Another source of dis-

continuity is shadowing (Figure 9-7(a)), which is unavoidable. Hard shadows will be smoothed out if

represented by a finite sum of harmonics (Figure 9-4(a), (b) & (c)).

9.2 Coherence Among the Pixels

Although DCT may produce more accurate result in term of root-mean-square error, it generates

more noisy image which is annoying. On the other hand spherical harmonic transform provides more

pleasant imagery result even though the error is larger. For the computer graphics applications, we

prefer to use spherical harmonics transform to compress the pixel URDFs. From now on, we will

only discuss how to further compress the data which have been compressed by spherical harmonic

transform.

Up to this moment, we only utilize the data coherence within a single pixel BRDF. We have not

yet utilized the coherence between data of adjacent pixels.

Chapter 9. Compression 121

9.2.1 Vector Quantization

By investigating the spherical harmonic coefficient vectors of adjacent pixels, we find that the values

of the coefficients of the neighbor pixels are usually very close. That means we can compress further

by utilizing this coherence.

One approach to do so is to usevector quantization(VQ) [GERS82]. The basic idea of vector

quantization is like the following. To compress the data, sayn vectors, we first find out a set ofk

representative vectors (this vector set is usually called thecodebookand the representative vector is

called thecode vector), such thatk � n. Then we represent each of then vectors by the closest code

vector inside the codebook and memorize only the index of that code vector. The final compressed

data only contains the codebook (k code vectors) and all indexes. Sincek is much smaller thann,

hence we can compress.

The main problem is how to find thek representative code vectors. There are many algorithms

proposed. We have chosen a well-known algorithm, known as the LBG vector quantizer (LBG stands

for Linde, Buzo and Gray [LIND80]) ork means algorithm, due to its simplicity. Figure 9-10 shows

the LBG algorithm.

Given the sizek of the codebook, the algorithm first randomly selectsk vectors as the initial code

vectors. In each iteration, the algorithm subdivides then sample vectors intok sets based on the

distancebetween the sample vector and the code vectors. The mean of the vectors inside each set

is then chosen to be the code vector for the next iteration. The process of finding the mean vectors

continues until the convergence occurs.

Figure 9-11(b) shows the reconstructed image after using vector quantization. Figure 9-11(a)

shows the reconstructed image if no vector quantization is used. The major difference is that inside

the reconstructed image from VQ compressed data, there exists contours in the regions of smooth

ramp (circled in Figure 9-11(b)). Note this is the common artifact of compressing images using VQ.

One way to improve it is to increase the size of the codebook.

Using VQ, we can significantly reduce the data size. The usual compression ratio which still

preserves an acceptable quality is 10 to 1.

Chapter 9. Compression 122

Step 1: Selectk initial representative vectors. A good choice is to
choose them randomly from then vectors.

C
1
i = Xrandom

whereC1
i is thei-th code vector out ofk initial code vectors,

1 � i � k,
Xrandom is the a sample vector chosen randomly from
then sample vectors.

Moreover, we also set upk vector setsSi and initialeach set to an
empty set.

Step 2: In them-th iteration, assign the sample vectorXl to the the set
Si,

Si = Si [Xl;

if

kXl �C
m
i k < kXl � C

m
j k;

for all i 6= j.

Step 3: Update the code vectors to the means of the sample vectors in-
side the vector setSi,

C
m+1

i =
1

jSij

X
X2Si

X;

where jSij is the number of vector in the setSi.

Step 4: Goto Step 2 until convergence is achieved.

Figure 9-10: Algorithm of LBG vector quantizer

Chapter 9. Compression 123

(a) (b)

Figure 9-11: Contour artifact of VQ compression. (a) Without VQ compression, (b) with VQ com-
pression.

9.3 Summary

In this chapter, we have discussed one practical aspect in using pixel BRDFs, the compression. To

compress the URDF associating with a single pixel, we have tested two methods, namely the spherical

harmonic and the discrete cosine transforms. Spherical harmonic transform usually gives smooth and

pleasant imagery result, although the re-rendered images may not be as accurate as that compressed

by discrete cosine transform. We further compress the data using vector quantization to utilize the

data coherence among the adjacent pixels. After applying a series of compression algorithms, we can

achieve an overall compression ratio of about 100 to 1.

Chapter 10

Conclusions and Future Directions

Anyone who attempts to simulate complex physical phenomena soon realizes that literal sim-
ulation is far beyond the capabilities of today’s hardware or software.

—– James F. Blinn, 1988.

Geometry-based computer graphics has been practiced for a long period of time in the history

of computer graphics. By approximating the real world or imaginary world using geometry models,

geometry-based computer graphics gives us a visual experience of the world being modeled. Geom-

etry representation contains not just enough information to provide us the visual experience, but also

extra information that human may not perceive. In principle, a goal of geometry-based time-critical

modeling and rendering is to minimize or simplify this extra (visually imperceptible) information in

order to speed up the simulation process. Ideally, the graphics system should contain no extra infor-

mation which slows down the simulation if the system’s only goal is to provide the visual experience.

Image representation can be thought as an extreme case that contains only information to give us

the visual experience and no extra information is present. Instead of modeling the world, image-based

computer graphics directly models the radiance energy impinging on the human eye. Therefore, it

fulfills what the human perception needed without storing any extra information.

10.1 Synopsis

In this thesis, we have contributed a collection of concepts and algorithms for speeding up the mod-

eling and rendering. Firstly, we have introduced a new geometry-based simplification algorithm that

generates simplified triangular meshes directly from the volume data. The flexibility in partitioning

the volume allows further simplification of the triangular mesh. The algorithm has the ability of

generating isosurface representation in multiple resolutions which can be used for level-of-detail ren-

dering. It is a fast heuristic algorithm, rather than a path to a strict optimum. Instead of the optimality

of the generated mesh, the speed of the algorithm is our main concern.

