
Pyramid of Arclength Descriptor for Generating Collage of Shapes

Kin Chung Kwan1,2 Lok Tsun Sinn1,2 Chu Han1,2 Tien-Tsin Wong1,2 Chi-Wing Fu1

1The Chinese University of Hong Kong∗
2Shenzhen Research Institute, The Chinese University of Hong Kong

Figure 1: “Icons in PAD”: a collage of shapes generated with our scale- and rotation-invariant shape descriptor, namely pyramid of
arclength descriptor (PAD); this novel descriptor improves the shape-matching efficiency, thus facilitating the generation of complex results.

Abstract

This paper tackles a challenging 2D collage generation problem,
focusing on shapes: we aim to fill a given region by packing irreg-
ular and reasonably-sized shapes with minimized gaps and over-
laps. To achieve this nontrivial problem, we first have to analyze
the boundary of individual shapes and then couple the shapes with
partially-matched boundary to reduce gaps and overlaps in the col-
lages. Second, the search space in identifying a good coupling of
shapes is highly enormous, since arranging a shape in a collage in-
volves a position, an orientation, and a scale factor. Yet, this match-
ing step needs to be performed for every single shape when we
pack it into a collage. Existing shape descriptors are simply infea-
sible for computation in a reasonable amount of time. To overcome
this, we present a brand new, scale- and rotation-invariant 2D shape
descriptor, namely pyramid of arclength descriptor (PAD). Its for-
mulation is locally supported, scalable, and yet simple to construct
and compute. These properties make PAD efficient for perform-
ing the partial-shape matching. Hence, we can prune away most
search space with simple calculation, and efficiently identify candi-
date shapes. We evaluate our method using a large variety of shapes
with different types and contours. Convincing collage results in
terms of visual quality and time performance are obtained.
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1 Introduction

Collage is a form of visual art created by pasting elements like pho-
tos, clippings, and ribbons onto a canvas region. It exists in several
forms, e.g., mosaics, which are made up of colored glass and stone,
and photomontages, which cut and compose photographs. In this
paper, we focus on generating collages composed of shapes, with-
out much consideration of the color. Our goal is to pack 2D shapes
to fill a canvas with minimized overlaps and gaps in-between the
shapes (e.g., Fig. 2). This form of collage is extensively used in
commercial advertisement, 2D design, and many other illustrations.

During the design, artists pack each shape one-by-one in a trial-
and-error manner, by trying various scale, position, and orientation
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Figure 2: Examples: collages designed by artists, courtesy of Post-
master General of Hongkong Post (left) and lalan (right).
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of the shape. Obviously, the search space is enormous. Currently,
such collages are manually created; we are not aware of any auto-
matic algorithm that can achieve the task within a tractable period
of time. To ease the difficulty in matching/coupling shapes and en-
hance the visual pleasantness, artists usually include padding in-
between shapes and insert tiny shapes to avoid oversized empty
space, e.g., the small stars and sector shapes in right sub-figure
of Fig. 2. In this paper, we present an automatic method to effi-
ciently address this challenging shape packing problem. Note that
our packing problem is not the same as the standard packing prob-
lem in geometry, which ignores object changes and scaling.

Existing collage-related methods such as [Hausner 2001; Kim and
Pellacini 2002; Huang et al. 2011] take a top-down approach in
generating collages. They divide the canvas into cells and fit shapes
into each cell region, see Fig. 3(a)-(c). Hence, the shapes are im-
plicitly assumed to be more-or-less convex with presumed scale
to fit the cells. As a result, their ability in handling more general
shapes and achieving good coupling of shapes is questionable.

On the other hand, we may take a bottom-up approach to progres-
sively pack shapes similar to the way artists do. However, this re-
quires a highly efficient partial-shape matching process, since every
time we pack a shape into a collage, we have to continuously trans-
late, scale and rotate the shape to evaluate the shape coupling, see
Fig. 12(c)&(d). This involves an exceedingly large search space: a
large number of candidates (shapes), and for each shape, there can
be unlimited number of instances (each with different scale, loca-
tion, and/or orientation). While existing shape descriptors such as
curvature scale space [Mokhtarian and Mackworth 1992; Mokhtar-
ian et al. 1996], shape context [Belongie et al. 2002], and triangle-
area representation [Alajlan et al. 2007] work well for measuring
the overall similarity between (whole) shapes, they cannot be used
directly for partial-shape matching. Even we extend them by divid-
ing a shape into multiple instances of curve segments for matching,
there are exceedingly large choices of segments on each shape, thus
leading to a huge search space. Hence, the approach is simply in-
feasible for efficient computation (see Section 2 for details).

In this work, we take a bottom-up approach to generate collages
without assumption nor restriction on shapes and within a tractable
amount of time. Given a collection of shapes, our method starts with
a seed shape and iteratively fills the given region piece-by-piece,
see Fig. 3(d)-(f). In each iteration, we find the best docking loca-
tion, orientation, and scale of a shape by maximizing the arclength
(which is a partially-matched boundary) shared between the shape
and the current collage. Given N and M as the number of sam-
ple points along the boundary of a shape and the current collage,
respectively. If we employ an existing shape descriptor to match
instances of curve segments, we need N2M2 matching tests. Our
key to tackle the enormous search space within tractable time is a
novel shape descriptor, namely pyramid of arclength descriptor (in
short, PAD). Since PAD describes the local shape around a point
(locally supported) in a scale- and rotation-invariant fashion, it can
effectively trim down the search space for partial-shape matching,
allowing us to perform only NM tests1 to identify the best dock-
ing position of a shape onto the collage (see Section 2 for details).
Moreover, it has a simple vector form, which is just a sequence of
normalized arclength values in a pyramidal scale (Section 3), so it
is easy to construct and fast to compute.

Unlike existing top-down methods, which produce collages with
more-or-less convex shapes, our method can achieve better shape
coupling, even for arbitrarily irregular shapes, see Fig. 1. By aug-
menting the objective function in the shape matching process, we

1If we use a more sophisticated algorithm such as kNN to accelerate, we
can reduce the number of tests to N2logM and N logM , respectively (see
Section 2 for details).

