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Abstract—We propose a novel reaction diffusion (RD) simulator to evolve image-resembling mazes. The evolved mazes faithfully preserve the
salient interior structures in the source images. Since it is difficult to control the generation of desired patterns with traditional reaction diffusion,
we develop our RD-simulator on a different computational platform, cellular neural networks. Based on the proposed simulator, we can generate
the mazes that exhibit both regular and organic appearance, with uniform and/or spatially varying passage spacing. Our simulator also provides
high controllability of maze appearance. Users can directly and intuitively “paint” to modify the appearance of mazes in a spatially varying manner
via a set of brushes. In addition, the evolutionary nature of our method naturally generates maze without any obvious seam even though the input
image is a composite of multiple sources. The final maze is obtained by determining a solution path that follows the user-specified guiding path.
We validate our method by evolving several interesting mazes from different source images.

Index Terms—maze, multi-scale RD-simulator, cellular neural networks, intuitive user controls
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1 INTRODUCTION

CReating mazes has a long history in human civi-
lizations worldwide. It has been widely applied to

different domains including, architectural decorations,
design of botanical gardens [1], artistic expressions [2],
or even puzzles in daily for entertainment [3][4]. As an
impressive form of art, some mazes are intentionally
designed to resemble images [5][6]. For example, the
maze created by the artist (Figure 1(a)) depicts both
the object silhouettes and salient interior structures in
the source image (Figure 1(b)). Currently, most quality
image-resembling mazes are manually designed due to
the organic structures and complexities in the source
image.

There have been several attempts to automate the cre-
ation of image-resembling mazes. By iteratively bending
and extending the initial curves, Pedersen and Singh [7]
simulated the organic labyrinth. To model more general
mazes, Xu and Kaplan [8] assigned appropriate maze
templates to the manually segmented regions. These
methods can assist designers to create compelling mazes.
However, they may not preserve the salient interior
structures in the source image (especially when the struc-
ture is complex, such as the patterns in the bull wings
in Figure 1(b)), and hence may harm the resemblance.

On the other hand, the classical mathematical model
of reaction diffusion can create maze-like stripe pat-
terns [9][10][11], on which we could rely to construct
solvable mazes. Reaction diffusion, however, does not
resemble source images and its multiple parameters are
difficult to control. Motivated by the potential of reac-
tion diffusion for maze generation, we propose a novel
method to evolve image-resembling stripe patterns that

*Corresponding author: Tien-Tsin Wong

(a) manually designed maze (b) source image

Fig. 1. Example of an image-resembling maze: (a) the manu-
ally designed maze (image courtesy of Christopher Berg); and
(b) the reference image.

preserve salient interior structures as well as the silhouettes
in the source images (Figure 15(c) demonstrates our
evolved maze from Figure 1(b)). The core of our algo-
rithm is a novel RD-simulator 1 under the framework
of cellular neural networks (CNN) [12]. It is capable
of producing stripe patterns that range from organic
to regular as well as those with uniform or spatially
varying passage spacings.

With our RD-simulator, the generation of stripe pat-
terns can be fully automatic or with optional interac-
tive user control. Our method does not require tedious
tuning of chemical parameters. Users can directly and
intuitively “paint” (adjust) the passage spacing, the wall

1. Our specific RD-simulator in cellular neural networks is not a real
reaction diffusion process, as its underlying dynamics is different from
a real reaction diffusion. This is why we call it a “simulator.”
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and the passage, and the organic (random) appearance
in a spatially varying manner via a set of brushes. The
system then evolves the maze-like pattern to obtain the
desired appearance. Finally, the system creates a solution
path based on the user-specified guiding curve, making
the stripe pattern actually a maze. As sophisticated
methods for solution path construction have been devel-
oped [8], we are more concerned about the generation
and intuitive control of image-resembling stripe patterns
in this paper.

2 RELATED WORK

Pedersen and Singh [7] proposed a geometric attraction-
repulsion model that evolves a simple shape into an or-
ganic labyrinth, mimicking the work of artist Morales [2].
Traveling salesman art [13] is visually similar to this
maze style. Xu and Kaplan [14] created one type of
abstract mazes by arranging vortices. To model more
general mazes, they developed a set of procedural algo-
rithms [8], each producing a different maze template. By
feeding the appropriate templates to the pre-segmented
image regions, the source image can be resembled. How-
ever, to preserve the salient structures in the source
image, their method requires the image to be carefully
segmented by the designer. Such segmentation can be
very tedious for images with complex interior structures
like Figure 1(b). In contrast, our method can automati-
cally preserve the salient structures during the evolution
process.