Then we proposed a new concept of measuring the apparent BRDF of a pixel in the field of image-

based time-critical modeling and rendering. Without the geometry representation, we no longer have

124

Chapter 10. Conclusions and Future Directions 125

access to the geometry models and surface properties. Hence no way to learn the surface reflectance

which determines the amount of reflected radiance from the surface element. The abstraction of mea-

suring pixel BRDF provides us the fundamental model in image-based computer graphics which can

be manipulated to synthesize image viewed from any desired direction under any desired illumina-

tion. To verify the concept, we apply it to two major image representations. Without much difficulty,

both of them can be extended to include illumination. Finally, we also provide a series of compression

schemes which compress the huge pixel BRDF data to a manageable size.

In the rest of this section, we will list the pros and cons of both the geometry-based and image-

based approaches.

10.1.1 Pros and Cons of Geometry-based Approach

Geometry-based computer graphics is acomputation-intensiveapproach. Object/scene is represented

in a very compact form, geometry representation. However, rendering of geometry models usually

requires more computation than that in image-based computer graphics. More importantly, the ren-

dering time depends on the scene complexity. This dependence makes the real-time rendering of

arbitrarily complex scene nearly impossible. No matter how fast the rendering softwares and hard-

wares are, the scene still can be complex enough to slow down any geometry-based modeling and

rendering algorithms.

Modeling is also a major problem of geometry-based computer graphics. Most of the early ge-

ometry models are constructed by hand. Even though the three-dimensional digitizers are becoming

more popular, constructing the geometry representation of an object/scene is still labor intensive. The

geometry models acquired from these digitizers usually contain noise and are in high resolution for-

mat. They required further modification and simplification. Moreover, not all objects can be scanned

due to their size, weight and rigid location. Imaginary objects/scenes still have to be constructed

manually. Therefore, modeling will still be one oftime-consumingand labor-intensivestep in the

geometry-based computer graphics.

Besides these disadvantages of geometry-based computer graphics, geometry representation pro-

vides extra information that can be used insimulation(not just visual simulation). For instance,

a computer program can be used to physically simulate the air dynamics surrounding the modeled

wing of a flight. In this case, the visual result becomes a visualization tool, not the final goal. In

entertainment industry, if the computer-animated movie characters are geometrically represented, the

Chapter 10. Conclusions and Future Directions 126

geometry models can be directly (or with little modification) used for toy manufacturing.

10.1.2 Pros and Cons of Image-based Approach

The emergence of image-based computer graphics is due to the demand of real-time display of arbi-

trarily complex scene. The approach detaches the dependency of the modeling and rendering time on

the scene complexity. Rendering speed is now only dependent on the resolutionof the image represen-

tation. Image-based approach successfully transforms an infinite problem (infinite scene complexity)

to a finite problem (finite image resolution). Once the computer power and capacity reach a threshold,

image-based computer graphics will allow us to display arbitrarily complex scene in real time due to

the finite nature of the problem.

Image-based computer graphics is adata-intensiveapproach. It needs more memory, more stor-

age and more bandwidth in order to store and transfer the image data. It is our belief thatthere is still

space to improve the storage and bandwidth of current computer systems while the speed of computer

processor tends to a limit in the near future.

Modeling real world object/scene in image-based computer graphics is usually easier since model-

ing becomes taking photographs. However, object/scene not exist will still need the help of geometry-

based computer graphics. One more problem of image-based modeling is theflexibility. For example,

if two objects are being modeled, we have to make a decision whether to model them in one single

image representation or to separate them into two image representations. The former will reduce the

storage but remove the flexibility, since we cannot change the relative distance of these objects. If we

choose the later one, we can have more flexibility in controlling their relative position. But the later

approach will also imply that the rendering time will associate with the scene complexity again.

Since the image representation only models the radiance impinging on our eyes and no geometry

model exists, there is no way to perform simulation as in the geometry-based approach. Therefore,

image-based computer graphics can only be used for providing the visual experience.

10.2 Future Work and Discussions

10.2.1 Hybrid Approach

As discussed above, we cannot say any one of the two approaches is superior. Instead, we believe

both approaches will continue to be used in different computer graphics systems. A hybrid approach

Chapter 10. Conclusions and Future Directions 127

will probably become more popular in the future. There are already some graphics systems devel-

oped using both approaches. Nimeroffet al. [NIME96] accelerated the radiosity software,RADI-

ANCE [WARD94], using depth image with radiance values. In another application, Lengyel and

Snyder [LENG97] applied the image warping techniques to warp a rendered image fragment in order

to make it looks affinely transformed. Their idea is to substitute the portion of the image with a pre-

viously rendered image fragment and try not to render that portion unless the error exceeds the given

threshold. This image caching approach significantly improves the rendering speed of the animation

sequences.

The mentioned systems are still geometry-based systems in nature. They only use image as

a temporary representation of the geometry object. We believe that in the future there will be an

increase in modeling object/scene with image representations. Hence a hybrid system, which renders

image-based entities as well as geometry-based entities, is needed.

10.2.2 View Dependence

View-dependence simplification techniques [LUEB97, HOPP97, XIA96] has been shown useful in

representing portion of the object by dense mesh while the rest of the object are represented by coarse

mesh. They have an application in speeding up the rendering while preserving the image quality. The

well known time-consuming problem of the radiosity applications will be benefited by applying the

view-dependence techniques.