Figure 3: Top row (a)-(c): a typical top-down approach. Bottom
row (d)-(f): a bottom-up approach (our result); All M.C. Escher
works c©2016 The M.C. Escher Company - the Netherlands. All
rights reserved. Used by permission. www.mcescher.com.

(a) (b)
Figure 4: (a) Partial occlusion due to view blocking (e.g., a
partially-blocked sign) and (b) Partial change of shape.

can generate collages with various design goals, e.g., avoiding over-
shrinking and oversizing, upside-down pieces, etc. To demonstrate
the applicability of our method, we generate a large number of col-
lage results with different types of shapes and contours, and conduct
a user study to compare the visual quality of our results against ex-
isting methods. Moreover, we conduct experiments to evaluate the
timing statistics of our method, demonstrating its high efficiency in
generating collages of different shapes.

PAD can also be applied to many other pattern recognition appli-
cations. Since PAD makes no assumption on the closeness of the
shapes, it can be used to match both closed shapes and open curves.
Its partial-shape matching capability is highly useful in many com-
plicated real-world scenarios, when there exists partial occlusion,
see Fig. 4(a), and partial change of shape, see Fig. 4(b). The con-
tributions in this work are summarized as follow:

• We propose a simple, scalable, locally supported, scale-, and
rotation-invariant pyramid of arclength descriptor (PAD) that
facilitates efficient partial-shape matching. It can be applied
to pattern recognition applications that involve partial-shape
matching and tackle partial occlusion problem.

• We can efficiently generate collages of shapes with “shape
coupling” among arbitrarily irregular shapes of controllable
scales, by drastically reducing the search space.



2 Related Work

Collages There are several related computational methods in
generating 2D collages. Photo collage [Rother et al. 2006; Gofer-
man et al. 2010] considers a slightly different problem with the
goal of packing a region with intersecting photos, where the photo
boundary can be soft. Puzzle solving methods [Yao and Shao 2003;
Goldberg et al. 2004], on the other hand, do not need to consider
the scale of pieces since the sizes of puzzle pieces are fixed.

Kaplan and Salesin [2000; 2004] presents a special type of tiling
that resembles certain artworks of M.C. Escher. Their method mod-
ifies a given 2D shape via constrained optimization, so that the mod-
ified shape can tile a plane. Dalal et al. [2006] used an FFT-based
correlation to generate image collage, but their work only supports
more-or-less convex shapes. Existing methods for tiling [Hausner
2001; Kim and Pellacini 2002; Xu and Kaplan 2007; Orchard and
Kaplan 2008; Hu et al. 2016; Zou et al. 2016] mostly take a top-
down approach, which subdivides the given canvas region into cells
of similar sizes and then fills each cell with a 2D object by maxi-
mizing the overall shape similarity. Such 2D object could be a clip
art or a photo segment. However, since the subdivision process does
not consider the shape of the given 2D objects, the tessellated cells
are more-or-less circular in shape and the resulting tiling is less in-
teresting with mostly simple and short-length object contacts. To
generate more irregular cells, Huang et al. [2011] introduced an-
other top-down approach that subdivides the canvas region accord-
ing to its color. However, their method ignores the shape of the
given objects, so a good match may not be found for some of the
cells. Reinert et al. [2013] presented a framework to perturb 2D ob-
jects in the canvas by equalizing the gaps in-between objects. Since
their method is not rotation-invariant nor scale-invariant, they can-
not pack objects in the collage results with good coupling. Besides
2D puzzles, Gal et al. [2007] and Huang et al. [2014] explored
bottom-up approaches to generate 3D collage, but their problem
setting does not require scale invariance.

Compared to previous works, we take a bottom-up approach to gen-
erate 2D collages, focusing on packing objects according to shapes.
Thanks to the proposed PAD, which enables us to efficiently match
shapes along a partial-shape boundary with scale- and rotation-
invariances. We thus can efficiently match and pack shapes into a
collage and produce more intriguing results. Without the PAD, this
bottom-up approach would be computationally intractable. This is
also why most previous works do not take a bottom-up approach
since scale invariance needs to be considered during the partial-
shape matching process.

Shape Descriptor Two-dimensional shape descriptors can be
roughly classified into two categories: global shape descriptors,
which describe the overall shape characteristic, and local shape de-
scriptors, which describe local shape regions by local features.

Global shape descriptors Typical methods include Hu mo-
ments [Hu 1962], Fourier descriptors [Granlund 1972; Persoon and
Fu 1977], Zernike moments [Khotanzad and Hong 1990], image
moments [Belkasim et al. 1991; Sheng and Shen 1994], wavelet
descriptors [Chuang and Kuo 1996], generic Fourier descrip-
tor [Zhang and Lu 2002], and Radon-transform descriptor [Tab-
bone et al. 2006]. They compactly describe the characteristics over
the whole shape, so we can efficiently measure overall shape sim-
ilarity. However, as they pay more attention to the whole shape,
local shape characteristics are usually lost, so they are ineffective
for partial-shape matching, which focuses on local segments.

To extend global descriptors to support partial-shape matching with
scale invariance, we may divide a shape into multiple instances of
curve segments, describe each instance using a global descriptor,
and then perform partial-shape matching by measuring the shape

(a) Pointwise distance (b) Exterior area (c) Log-polar diagram

(d) Triangle area (e) Turning angle (f) Our PAD

Figure 5: By appropriately scaling either the new moon or the cir-
cle shape, we should be able to perfectly match local regions of
the shapes at corresponding red dots. However, none of these local
features (a)-(e), except PAD in (f), can produce the same descriptor
(visualized as blue elements) for the local regions around red dots.

Figure 6: Partial-shape matching aims to find (c) in a local region
of (a); existing local descriptors approach this by normalizing the
shapes to certain scale (b&c) for matching, but this may not work.

similarity between instances of different shapes. To apply this ex-
tension to collage generation, we consider N and M as the number
of sample points along the boundary of a shape and the current col-
lage, respectively. Since each curve segment instance has two end-
points, we thus have N2 and M2 choices of segment instances on
the given shape and on the current collage, respectively. Therefore,
to find the best docking location to put the shape onto the collage
with scale invariance, a brute-force approach would need N2M2

matching tests, which is inefficient and intractable.

Local shape descriptors Typical methods include turn function of
polygons [Arkin et al. 1991], curvature scale space [Mokhtarian
and Mackworth 1992; Mokhtarian et al. 1996], shape context [Be-
longie et al. 2002], shape signatures [Lee et al. 2006], triangle-area
representation (TAR) [Alajlan et al. 2007], the SKS algorithm [Kr-
ish and Snyder 2008], IS-Match [Donoser et al. 2010], and integral
invariants [Hong and Soatto 2015], which describe a local region
in a shape by using various local features (Fig. 5). Please refer
to [Veltkamp and Hagedoorn 2001; Yang et al. 2008; Van Kaick
et al. 2011] for comprehensive surveys on these descriptors.

Existing local shape descriptors do not explicitly consider scale.
Fig. 5 illustrates this issue with an example: if we can appropriately
scale the new moon shape (or equivalently the circle shape), the
inner side of the moon at the red dot should match perfectly the
outer side of the circle at the other red dot. In other words, if a local
descriptor is scale invariant rather than scale dependent, it should
produce the same descriptor for the local regions around the two
red dots: one on circle and one on moon. However, none of them
(except PAD) possess scale invariance (Fig. 5). Note particularly
the coverage difference for each local feature on the two shapes.

To extend local descriptors to support partial-shape matching with
scale invariance, one approach is to normalize the two shapes to cer-
tain scale for matching, e.g., shape context [Belongie et al. 2002]
uses the mean of point-wise distances. However, such normaliza-
tion may not always be able to find an appropriate scale, so we may



Figure 7: Our PAD. (a) Consider point p (red dot) on a curve. (b) We plot the “scale-invariant” integral of absolute curvature (τ ) against the
arclength measured from each side of p along the curve. (c) Each arclength (left: cyan & right: brown) corresponds to certain fixed amount
of integrals (levels) of ∆τ ; they together form a local PAD at p. See blown-up views in (a) for more examples of PAD at different positions.

not be able to correctly match partial shapes using local descriptors,
see Fig. 6 for an example. Another approach is to produce multi-
ple instances of local descriptors in different scales at each local
sample point on the shapes. However, we will need a large K and
produce KN instances on the docking shape and KM instances
on the collage contour. As a result, we will need K2NM matching
tests, which is still inefficient for collage generation.

In sharp contrast, PAD explicitly considers scale in its formulation
when describing the local region around a point. Hence, it can
effectively trim down the search space for scale-invariant partial-
shape matching, where NM tests are sufficient for identifying the
best docking location of a shape with scale invariance.

One may argue to use k-nearest neighbor (kNN) searching method
to accelerate the search. One way is to build a kd-tree on theM2 in-
stances of a query shape for the case of global shape descriptors (or
KM instances for local shape descriptors). This can reduce the
number of matching tests fromN2M2 toN2logM for global shape
descriptors (or from K2NM to KN log(KM) for local shape de-
scriptors). In our case, if we apply the same kNN method to PAD,
we can further reduce the time complexity from NM to N logM ,
so our method is still more efficient for partial-shape matching with
scale invariance.

Besides 2D descriptors, there are 3D shape descriptors such as
shape distribution [Osada et al. 2002] and heat kernel signa-
ture [Sun et al. 2009]. However, adaptation is required to apply
them to 2D. More comprehensive survey of 3D descriptors can be
found in [Tangelder and Veltkamp 2008].

3 Pyramid of Arclength Descriptor

The core of our collage generation approach is an efficient partial-
shape matching method. To achieve that, we first describe a novel
pyramid of arclength descriptor (PAD), which describes a local por-
tion of the shape around each boundary point in a scale-invariant
manner. Before presenting its formulation, we first define a scale-
invariant domain.

3.1 Scale-Invariant Domain

The scale-invariant domain we utilized is based on the integral of
absolute curvature. Given a curve, the integral of absolute curva-
ture, τ , over a curve segment between points s and t is defined as

τ(s : t) =
∫ t
s
|κ(x)| dx ,

where κ(x) is the curvature at point x on the curve.

It can be easily proved that τ is scale-invariant. As curvature is
inversely (linearly) proportional to the scale factor while arclength
is linearly proportional to the scale factor. Their product cancels out
the influence of scale. Hence, when the curve is scaled by a factor

Figure 8: Plotting curvature against integral of absolute curvature
(Cui et al. [2009]) may produce very similar signatures (b)&(d)
even for different shapes (a)&(c). In sharp contrast, our PAD can
produce substantially different descriptions (see the color coding in
(a)&(c), like Fig. 7(c)), enabling us to differentiate the two shapes.

of α, τ remains unchanged:

τ(αs : αt) =
∫ αt
αs
|κ̄(x̄)| dx̄ =

∫ t
s
|κ̄(αx)| dαx

=
∫ t
s
|κ(x)| dx = τ(s : t) ,

where x̄ and κ̄ are point and curvature, respectively, on the scaled
curve. Note that the curvature of point x on the scaled curve κ̄(αx)
is inversely proportional to the scale factor, i.e., κ̄(αx) = 1

α
κ(x).

The integral of absolute curvature is well known in measuring the
tightness of a surface. Hamann and Chen [1994] selected fea-
ture points in this domain, while Cui et al. [2009] designed a
curve signature based on the integral of absolute curvature and
performed normalized cross correlation (NCC) for scale-invariant
curve matching. However, matching curves in this way may not
work in general because different curves can have very similar sig-
natures, see Fig. 8 for an example: the NCC value for matching the
two curves shown in Fig. 8(a)&(c) are as high as 0.9989, where 1.0
means two curves are identical. Hence, having similar signatures
may not imply a good match.