The geometry-based simplification technique proposed in Part I is a view-independent algorithm.

No viewing information is used in guiding the simplification process. Only the geometry complexity

of the enclosed isosurface is used. We believe that a view-dependent approach will further improve

the algorithm in term of triangle count. However, the algorithm will be complicated to support the

feature of selective refinement. Moreover, a specially designed renderer is also needed.

10.2.3 Capturing Real Life Data

We have demonstrated the usefulness of measuring pixel BRDF for synthetic data. The next step will

be the capturing of pixel BRDF from the real life data. Developing a capturing system for real world

object/scene is a challenge. It relies on many computer vision techniques which are sensitive to noise.

One of the important information in measuring pixel BRDF is the direction information, both the

light and viewing vectors. A method that can extract accurate direction information is needed in order

Chapter 10. Conclusions and Future Directions 128

to prevent blurry image result. Standard pose estimation techniques can be used to extract the pose of

the camera. For the light vector, a camera can be tied with the spotlight to extract the direction of the

light source.

With extra depth information, the image-based object/scene can be correctly illuminated with

light source other than the directional light. The depth information can be converted from the cor-

respondence information which is able to be extracted from images by employing various vision

techniques [BESL88, BOLL87].

Another problem is our current approach is that we need a dense image set in order to accurately

record the pixel BRDF. Acquiring a dense image set from real life data is labor intensive. Therefore,

one future direction is to construct the pixel BRDF using sparse image set.

10.2.4 Global Illumination

In this thesis, we proposed a local illumination model (Equation 7.6) for re-rendering of image-based

object/scene. The natural extension is to design a global illumination model for the image-based

object/scene.

The basic difference between the local and global illumination models is that global illumination

accounts for the radiance contribution of each element in the environment. A simple extension is

to treat every element in the environment as a light source and sum their contributions using the

Equation 7.6. However, this approach will be prohibitively slow. Moreover, occlusion is another

missing information in image-based approach. Without it, the final radiance calculated will not be

correct.

Global illumination in image-based computer graphics is a difficult problem since one of the

major component, form factor [COHE93, SILL 94], of the radiosity equation is missing. Form factor

is basically a geometry factor. Without the geometry model, there is no enough information in any

projected images to allow us to calculate the crucial component. One possible solution is to calculate

the form factor using the depth or the correspondence information extracted from images.

Bibliography

[A DEL91] ADELSON, E. H. AND BERGEN, J. R. The plenoptic function and the elements of
early vision. In LANDY, M. S. AND MOVSHON, J. A., editors,Computational Models
of Visual Processing, chapter 1, pp. 3–20. MIT Press, 1991.

[A KEL93] AKELEY, K. Reality engine graphics. In VALASTYAN , L. AND WALSH, L., editors,
Proceedings of the Annual Conference on Computer Graphics, pp. 109–116, New York,
NY, USA, August 1993. ACM Press.

[BEIE92] BEIER, T. AND NEELY, S. Feature-based image metamorphosis. In CATMULL , E. E.,
editor,Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pp. 35–42, July
1992.

[BELH96] BELHUMEUR, P. N. AND KRIEGMAN, D. J. What is the set of images of an object
under all possible lighting conditions. InIEEE Conference on Computer Vision and
Pattern Recognition, 1996.

[BENT75] BENTLEY, J. L. Multidimensional binary search trees used for associative searching.
Communications of the ACM, 18(9):509–517, September 1975.

[BENT83] BENTON, S. A. Survey of holographic stereograms. InProcessing and Display of
Three-Dimensional Data, volume 367, 1983.

[BESL88] BESL, P. J. Active optical range imaging sensors. In SANZ, J. L. C., editor,Advances
in Machine Vision: Architectures and Applications. Springer-Verlag, 1988.

[BLIN76] BLINN , J. F. AND NEWELL, M. E. Texture and reflection in computer generated
images.Communications of the ACM, 19(10):542–546, October 1976.

[BLIN78a] BLINN , J. F. Computer display of curved surfaces. Ph.d. thesis, University of Utah,
1978.

[BLIN78b] BLINN , J. F. Simulation of wrinkled surfaces. InComputer Graphics (SIGGRAPH ’78
Proceedings), volume 12, pp. 286–292, August 1978.

[BLOO97] BLOOMENTHAL, J., editor. Introduction to Implicit Surfaces. Morgan Kaufmann,
1997.

[BOLL87] BOLLES, R. C., BAKER, H. H., AND MARIMONT, D. H. Epipolar-plane image anly-
sis: an approach to determining structure from motion.International Journal of Com-
puter Vision, 1:7–55, 1987.

[BUSB60] BUSBRIDGE, I. W. The Mathematics of Radiative Transfer. Cambridge University
Press, 1960.

129

BIBLIOGRAPHY 130

[CABR87] CABRAL , B., MAX , N., AND SPRINGMEYER, R. Bidirectional reflection functions
from surface bump maps. InComputer Graphics (SIGGRAPH ’87 Proceedings), vol-
ume 21, pp. 273–281, July 1987.

[CASE95] CASE, J. Wall street’s dalliance with number theory.SIAM News, pp. 8 – 9, December
1995.

[CATM74] CATMULL , E. E. A Subdivision Algorithm for Computer Display of Curved Surfaces.
PhD thesis, Dept. of CS, U. of Utah, December 1974.

[CHEN93] CHEN, S. E.AND WILLIAMS , L. View interpolation for image synthesis. In KAJIYA ,
J. T., editor,Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pp. 279–
288, Aug. 1993.