3.2 PAD Vector

Although describing a curve using the integral of absolute curvature
can take away the influence of scale, it cannot precisely characterize
a shape. In other words, we cannot solely rely on the information
left in this single domain for shape matching. In this paper, we
propose to utilize the shape information in two domains together to
precisely characterize a shape. The second domain we utilized is
the arclength domain, which is originally scale-dependent.

Consider a point p on the curve shown in Fig. 7(a). Our goal is to
define a local scale-invariant descriptor to quantify the local shape
centered at p. To do so, we construct a pyramid of arclength inter-
vals centered at p (Fig. 7(c)), such that each interval corresponds to
a fixed integral value of absolute curvature (∆τ ), cumulated from p.
Our PAD is defined by using this set of arclength values.

To construct our PAD, we need to consider both left and right sides
of p. To simplify the discussion, we denote li and ri as the arclength



Figure 9: Cumulating the integral of absolute curvature along the
curve is analogous to Pacman collecting cherries on its way.

values measured along the curve from the left and right sides of p,
respectively, and both li and ri correspond to the same amount of
integral of absolute curvature, which is 2i∆τ .

Clearly, one arclength level, say l0 and r0, may not uniquely de-
scribe a shape since different shapes may still have the same in-
tegral of absolute curvature and the same arclength value. Such a
chance of “coincidence” can be significantly reduced by consider-
ing a pyramid of arclength values that correspond to different levels
of absolute curvature integral, i.e., 2i∆τ , etc. Hence, we form a 1D
vector with n levels of “left” and “right” arclength values:

[ ln−1 ln−2 · · · l1 l0 r0 r1 · · · rn−2 rn−1 ]T .

In other words, PAD’s shape description power, or the ability to
distinguish shapes, is scalable, i.e., controllable by n. In all our
experiments, we use n = 5 and ∆τ = 0.2, which is sufficient for
matching shapes in the collage results presented in the paper.

However, the above formulation is still scale-dependent. Hence,
we further convert it to be scale-invariant by dividing each element
in the vector by the corresponding last-level arclength value. Af-
ter that, we can also remove the last-level elements since they are
always one after the division. Thus, we define the PAD at p as

m(p) = s [ l̂n−2 · · · l̂1 l̂0 r̂0 r̂1 · · · r̂n−2 ]T .

where l̂i = li
2iln−1

and r̂i = ri
2irn−1

and s ∈ {1,−1} indicates
the local shape convexity (+1) or concavity (-1) around p. Note that
the weights 2−i help normalize the influence of different arclength
levels since the larger the level, the longer the arclength value is.
With this normalization, we can bound the values to [0, 1] and avoid
the dominance of large magnitude PADs in our subsequent distance
metric computation. Furthermore, unlike the global normalization
approach in existing descriptors (see Section 2), our normalization
is local, since we divide by the length of the longest local interval,
so we can achieve local support with scale invariance.

Fig. 9 illustrates another way to understand the PAD formulation.
Imagine we distribute cherries along a curve at locations separated
by equal amount of cumulative absolute curvature (∆τ ). Consider
Pacman walks along the curve from p and collects cherries on its
way. The length of the Pacman path to collect fixed numbers (2i)
of cherries corresponds to the arclength values in PAD vector.

The blown-up images in Fig. 7(a) shows example PADs at various
locations of the shape. In general, curly segments lead to shorter
arclengths, and smaller PAD values. It can also be easily seen that
the above PAD vector is rotation-, translation-, and scale-invariant,
and it is highly compact with only eight values for n=5.

Given m(p) and m(q) as PADs at points p and q, respectively, we
define the PAD distance between the local shapes at p and q as:

D(p, q) = max
i
{ |mi(p) − mi(q) | } , (1)

where mi(p) is the i-th element (normalized arclength) in m(p). A
small D(p, q) indicates similar local shapes surrounding p and q,
even these local shapes are of different scales.

Figure 10: Collage generation
with inward docking (red butter-
fly) or outward docking (black
butterfly) onto the gray canvas.

Figure 11: This work uses ar-
bitrary shapes of varying sizes.

Figure 12: (a) Signed distance field of S. (b) Docking S′ onto
S. (c) Manual docking S′ in a single scale. (d) S′ in multiple
scales. (e) Our PAD considers scaling, translation, and rotation
simultaneously, see some of the best K% matching candidates.

So far, the description above refers to the scenario of inward dock-
ing, see Fig. 10, where we dock the red butterfly onto the interior
of the gray canvas. In fact, we can also perform outward docking,
e.g., see the black butterfly in Fig. 10. To do so, we just need to
reverse the order of elements in m(p) (or m(q)), equivalently flip-
ping the left and right sides around p (or q), and flipping the sign
for convexity and concavity (s in PAD) before applying Eq. 1.

3.3 Partial-Shape Matching using PAD

Manual partial-shape matching can be performed by iteratively
docking the two given shapes at different positions (Fig. 12(c)) with
the goal of maximizing the arclength shared between the shapes.
However, this soon becomes intractable when we further consider
multiple scales in the docking (Fig. 12(d)), as the search space ex-
pands with an extra continuous dimension.

PAD supports efficient partial-shape matching with scale invari-
ance. To do so, we start with an arbitrary point pi on contour of
shape S and find the best matching point p′j on shape S′ with the
smallest D(pi, p

′
j). A small D indicates a good match between the

local shape around pi and the local shape around p′j , and such a
match is the best not just over all positions around S′, but also over
all scales of S′. In particular, PAD can drastically reduce the search
space to find good matching locations, using only NM matching
tests for N and M sample points on S and S′, respectively.

Although PAD can highly efficiently find good matching locations
in terms of local shapes, not all these locations are good if we con-
sider longer arclength distances from the matched local regions, see
Fig. 12(e). This is because PAD is a local descriptor, so it considers
only local shapes for matching. Hence, we need further evaluation
on locations reported from PAD. In detail, we retain as candidates
the best K% matching pairs (among the NM pairs) with PAD dis-
tance D < threshold β. In all our experiments, K=1 and β=0.4.

In the further evaluation, we explicitly transform and dock the two
shapes at each candidate matching position and measure the ar-
clength along the matched local portion. To do so, we first trans-



(a) (b) (c)

Figure 13: “Australian Animals.” Our collage results generated using the same set of input clip arts but different scale preferences.

Figure 14: Partial-matching similarity varies from a perfect match
to a less matchable, and then a poorly-matching case (left to right).

form S′ to the space of S by aligning the end-points of the first-
level (finest) arclength intervals in the matched PADs. In detail, this
alignment is done by i) identifying the left and right first-level end-
points (see Fig. 7(a)&(c)) around the associated matched location
on each shape (S and S′), and ii) rotating and scaling S′, such that
its two endpoints coincide with the corresponding endpoints of S.
Second, we construct a signed distance field for shape S with zeros
on the shape boundary (Fig. 12(a)). Depending on whether we dock
S′ onto S from outside or inside, the signed distance field can be
synthesized with negative or positive interior values, respectively.
Next, we rasterize the transformed S′ on S’s distance field, and
measure the arclength of the matched portion along S′’s boundary.
The minimal distance from a boundary point on S′ to the boundary
of S can be easily looked up by the distance field (Fig. 12(b)). A
boundary point on S′ is classified as matched if the lookup distance
is below a user defined threshold δ. We set δ as 4 pixels in our
experiments. The total arclength of the matched portion is simply
the count of matched boundary points. We repeat this dock-and-
evaluate process for each candidate position, and determine the one
with the longest matched arclength as the best docking position.

Thanks to the scale invariance of PAD, we need to perform docking
and evaluation only once per distinct docking position (Fig. 12(e)).
Hence, the evaluation remains tractable as we can efficiently find
the top K% candidates. This is evidenced by the timing statistics
shown in Section 5. Without PAD, such docking process has to
be performed at all positions (Fig. 12(c)) in all scales (Fig. 12(d)),
which is impractical even with modern GPU-equipped machines.

To demonstrate the description power of PAD and the further eval-
uation, we show the matching scores of docking the red duck shape
onto four other shapes (Fig. 14). In each case, we plot the best
matching position. From the scores (measured as the arclength
along the shared boundary between a shape pair), one can see that
our method can reasonably describe the change of partial-matching
similarity as the matching situation changes from a perfect match
to a less matchable, and further to a poorly-matching case.

Figure 15: Our bottom-up collage generation framework.

4 Collage Generation

Given a library of wide variety of shapes in arbitrary scale, we want
to fill a given canvas with the shapes while minimizing the gap and
overlap area among the shapes. Fig. 15 shows our collage gen-
eration framework, which is an iterative process. In each round,
we start from a target shape, which is either a seed shape given
by the user or a merged shape that represents the current collage
(Fig. 15(c)). Then, we obtain the best K% candidates (Fig. 15(a))
for matching with the target shape by partial-shape matching. Note
that these candidates may include the same shape docked on the
target shape with different locations and scales. After that, we eval-
uate an objective function (see below) for each of them (Fig. 15(b)),
and merge the best choice with the target shape (Fig. 15(c)) to form
the new target shape for the next round.

In the matching process, we emphasize that maximizing the ar-
clength shared between shapes (see red segments in Fig. 15(a)&(b))
is not the only criterion for aesthetic purpose. The amount of over-
lap between shapes, the size of gaps between shapes, the shape ori-
entation, the selected shape scale, and the overall color composition
of the collage all contribute to the quality of the results. Therefore,
the second step in the framework is to score the matching candi-
dates based on an application-driven objective function, e.g.,

Z =
ω1L√

ω2

∑
O2
i + ω3

∑
G2
i

,

whereL is the shared arclength between the shapes,Oi is the size of
the ith overlapping region (since there can be multiple overlapping
regions), Gi is the size of the ith gap region, and ωi’s are weights.
The sum of squares formulation for Oi and Gi helps to penalize



Figure 16: “Flock of Birds.” A seamless collage that features infinite horizontal scrolling; orientation constraint is used in objective function.

Figure 17: “Doodle.”

(a) (b) (c)

Figure 18: Puzzle solving. (a) The puzzle pieces.
(b) Ground-truth. (c) Our result.

Figure 19: “A circle puzzle.” A
result with closely-packed pieces.
c© John S. Stokes III.

Figure 20: Multiple-boundary support. (a) To fill the gray region.
(b) A new shape (inside the box) may divide the canvas into two
parts. (c) Resulting boundary curves (blue). (d) Both parts filled
with shapes. (e)-(h) show a similar scenario when filling a region.

large and continuous overlapping and gap regions. Since differ-
ent applications have different objectives, the above Z function is
an exemplary objective function, which can be further extended or
modified to meet different design goals.

In practice, we can also add constraints to avoid certain matching
candidates. For instance, we may avoid packing a large shape with
a tiny one if the candidate’s size exceeds a preferred scale range.
Fig. 13 shows three versions of “Australian Animals,” each gen-
erated using a different size range. Another common constraint
is orientation. Some objects may not be easily recognizable when
they are upside-down, so we may avoid a candidate if its orientation
deviates too much, e.g., we generate Fig. 16 with this constraint.

The last step in each iteration is shape merging, where we combine
the best candidate shape with the current target to form the new

target shape (Fig. 15(c)). Due to the nice local-support property of
PAD, we do not need to recalculate the entire PAD for the merged
shape. We can simply “cut and paste” corresponding runs of PADs
from the target and candidate shapes (see the blue and red runs in
Fig. 15(c)) for the new target. The only computation needed is to
recompute the PADs around the joints between the two runs.