[CHEN95a] CHEN, S. E. QuickTime VR - an image-based approach to virtual environment naviga-
tion. In Computer GraphicsProceedings, Annual Conference Series, SIGGRAPH’95,
pp. 29–38, August 1995.

[CHEN95b] CHEN, S. E.AND MILLER, G. S. P. Cylindrical to planar image mapping using scan-
line coherence. United States Patent number 5,396,583, March 7 1995.

[CHIU94] CHIU, K., SHIRLEY, P., AND WANG, C. Multi-jittered sampling. InGraphics Gems
IV, pp. 370–374. AP Professional, 1994.

[CLAR76] CLARK , J. H. Hierarchical geometric models for visible surface algorithms.Commu-
nications of the ACM, 19(10):547–554, October 1976.

[CN92] CRUZ-NEIRA, C., SANDIN , D. J., DEFANTI , T. A., KENYON, R. V., AND HART,
J. C. The cave: Audio visual experience automatic virtual environment.Communica-
tions of the ACM, 35(6):65–72, June 1992.

[COHE93] COHEN, M. F. AND WALLACE , J. R. Radiosity and Realistic Image Synthesis. Aca-
demic Press Professional, San Diego, CA, 1993.

[COHE96] COHEN, J., VARSHNEY, A., MANOCHA, D., AND TURK, G. Simplification en-
velopes.Computer Graphics, 30:119–128, 1996.

[COOK81] COOK, R. L. AND TORRANCE, K. E. A reflectance model for computer graphics. In
Computer Graphics (SIGGRAPH ’81 Proceedings), volume 15, pp. 307–316, August
1981.

[COOK84a] COOK, R. L. Shade trees. In CHRISTIANSEN, H., editor,Computer Graphics (SIG-
GRAPH ’84 Proceedings), volume 18, pp. 223–231, July 1984.

[COOK84b] COOK, R. L., PORTER, T., AND CARPENTER, L. Distributed ray tracing. InComputer
Graphics (SIGGRAPH ’84 Proceedings), pp. 137–145, July 1984.

[COUR53] COURANT, R. AND HILBERT, D. Methods of Mathematical Physics. Interscience
Publisher, Inc., New York, 1953.

BIBLIOGRAPHY 131

[CROS95] CROSS, R. A. Sampling patterns optimized for uniform distribution of edges. In
Graphics Gems V, pp. 359–363. AP Professional, 1995.

[CUI97] CUI, J.AND FREEDEN, W. Equidistribution on the sphere.SIAM Journal on Scientific
Computing, 18(2):595–609, March 1997.

[CYCH90] CYCHOSZ, J. M. Efficient generation of sampling jitter using look-up tables. InGraph-
ics Gems, pp. 64–74. AP Professional, 1990.

[DEBE96] DEBEVEC, P. E., TAYLOR, C. J.,AND MALIK , J. Modeling and rendering architecture
from photographs: A hybrid geometry- and image-based approach. In RUSHMEIER, H.,
editor,SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pp. 11–20.
ACM SIGGRAPH, Addison Wesley, August 1996.

[DEBE97] DEBEVEC, P. E.AND MALIK , J. Recovering high dynamic range radiance maps from
photographs. In Computer GraphicsProceedings, Annual Conference Series, SIG-
GRAPH’97, pp. 369–378, August 1997.

[DEHA91] DEHAEMER, M. J. AND ZYDA, M. J. Simplification of objects rendered by polygonal
approximations.Computer & Graphics, 15(2):175–184, 1991.

[DOBK93a] DOBKIN, D. P.AND EPPSTEIN, D. Computing the discrepancy. InProceedings of the
9th ACM Symposium on Computational Geometry, pp. 47–52, 1993.

[DOBK93b] DOBKIN, D. P. AND MITCHELL, D. P. Random-edge discrepancy of supersampling
patterns. InGraphics Interface, pp. 62–69, 1993.

[DOBK96] DOBKIN, D. P., EPPSTEIN, D., AND MITCHELL, D. P. Computing the discrep-
ancy with applications to supersampling patterns.ACM Transactions on Graphics,
15(4):354–376, October 1996.

[FAUG93] FAUGERAS, O. AND ROBERT, L. What can two images tell us about a third one?
Technical report, INRIA, July 1993.

[FOLE90] FOLEY, T. A., LANE, D. A., AND NIELSON, G. M. Towards animating raytraced
volume visualization.The Journal of Visualization and Computer Animation, 1(1):2–8,
1990.

[FUNK93] FUNKHOUSER, T. A. AND SÉQUIN, C. H. Adaptive display algorithm for interactive
frame rates during visualization of complex virtual environments. In KAJIYA , J. T.,
editor, Computer Graphics (SIGGRAPH ’93 Proceedings), volume 27, pp. 247–254,
August 1993.

[GARD84] GARDNER, G. Y. Simulation of natural scenes using textured quadric surfaces. In
CHRISTIANSEN, H., editor,Computer Graphics (SIGGRAPH ’84 Proceedings), vol-
ume 18, pp. 11–20, July 1984.

[GARD85] GARDNER, G. Y. Visual simulation of clouds. In BARSKY, B. A., editor,Computer
Graphics (SIGGRAPH ’85 Proceedings), volume 19, pp. 297–303, July 1985.

BIBLIOGRAPHY 132

[GARL97] GARLAND , M. AND HECKBERT, P. S. Surface simplification using quadric error met-
rics. In WHITTED, T., editor,SIGGRAPH 97 Conference Proceedings, Annual Confer-
ence Series, pp. 209–216. ACM SIGGRAPH, Addison Wesley, Aug. 1997.