Collage in a Canvas Shape Besides generating collages without
boundary, we may prepare a canvas shape to bound a collage, e.g.,
the gray butterfly shape shown in Fig. 10. To do so, we take the
canvas boundary as the seed shape and perform inward rather than
outward docking. Moreover, since the collage generation process
may break the canvas region into disjoint partitions, e.g., see the
gray regions in Fig. 20(c), we use multiple boundary curves to rep-
resent the interior regions for filling shapes. Note also that similar
scenario may happen when we grow a region (Fig. 20(g)).

Discussion Since PAD is a curvature-based descriptor, one may
wonder if our collage generation method could be too strict. How-
ever, it is worth to note that our matching process is not solely deter-
mined by a single curvature profile, since PAD encodes arclengths
in multiple scales based on accumulative curvature. Hence, it is not
sensitive to small shape changes, see the examples in Fig. 14.

5 Results and Discussion

We create multiple collage results by using clip arts collected from
the Internet, e.g., Fig. 1, 13, 16, 17 and 21. Altogether, we have
collected more than 1,200 distinct clip arts. Fig. 13 presents three
collage versions created with 130 Australian animal photos using a
simplified Australia outline as the canvas boundary. We synthesize
these results solely by adjusting the scale-range constraint in the



(a) (b)

Figure 21: “Butterflies in Butterfly.” (a) An initial collage result. (b) After deformation.

objective function, and use the same set of clip arts to produce all
these results without any modification on the input clip arts.

Different collage results can be obtained by using a different seed
shape or different weights in the objective function. We may also
create a seamless seed shape that is cyclic. Fig. 16 shows one such
example with matched clip arts on left and right borders. In ad-
dition, to improve the visual quality and to present individual clip
art more clearly, we may introduce a padding around each clip art
shape in the generated collages. Readers can refer to the supple-
mentary material for more collage results, as well as some of the
clip-art sets employed to generate the results.

Creative Design Fig. 1 and 17 demonstrate the potential of our
method for design purpose. Existing artworks similar to Fig. 1 are
generally created by manually packing the clip arts piece by piece
in a labor intensive manner. By using our method, we can efficiently
fill a target region with a lot of clip arts fully automatically, e.g., we
fill a region in the shape of letters PAD (see Fig. 1) by using a library
of around 100 distinct icons. Recall that our method allows a shape
to possess multiple separate boundaries. If the users want to control
the placement of certain pieces, they can simply place the pieces
onto the target region; our method can take their boundary as part of
the seed shape. Fig. 17 shows one such example, where individual
characters in SIGGRAPH and the canvas together form a nontrivial
seed shape for the collage. Users can also control the scale range
and shape orientation by modifying the objective function.

Puzzle Solving As a side product, our method can also be used
to solve puzzles, although we have to emphasize that puzzle solving
is not our major strength. It is because our iterative method may not
find the ground truth (if exists), since it may be trapped by a local
optimum. Fig. 18 and 19 show two puzzle solving examples. Since
the puzzle pieces in Fig. 19 are unique in shape, our method can
obtain the ground truth. This result also shows that our method can
identify strongly-coupled shapes if the input library has any. For
the case of Fig. 18, due to the non-uniqueness of the shapes, our
method (Fig. 18(c)) cannot generate the target result (Fig. 18(b)),
but it can fill all the numbers with their corresponding floor mats
since the interior boundaries of the mats are unique.

Object-based Texture Synthesis Another interesting applica-
tion of our method is object-based texture synthesis, e.g., mosaic
texture. Given an image of an object composed of discrete elements
(e.g., stone wall and mosaics), we can extract some of the discrete
elements from the image by segmentation, and then gather them as

(a) (b)
Figure 22: Image mosaic. (a) Seed shapes (each in a different
grayscale). (b) Our synthesized mosaic.

(a) (b) (c)

(d) (e) (f)

Figure 23: Deformation. (a) Initial collage result. (b) Color-code
the shapes. (c) Blown-up view on the gap. (d) Deformed shapes.
(e) Corresponding color coding. (f) Voronoi-based deformation.

a library of clip arts. Fig. 22 shows an example. We extract the mo-
saic tiles from some real mosaic photographs. These tiles together
form an input clip-art library, with which we fill each grayscale re-
gion in Fig. 22(a) by matching both color and shape. Readers are
recommended to zoom into Fig. 22(b) for a better visualization.

Deformation Since we generate collages with arbitrary clip arts,
we may not always avoid gaps and overlaps. Concerning this, we
include an optional deformation step to enhance the collage gen-
eration results. To do so, we create a Voronoi diagram in the gap
and overlap regions, and project the original shape boundary onto



Figure 24: User-controlled local refinement.

(a) [Rother et al. 2006] (b) [Kim and Pellacini 2002]

(c) [Reinert et al. 2013] (d) Our method

Figure 25: Collage results generated by four different methods (in-
cluding ours (d)) using the same set of input shapes.

the boundary of the associated Voronoi cell. By this projection, we
can deform the shapes by standard image morphing. Fig. 23(a)-(c)
show the gap in-between two butterfly shapes, whereas Fig. 23(d)-
(e) show how the gap is filled. In addition, Fig. 23(f) shows the
Voronoi cells in darkened colors. This optional deformation step
works well mainly for organic shapes, e.g., butterfly, see how it de-
forms the collage result in Fig. 21(a) and produces Fig. 21(b).

User-controlled Local Refinement When designing collages,
artists usually need to refine a result iteratively to improve its aes-
thetics. We offer an optional tool for local refinement of collages,
see Fig. 24. User may first scribble to mark a group of pieces for
removal (Fig. 24(a)), and our tool can automatically remove the as-
sociated shapes (Fig. 24(b)) and refill the empty region (Fig. 24(c)).
Usually, the refilled result is not the same as before, since the tiling
order is likely to be different from the original one, and we also in-
troduce randomness into the refilling process to create more variety.

Comparison with Existing Collage Methods We compare
our method with three existing top-down methods: AutoCol-
lage [Rother et al. 2006], jigsaw image mosaic (JIM) [Kim and
Pellacini 2002], and packing layout [Reinert et al. 2013]. Since
these methods fundamentally have a different design goals, degrees
of freedom and characteristics, it may not be ideal to compare them
with our work; however, it is worth to note that these methods are
already the most closely-related works in terms of collage genera-
tion. Fig. 25 shows collages generated from them as well as from
ours, using the same set of input shapes with similar setting. In ad-
dition, we limit each shape to appear exactly once, reduce the orien-
tation changes, and do not allow irregular deformation and manual
intervention when generating these collages. Readers are recom-
mended to zoom into Fig. 25 for a better visualization. Note that

Method Preference Stylish Coupling
[Rother et al. 2006] 2.17 3.25 3.58

[Kim and Pellacini 2002] 3.83 3.58 3.00
[Reinert et al. 2013] 3.00 2.42 2.64

Our method 5.17 5.17 4.67

Table 1: User study results. Average scores in range [1, 6]: a
higher score indicates better rating given by the participants.

to ensure the same set of shapes to be shown in results of all four
methods for comparison, we first use our method to generate a col-
lage and identify the shapes inside (Fig. 25(d)). Then we feed these
shapes as inputs to other methods to generate the other collages.

To quantify the visual quality of the results, we conduct a user study
with 13 participants. In the study, we show the results to each par-
ticipant in a random order to avoid bias. For each result, the partici-
pant has to grade it with a score from 1 (the worst) to 6 (the best) in
terms of their overall preference, shape coupling, and stylishness.
Table 1 shows the statistics. Among the methods, most participants
agree that our result exhibits the strongest coupling, and is the most
stylish one. In addition, our result is also the most preferred.

AutoCollage (Fig. 25(a)) can avoid overlap regions of interest, but
it fails to suppress gaps and cannot effectively couple the shapes.
Both JIM (Fig. 25(b)) and packing layout (Fig. 25(c)) implicitly as-
sume the shapes are more-or-less convex, so they may fail to couple
the shapes as well. For instance, JIM divides the canvas into cells
and selects a shape to fit into each cell; since we limit each shape to
appear once for comparison, this further limits the choice of shapes
in the collage generation process. Hence, some highly concave
shapes could have to be put into some convex cells, thereby leading
to poorer collage results. Similarly, packing layout (Fig. 25(c)) also
has a large degree of shape overlap in result. One possible explana-
tion is due to the unsuccessful initial Voronoi-based distribution of
shapes, and the subsequent trapping by the local optimum during
the adjustment. Since there is no user intervention, serious overlap
is observed as it fails to escape from the local optimum. In sharp
contrast, we can employ our objective function to penalize overlap
and gap, large deviation in orientation, as well as large deviation in
scale. Together with the maximization of shape coupling via PAD,
we can obtain the best result among the methods (Fig. 25(d)) in
terms of various metric on visual quality.

Comparison with Existing Descriptors To demonstrate the ef-
fectiveness of PAD in collage generation, we compare it with sev-
eral state-of-the-art shape descriptors. In the first experiment, we
evaluate the descriptor’s ability in performing partial-shape match-
ing, while in the second experiment, we compare the time perfor-
mance of applying different descriptors in generating collages.

In the first experiment, we employ a large set of 1,400 shapes. For
each shape, we produce ten blocking instances by linearly clipping
the shape from left to right (Fig. 26 (left)). Then, we try to match the
clipped instances with the original complete shape. Through this
experiment, we can observe at what level of blocking, the descrip-
tor fails to recognize the shape. Four state-of-the-art descriptors are
compared: shape context [Belongie et al. 2002], triangle area rep-
resentation [Alajlan et al. 2007], curvature scale space [Mokhtarian
et al. 1996], and integral invariants [Manay et al. 2004]. Fig. 27
plots the success rate against the blocking ratio, showing that PAD
performs the best. Even up to 80% blocking, we still achieve a
success rate of 50%. In contrast, the success rates of all other de-
scriptors drop sharply when the blocking reaches ≈20%. Their in-
ferior performance is mainly due to their inability of partial-shape
matching.



Cases No. of
candidates

No. of
PADs

per shape

No. of
iterations

No. of
docking
choices

% Pruned Total time
Pruning of

docking
choices

Distance
field

evaluation

Objective
function

evaluation
Merging

Fig. 1 120 4,960 194 7.5 ×910 99.96 186.3 min 16% 3% 80% 1%
Fig. 13(a) 128 6,804 334 2.1 ×1010 99.95 22.8 min 49% 12% 36% 3%
Fig. 13(b) 128 6,804 69 2.6 ×1010 99.94 51.9 min 57% 15% 26% 3%
Fig. 13(c) 128 6,804 143 2.0 ×1010 99.93 122.9 min 64% 12% 22% 2%
Fig. 21 83 4,201 102 1.1 ×1010 99.83 405.3 min 17% 7% 27% 49%
Fig. 16 86 3,631 90 3.0 ×109 99.90 7.0 min 42% 11% 28% 19%
Fig. 17 112 4,136 92 6.0 ×109 99.04 25.7 min 15% 51% 25% 9%
Fig. 18 18 12,340 18 4.0 ×1015 99.09 3.2 min 10% 47% 1% 42%
Fig. 19 9 50,247 9 1.1 ×109 99.95 0.2 min 23% 7% 69% 1%
Fig. 22 734 1,225 1,421 3.8 ×1010 99.99 718.3 min 11% 1% 59% 29%

Table 2: Timing statistics of our collage results.

Figure 26: Example
blocking instances.

Figure 27: Plot of success rate against
blocking ratio (see Fig. 26).

(a) (b) (c)

Figure 28: Collage generation with (a) our PAD, (b) extended
shape context, and (c) extended Hu moments.