[GERS39] GERSHUN, A. The light field. Journal of Mathematics and Physics, XVIII:51–151,
1939. Translated by P. Moon and G. Timoshenko.

[GERS82] GERSHO, A. On the structure of vector quantizers.IEEE Transactions on Information
Theory, 28:157–165, March 1982.

[GOLD89] GOLDSTEIN, E. B. Sensation and Perception. Wadsworth Publishing Company, 3rd
edition, 1989.

[GORA84] GORAL, C. M., TORRANCE, K. E., GREENBERG, D. P., AND BATTAILE , B. Mod-
elling the interaction of light between diffuse surfaces. InComputer Graphics (SIG-
GRAPH ’84 Proceedings), volume 18, pp. 212–22, July 1984.

[GORT96] GORTLER, S. J., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. F. The lumi-
graph. In Computer GraphicsProceedings, Annual Conference Series, SIGGRAPH’96,
pp. 43–54, August 1996.

[GREE86a] GREENE, N. Environment mapping and other applications of world projections.IEEE
Computer Graphics and Applications, 6(11), November 1986.

[GREE86b] GREENE, N. AND HECKBERT, P. S. Creating raster omnimax images from multiple
perspective views using the elliptical weighted average filter.IEEE Computer Graphics
and Applications, 6(6):21–27, June 1986.

[GREE93] GREENE, N. AND KASS, M. Hierarchical Z-buffer visibility. InComputer Graphics
Proceedings, Annual Conference Series, 1993, pp. 231–240, 1993.

[GREE96] GREENE, N. Hierarchical polygon tiling with coverage masks. In RUSHMEIER, H.,
editor,SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pp. 65–74.
ACM SIGGRAPH, Addison Wesley, August 1996.

[GU97] GU, X. AND STEVEN J. GORTLER, M. F. C. Polyhedral geometry and the two-plane
parameterization. InProceedings of the 8th Eurographics Rendering Workshop, pp.
1–12, June 1997.

[HAEB92] HAEBERLI, P. Synthetic lighting for photography. available on
http://www.sgi.com/grafica/synth/index.html , January 1992.

[HALL 89] HALL , R. Illumination and Color in Computer Generated Imagery. Springer-Verlag,
New York, 1989.

[HALT64] HALTON, J. H. AND SMITH , G. B. Radical-inverse quasi-random point sequence.
Communications of the ACM, 7(12):701–702, December 1964.

[HECK86] HECKBERT, P. S. Survey of texture mapping.IEEE Computer Graphics and Applica-
tions, 6(11):56–67, November 1986.

BIBLIOGRAPHY 133

[HECK87] HECKBERT, P. S. Ten unsolved problems in rendering. InWorkshop on Rendering
Algorithms and Systems, Graphics Interface’87, April 1987.

[HEIN94a] HEINRICH, S. AND KELLER, A. Quasi-monte carlo methods in computer graphics,
part i: The qmc buffer. Technical report, University of Kaiserslautern, 1994. 242/94.

[HEIN94b] HEINRICH, S. AND KELLER, A. Quasi-monte carlo methods in computer graphics,
part ii: The radiance equation. Technical report, University of Kaiserslautern, 1994.
243/94.

[HILB52] HILBERT, D. AND COHN-VOSSEN, S. Geometry and the Imagination. Chelsea Pub-
lising Company, New York, 1952.

[HOPP93] HOPPE, H., DEROSE, T., DUCHAMP, T., MCDONALD, J.,AND STUETZLE, W. Mesh
optimization. InComputer Graphics (SIGGRAPH ’93 Proceedings), pp. 19–26, August
1993.

[HOPP96] HOPPE, H. Progressive meshes.Computer Graphics, 30:99–108, August 1996.

[HOPP97] HOPPE, H. View-dependent refinement of progressive meshes. In WHITTED, T., edi-
tor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pp. 189–198.
ACM SIGGRAPH, Addison Wesley, August 1997.

[I HM97] IHM, I., PARK, S.,AND LEE, R. K. Rendering of spherical light fields. InProceedings
of Pacific Graphics ’97, pp. 59–68, October 1997.

[K AJI85] KAJIYA , J. T. Anisotropic reflection models. InComputer Graphics (SIGGRAPH ’85
Proceedings), volume 19, pp. 15–21, July 1985.

[K ELL95] KELLER, A. A quasi-monte carlo algorithm for the global illumination problem in the
radiosity setting. InProceedings of Monte Carlo and Quasi-Monte Carlo Methods in
Scientific Computing, pp. 239–251. Springer-Verlag, June 1995.

[L EE77] LEE, D. T. AND WONG, C. K. Worst-case analysis for region and partial region
searches in multidimensional binary search trees and balanced quad trees.Acta Infor-
matica, 9(23):23–29, 1977.

[L ENG97] LENGYEL, J.AND SNYDER, J. Rendering with coherent layers. In Computer Graphics
Proceedings, Annual Conference Series, SIGGRAPH’97, pp. 233–242, August 1997.

[L EVO96] LEVOY, M. AND HANRAHAN , P. Light field rendering. In Computer GraphicsPro-
ceedings, Annual Conference Series, SIGGRAPH’96, pp. 31–42, August 1996.

[L IND80] LINDE, Y., BUZO, A., AND GRAY, R. M. An algorithm for vector quantizer design.
IEEE Transactions on Communcations, 28(1):84–95, January 1980.

[L IND96] LINDSTROM, P., KOLLER, D., RIBARSKY, W., HODGES, AND F., L. Real-time,
continuous level of detail rendering of height fields.Computer Graphics, 30:109–118,
1996.

BIBLIOGRAPHY 134

[L IVE97] LIVE PICTURE. Realspace viewer 1.0, 1997. A software to view image-based objects.

[L IVN96] LIVNAT, Y., SHEN, H.-W., AND JOHNSON, C. R. A near optimal isosurface extraction
algorithm using the span space.IEEE Transactions on Visualization and Computer
Graphics, 2(1):73–84, March 1996.

[L ORE87] LORENSEN, W. E. AND CLINE, H. E. Marching cubes: A high resolution 3D surface
construction algorithm. In STONE, M. C., editor,Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pp. 163–169, July 1987.

[L UEB97] LUEBKE, D. AND ERIKSON, C. View-dependent simplification of arbitrary polygo-
nal environments. In WHITTED, T., editor,SIGGRAPH 97 Conference Proceedings,
Annual Conference Series, pp. 199–208. ACM SIGGRAPH, Addison Wesley, August
1997.

[M AX95] MAX, N. AND OHSAKI, K. Rendering trees from precomputed Z-buffer views. In
Eurographics Rendering Workshop 1995. Eurographics, June 1995.

[MC90] MURRAY-COLEMAN, J. F. AND SMITH , A. M. The automated measurement of
BRDFs and their application to luminaire modeling.Journal of the Illuminating En-
gineering Society, Winter, 1990.

[M CMI95] MCMILLAN , L. AND BISHOP, G. Plenoptic modeling: An image-based rendering sys-
tem. In Computer GraphicsProceedings, Annual Conference Series, SIGGRAPH’95,
pp. 39–46, August 1995.

[M CMI97] MCMILLAN , L. An Image-based Approach to Three-Dimensional Computer Graphics.
PhD thesis, University of North Carolina at Chapel Hill, 1997.

[M ILL 84] MILLER, G. S. AND HOFFMAN, C. R. Illumination and reflection maps: Simulated
objects in simulated and real environments. InSIGGRAPH ’84 Advanced Computer
Graphics Animation seminar notes. July 1984.

[M ONT97] MONTRYM, J. S., BAUM, D. R., DIGNAM, D. L., AND MIGDAL , C. J. Infinite
Reality: a real-time graphics system. InComputer Graphics, volume 31, pp. 293–302,
August 1997.

[NEWE77] NEWELL, M. E. AND BLINN , J. F. The progressiong of realism in computer generated
images. InACM 77 Proceedings, pp. 444–448, October 1977.

[NIED92] NIEDERREITER, H. Quasirandom sampling computer graphics. InProceedings of the
3rd International Seminar on Digital Image Processing in Medicine, pp. 29–33, 1992.

[NIME94] NIMEROFF, J. S., SIMONCELLI , E., AND DORSEY, J. Efficient re-rendering of nat-
urally illuminated environments. InFifth Eurographics Workshop on Rendering, pp.
359–373, Darmstadt, Germany, June 1994.

[NIME96] NIMEROFF, J. S., DORSEY, J., AND RUSHMEIER, H. Implementation and analysis
of an image-based global illumination framework for animated environments.IEEE
Transactions on Visualziation and Computer Graphics, 2(4):283–298, December 1996.

BIBLIOGRAPHY 135

[NISH85] NISHITA, T. AND NAKAMAE , E. Continuous tone representation of three-dimensional
objects taking account of shadows and interreflection. In BARSKY, B. A., editor,Com-
puter Graphics (SIGGRAPH ’85 Proceedings), volume 19, pp. 23–30, July 1985.

[OHBU96] OHBUCHI, R. AND AONO, M. Quasi-monte carlo rendering with adaptive sampling.
Technical report, Tokyo Research Laboratory, IBM Japan Ltd., 1996.

[PASK95] PASKOV, S. H. AND TRAUB, J. F. Faster valuing of financial derivatives.Journal of
Portfolio Management, 22:113–120, 1995.

[PHON75] PHONG, B.-T. Illumination for computer generated pictures.Communications of the
ACM, 18(6):311–317, June 1975.

[POLI93] POLIS, M. F. AND MCKEOWN, D. M. Issues in iterative TIN generation to support
large scale simulations. InProceedings of 11th International Symposium on Computer
Assisted Cartography (AUTOCARTO11), pp. 267–277, November 1993.

[POPO97] POPOVIĆ, J. AND HOPPE, H. Progressive simplicial complexes. In WHITTED, T.,
editor, SIGGRAPH 97 Conference Proceedings, Annual Conference Series, pp. 217–
224. ACM SIGGRAPH, Addison Wesley, August 1997.

[POST97] POSTON, T., NGUYEN, H., HENG, P.-A., AND WONG, T.-T. Skeleton climbing :
Fast isosurfaces with fewer triangles. InPacific Graphics’97, pp. 117–126, October
1997.

[POST98] POSTON, T., WONG, T.-T., AND HENG, P.-A. Multiresolution isosurface extraction
with adaptive skeleton climbing.Computer Graphics Forum, 1998. Accepted for pub-
lication.

[PULL97] PULLI , K., COHEN, M., DUCHAMP, T., HOPPE, H., SHAPIRO, L., AND STUETZLE,
W. View-based rendering: Visualizing real objects from scanned range and color data.
In Proceedings of the 8th Eurographics Rendering Workshop, pp. 23–34, June 1997.

[REEV87] REEVES, W. T., SALESIN, D. H., AND COOK, R. L. Rendering antialiased shad-
ows with depth maps. In STONE, M. C., editor,Computer Graphics (SIGGRAPH ’87
Proceedings), volume 21, pp. 283–291, July 1987.