One may argue that we may extend an existing descriptor to support
partial-shape matching, e.g., by naı̈vely dividing the shape into mul-
tiple (theoretically infinite) curve segments and performing shape
matching with these instances, see Section 2. In the second exper-
iment, we evaluate this naı̈ve extension by comparing PAD with
two descriptors, shape context [Belongie et al. 2002] and Hu mo-
ments [Gal et al. 2007] (used in scale-dependent 3D collage). Note
that, due to the nature of descriptors, not all descriptors used in the
first experiment can be extended for use in the second experiment.
In this experiment, we replace PAD matching with shape context
and Hu moments (both extended naı̈vely for partial-shape match-
ing), but retain the collage generation framework. For fairness, all
descriptors (including ours) utilize only CPU in the computation,
and we employ the same set of 35 distinct shapes, where the mon-
key shape is the seed and each shape appears only once. All three
methods are allowed to run for 12 hours. Our method completes
the task (Fig. 28(a)) after 750 seconds, while the other two can only
complete one and three iterations (Fig. 28(b)&(c)) after 12 hours.
Although their results look comparable to ours (thanks to the same
collage generation framework), they can only pack a few shapes
within the time limit. This evidences the efficiency of PAD.

Implementation and Performance To prepare an input clip art
for collage generation, we fit its boundary with B-splines and com-
pute local curvature along the B-splines. We then sample PADs
densely and evenly along the boundary. This is an offline data
preparation step performed only once per input clip-art shape.

Even though we have a dense sampling of PADs, our method can
effectively prune away most candidate docking positions by mea-
suring their PAD distances. No further evaluation with the distance
field is needed for these candidates. Moreover, both the docking and
distance field evaluation procedures are perfectly parallelizable, so
we perform them on the GPU by using CUDA. This enables us to
efficiently compute the partial-shape matching. For instance, our
method consumes only 64 milliseconds on average to evaluate two
shapes with 25,000,000 docking positions. This amount of docking
candidate positions already excludes the scale dimension as PAD
is scale-invariant. In addition, the signed distance field design can
benefit from the hardwired texture look-up functionality available
on the GPU, including value access and interpolation.

Table 2 details the timing statistics in generating the collage results
shown in the paper. It tabulates the number of candidates in an as-
sociated clip-art library, the average number of local PADs per clip
art, the number of iterations (i.e., the number of pieces in the collage
result), the number of candidate docking choices, the percentage of
docking choices pruned before further evaluation, and the total run-
ning time. The total running time is further divided into four parts:
pruning, distance field evaluation, scoring, and merging. All the
experiments are performed on a machine with dual Intel Xeon E5-
2670 CPUs with 8 NVIDIA Tesla K20m GPUs. Obviously, the
time for distance field evaluation is highly affected by K. Thanks
to the description power of PAD, we can prune away more than
99% of docking choices before the more time-consuming distance
field evaluation. Hence, we can work with the originally intractable
collage problem in a tractable manner.

Throughout all our experiments, the number of PAD levels (n) is
5 and the integral value of absolute curvature ∆τ is 0.2. Note
that these parameters are scale-invariant since they roughly asso-
ciate with how human interprets curves. For the sampling rate of
PADs along boundary, we sample roughly one PAD for every 0.2
pixel units along the clip-art boundary.

Limitations One limitation of PAD is that it relies on curvature.
This means that individual straight lines in open curves cannot be
handled by our method since straight line has zero curvature value.
However, matching straight lines can simply be done by match-
ing endpoints of the lines without requiring PAD-based matching.
The second limitation concerns with the iterative process under-
taken by the collage generation framework. Since it is greedy
by nature, we may not be able to obtain the global optimum re-



sult. Moreover, when we iteratively pack shapes into a collage
(see inset figure for an example), we may eventually form hole(s)
in the collage. It is more
likely to happen in later
steps of the packing. De-
pending on the richness of
shape variety in the clip-
art library, we may or may
not be able to find a good
shape that well-matches all
neighboring shapes. For
instance, the best-matched
shape “4” in the example can only well-match the red boundary
while leaving a gap in-between shapes “1” and “4.” Therefore, we
cannot guarantee perfect shape coupling over the entire collage.

On the other hand, some shapes may intersect others in the results,
particularly if we want to more closely pack the shapes with small
gaps. It is because unless we have a very rich set of input shapes,
when the packing process tries to fit a hole (see inset figure above),
it may have to sacrifice the overlap criterion for the gap criterion
(see Oi and Gi in the objective function in Section 4). However,
such overlap is usually small and not obvious, and the user may
apply local refinement and deformation to try to avoid it.

Another limitation is that our current PAD design may not be noise-
proof. Noise may sometimes be regarded as features in the scale-
invariant domain. Lastly, our current implementation does not con-
sider color harmony and style consistency among the input clip arts.
Unless incorporated into the objective function, color information
is not considered in the collage generation. Hence, the color com-
position in a collage result may not be harmonious. To resolve this
issue, we suggest to perform the color harmonization [Cohen-Or
et al. 2006]. Similarly, style inconsistency may also worsen the
quality of the collage results. We recommend to adopt the style-
similarity measurement proposed by Garces et al. [2014] to avoid
putting together clip arts of inconsistent style. However, this may
significantly increase the computational overhead.

6 Conclusion

This paper presents an efficient bottom-up solution to generate col-
lages with arbitrary and irregular shapes (not only more-or-less con-
vex) in a scale-invariant fashion. To achieve this, we need a fast
partial-shape matching process to quickly identify docking shapes
with the best matching position, scale, and orientation. However,
existing approaches involve exhaustive tests over an exceedingly
large number of docking combinations in all scales, so they are in-
feasible to support the collage generation. Our key to overcome
this issue is a novel shape descriptor, pyramid of arclength descrip-
tor (PAD), which quantifies local shapes with scale invariance. By
PAD, we can efficiently perform partial-shape matching while con-
sidering scales simultaneously. Therefore, we can drastically re-
duce the search space, making bottom-up collage generation feasi-
ble. Moreover, PAD’s local-support property allows us not just to
uniformly describe both closed shape and open curve, but also to
perform partial-shape matching even in the presence of partial oc-
clusion. Furthermore, we demonstrated the effectiveness of PAD
through various collage examples and generated results with over
1,200 clip arts. Lastly, PAD may also contribute to many other
shape-recognition applications such as road-sign recognition.
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