[ROSS93] ROSSIGNAC, J. AND BORREL, P. Multi-resolution 3D approximation for rendering
complex scenes. In FALCIDIENO, B. AND KUNII , T. L., editors,Modeling of Computer
Graphics (Second Conference on Geometric Modelling in Computer Graphics), pp.
455–465. Springer-Verlag, June 1993. Genova, Italy.

[SCAR92] SCARLATOS, L. AND PAVLIDIS , T. Hierarchical triangulation using cartographic co-
herence. CVGIP: Graphical Models and Image Processing, 54(2):147–161, March
1992.

[SCHR92] SCHROEDER, W. J., ZARGE, J. A., AND LORENSEN, W. E. Decimation of triangle
meshes. In CATMULL , E. E., editor,Computer Graphics (SIGGRAPH ’92 Proceed-
ings), volume 26, pp. 65–70, July 1992.

BIBLIOGRAPHY 136

[SEGA92] SEGAL, M., KOROBKIN, C., VAN WIDENFELT, R., FORAN, J., AND HAEBERLI,
P. E. Fast shadows and lighting effects using texture mapping. In CATMULL , E. E.,
editor, Computer Graphics (SIGGRAPH ’92 Proceedings), volume 26, pp. 249–252,
July 1992.

[SEIT96] SEITZ, S. M. AND DYER, C. R. View morphing. InComputer Graphics Proceedings,
Annual Conference Series (Proc. SIGGRAPH ’96), pp. 21–30, 1996. Available from
ftp.cs.wisc.edu.

[SEIT97] SEITZ, S. M. AND DYER, C. R. Photorealistic scene reconstruction by voxel coloring.
In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 1067–
1073, 1997.

[SEIT98] SEITZ, S. M. AND KUTULAKOS, K. N. Plenoptic image editing. InProceedings 6th
International Conference on Computer Vision (ICCV’98), 1998.

[SHEK96] SHEKHAR, R., FAYYAD , E., YAGEL, R., AND CORNHILL, J. Octree-based decimation
of marching cubes surfaces. InIEEE Visualization ’96 Proceedings, pp. 335–342, Oct
1996.

[SHIR91a] SHIRLEY, P. Discrepancy as a quality measure for sample distributions. InProceedings
of Eurographics, pp. 183–193, 1991.

[SHIR91b] SHIRLEY, P. Physically Based Lighting Calculations for Computer Graphics. PhD
thesis, University of Illinois at Urbana-Champaign, 1991.

[SHU95] SHU, R., CHEN, Z., AND KANKANHALLI , M. S. Adaptive marching cubes.The
Visual Computer, 11:202–217, 1995.

[SIEG81] SIEGEL, R. AND HOWELL, J. R. Thermal Radiation Heat Transfer. Hemisphere
Publishing Corp., Washington, DC, 1981.

[SILL 91] SILLION , F. X., ARVO, J. R., WESTIN, S. H., AND GREENBERG, D. P. A global
illumination solution for general reflectance distributions. InComputer Graphics (SIG-
GRAPH ’91 Proceedings), volume 25, pp. 187–196, July 1991.

[SILL 94] SILLION , F. AND PUECH, C. Radiosity and Global Illumination. Morgan Kaufmann,
San Francisco, 1994.

[SPAN69] SPANIER, J. AND GELBARD, E. M. Monte Carlo Principles and Neutron Transport
Problems. Addison-Wesley, New York, N.Y., 1969.

[SUTH63] SUTHERLAND, I. E. Sketchpad: a man-machine graphical communication system.
SJCC, 1963.

[SZEL97] SZELISKI , R. AND SHUM, H.-Y. Creating full view panoramic image mosaics and
environment maps. In Computer GraphicsProceedings, Annual Conference Series,
SIGGRAPH’97, pp. 251–258, August 1997.

BIBLIOGRAPHY 137

[TEZU95] TEZUKA, S. Uniform Random Numbers: Theory and Practice. Kluwer Academic
Publishers, 1995.

[TORR67] TORRANCE, K. E. AND SPARROW, E. M. Theory for off-specular reflection from
roughened surfaces. InJournal of Optical Society of America, volume 57, pp. 1105–
1114, September 1967.

[TRAU96] TRAUB, J. In math we trust.What’s Happening in the Mathematical Sciences, 3:101–
111, 1996.

[TURK92] TURK, G. Re-tiling polygonal surfaces. In CATMULL , E. E., editor,Computer Graph-
ics (SIGGRAPH ’92 Proceedings), volume 26, pp. 55–64, July 1992.

[WARD92] WARD, G. J. Measuring and modeling anisotropic reflection. In Computer Graphics
Proceedings, Annual Conference Series, SIGGRAPH’92, pp. 265–272, July 1992.

[WARD94] WARD, G. J. The RADIANCE lighting simulation and rendering system.Computer
Graphics, 28:459–472, 1994.

[WHIT80] WHITTED, T. An improved illumination model for shaded display. InCommunications
of the ACM, volume 23, pp. 343–349, June 1980.

[WILH92] WILHELMS, J. AND GELDER, A. V. Octrees for faster isosurface generation.ACM
Transactions on Graphics, 11(3):201–227, July 1992.

[WILL 83] WILLIAMS , L. Pyramidal parametrics. InComputer Graphics (SIGGRAPH ’83 Pro-
ceedings), volume 17, pp. 1–11, July 1983.

[WONG97a] WONG, T.-T., HENG, P.-A., OR, S.-H., AND NG, W.-Y. Illuminating image-based
objects. InPacific Graphics’97, pp. 69–78, Seoul, Korea, October 1997.

[WONG97b] WONG, T.-T., HENG, P.-A., OR, S.-H.,AND NG, W.-Y. Image-based rendering with
controllable illumination. InEighth Eurographics Workshop on Rendering (Rendering
Techniques’97), pp. 13–22, Saint Etienne, France, June 1997.

[WONG97c] WONG, T.-T., LUK, W.-S.,AND HENG, P.-A. Sampling with hammersley and halton
points.ACM Journal of Graphics Tools, 2(2):9–24, 1997.

[WONG98] WONG, T.-T., HENG, P.-A., OR, S.-H., AND NG, W.-Y. Illumination of image-
based objects.Journal of Visualization and Computer Animation, 1998. Accepted for
publication.

[WYVI 90] WYVILL , B. AND JEVANS, D. Table driven polygonisation. SIGGRAPH 1990 course
notes23, pp. 7–1–7–6, 1990.

[X IA96] XIA , J. C.AND VARSHNEY, A. Dynamic view-dependent simplification for polygonal
models. InIEEE Visualization ’96. IEEE, October 1996. ISBN 0-89791-864-9.

[ZHAN98] ZHANG, Z. Modeling geometric structure and illumination variation of a scene from
real images. InProceedings of the International Conference on Computer Vision
(ICCV’98), Bombay, India, January 1998.

Appendix A

Spherical Harmonics

Spherical harmonics have been used in solving various physical problems. The spherical harmonics

Yl;m(�; �) are the solution to Laplace’s equation in spherical coordinates. They are functions of two

angular parameters, the zenith angle� and the azimuth angle�, specifying a position on the surface

of the sphere. Each harmonic is represented by two indices,l andm. Indexl is known as the spherical

degree whilem as the azimuthal order. The spherical harmonics are formulated to associate with the

Legendre polynomials1.

Yl;m =

s
2l + 1

2�

(l�m)!

(l+m)!
Pl;m(cos �)eim�; (A.1)

where Pl;m(x) are the associated Legendre polynomials,

andm = �l; (�l+ 1); � � � ; 0; � � � ; (l� 1); l.

Here the first term of the equation on the right is the normalization coefficient which normalizes

the spherical harmonics. The integration of a normalized spherical harmonic over a sphere is unity.

Z 2�

0

Z 1

�1
Y �
l0;m0(�; �)Yl;m(�; �)d cos�d� = �mm0�ll0 ; (A.2)

where�mn is called the Kronecker Delta, The asterisk denotes the complex conjugation.

Spherical harmonics obey the following three properties,

Yl;�l(�; �) =
1

2ll!

s
(2l+ 1)!

4�
sinl �e�il�; (A.3)

Yl;0(�; �) =

s
2l+ 1

4�
Pl;0(cos �); (A.4)

Yl;�m(�; �) = (�1)mY �
l;m(�; �); (A.5)

1After the French mathematician Adrien-Marie Legendre (1752-1833)

138

Appendix A. Spherical Harmonics 139

The third property in Equation A.5 can be used so that the spherical harmonics always related to

an associated Legendre polynomial withm � 0.

There are three modes for the spherical harmonics. The mode is depending on the order ofm.

Whenm = 0, it is called the zonal mode. The harmonics withm = 0 are called zonal harmonics and

are in the following form,

kzonalPl;0(cos �); (A.6)

wherekzonal is a coefficient.

Whenm = l, the harmonics are called sectoral harmonics and are in the following form,

ksectoral sin(m�)Pl;l(cos �) or k0sectoral cos(m�)Pl;l(cos �); (A.7)

In other cases,m 6= 0 andm 6= l, the harmonics are called tesseral harmonics and in the form of

ksectoral sin(m�)Pl;m(cos �) or k0sectoral cos(m�)Pl;m(cos �); (A.8)

wherel 6= m.

The spherical harmonics form a complete orthonormal basis. Hence any real spherical function

f(�; �) can be expanded in term of complex spherical harmonics.

f(�; �) =
1X
l=0

lX
m=�l

Cc
l;mYl;m(�; �); (A.9)

whereCc
l;m are the coefficients.

Moreover, the real spherical functionf(�; �) can also be expanded in term of real spherical har-

monics using the same summation equation as in Equation A.9. The real spherical harmonics can be

expressed as follow,

Y r
l;m(�; �) =

8>>><
>>>:

Nl;mPl;m(cos �) cos(m�) if m > 0

Nl;0Pl;0(cos �)=
p
2 if m = 0

Nl;mPl;jmj(cos �) sin(jmj�) if m < 0;

(A.10)

where,

Nl;m =

s
2l + 1

2�

(l� jmj)!
(l+ jmj)! ;

Note this is the formulation used in Chapter 9.

Appendix A. Spherical Harmonics 140

The major computation of evaluating spherical harmonics is the evaluation of the Legendre poly-

nomials. For simplicity, let’s substitutex = cos �, the ordinary Legendre polynomials are defined

by,

Pl;m(x) = (�1)m(1� x2)m=2 dm

dxm
Pl(x): (A.11)

The Legendre polynomials can be evaluated numerically using the explicit expression. However,

this a bad approach in writing computer program. A better approach is to express the Legendre in

recurrence form.

Pl;m(x) =

8>>><
>>>:

(1� 2m)
p
1� x2Pm�1;m�1(x) if l = m

x(2m+ 1)Pm;m(x) if l = m+ 1

x2l�1
l�mPl�1;m(x)� l+m�1

l�m Pl�2;m(x) otherwise.

(A.12)

The above expression of the Legendre polynomial can be efficiently coded in computer languages.