Reaction diffusion has been developed to explain the
formation of biological patterns [9][15][16], such as zebra
stripes and seashell patterns. In this model, two or more
chemicals diffuse and react with each other until an equi-
librium is reached. Reaction diffusion can produce differ-
ent patterns, which is verified by Witkin and Kass [11].
In particular, we are interested in labyrinthine patterns
that can be created with Meinhardt model [10], Gray-
Scott model [17] and Fits Hugh Nagumo system [18].
These models require careful parameter tuning which
is difficult for ordinary users. The work of [19] pro-
vides more convenient interfaces for pattern control,
but it may involve intensive user interventions. What
is more, they all do not resemble any source image.
In this paper, we propose a CNN-based RD-simulator.
In addition to avoiding the tedious parameter-tuning,
our RD-simulator offers sufficient control to resemble
the source image, as well as to manipulate the maze
properties in a spatially varying manner.

3 RD-SIMULATOR

A maze is a set of connected passages delimited by walls.
In this sense, the stripe pattern generated by reaction
diffusion is very similar to a maze, except that the
passages may not be connected and solvable. Motivated
by this observation, we first feed the source image to our
RD-simulator to evolve an image-resembling stripe pat-
tern. With the user-specified guiding curve, our system

then constructs a solution path in the stripe pattern and
yields a solvable maze. Figure 2 demonstrates the basic
process of maze evolution. In our work, we are more
focused on generating image-resembling stripe patterns
and providing intuitive user control of maze appearance.
As shown later, the two objectives can be effectively
achieved by using our RD-simulator. Since the simulator
is developed under the CNN framework [20], we first
briefly introduce the basic idea of the CNN below.

3.1 Cellular Neural Networks

Originated in the field of integrated circuits, CNN is
an attractive parallel computing paradigm similar to
neural networks, with the difference that interaction is
allowed only within a finite local neighborhood. Since
its invention in 1988, CNN has evolved into various
structures to cover a broad class of problems, including
image processing, solving partial differential equations,
modeling biological vision, etc. Among the common
CNN structures, we adopt the autonomous CNN which
is capable of generating various patterns [12].

A typical autonomous CNN is a 2-dimensional regular
grid of identical computational cells that are locally con-
nected with the neighboring cells (each cell represents
an image pixel in our application). Suppose the state of
one cell is X , and its response is Y . The CNN dynamics
is a nonlinear equation of X and Y of each cell within
the neighborhood η, as given by

dX
(t)
i,j

dt
= −X

(t)
i,j +

∑
k,l∈η(i,j)

ak−i,l−jY
(t)
k,l + Ii,j , (1)

where (i, j) defines a grid point associated with a cell
on the grid; I is the input bias; t is the time parameter;
A = {ak,l} is the cloning template which specifies the
interacting dynamics, and it is usually spatially invariant
for all cells. The output Y is determined from the state
X via a non-linear transfer equation, which is usually
set as:

Y
(t)
i,j =

1
2

[
|X(t)

i,j + 1| − |X(t)
i,j − 1|

]
, (2)

where | · | returns absolute value. Let X (0) be the initial
state of X . The inputs X(0), I and the output Y for
each cell are represented by values in the range [−1, 1]
(e.g., +1 is white, -1 is black, and gray-scale values are
in between).

It has been found that with appropriate cloning tem-
plates, the autonomous CNN can eventually reach a
stable equilibrium state and the output Y forms some
kinds of patterns. However, most existing works usually
assume that X(0) should be a small noise and I = 0,
and hence create a random pattern only. It is also noticed
that an arbitrary cloning template may lead to chaos in-
stead of a stable pattern. In fact, most pattern-generating
cloning templates are discovered by the theoretical study
of the dynamic evolution of the autonomous CNN.
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(a) source image (b) T=200 (c) T=350 (d) T=1250

(e) chambers (f) part of the graph (g) maze (h) finalized maze

Fig. 2. Maze evolution. Top row: (a) is the source image. The rest are the intermediate results during our reaction-diffusion
simulation after T iterations: (b) T =200, (c) T =350, and (d) T =1250. The bottom row shows how the maze in (g) is constructed
from the stripe pattern in (d), given the red guiding curve. (e) is the color-coded chamber image. (f) is part of the associated
graph of (e) showing the solution path from the starting (‘S’) to the end (‘E’) points. The solution path is automatically selected
by our system and is colored in blue in both (f) and (g). (h) is the final vectorized maze image. Note that the salient interior
structures, such as the spots and the dark separation line on the ladybug, are faithfully retained in the maze image.

3.2 Basic RD-Simulator

To generate a stripe pattern that resembles a source
image, we employ the following cloning template [12],

A =

⎡
⎢⎢⎣

−0.25 −1.0 −1.5 −1.0 −0.25
−1.0 2.5 7.0 2.5 −1.0
−1.5 7.0 −23.5 7.0 −1.5
−1.0 2.5 7.0 2.5 −1.0
−0.25 −1.0 −1.5 −1.0 −0.25

⎤
⎥⎥⎦ , (3)

which defines a neighborhood η of size 5×5. Like a tra-
ditional reaction-diffusion model, this cloning template
provides both local activation (as the nearest neighbor
interactions are positive) and long range inhibition (as
the following neighbor interactions are negative). Hence,
during the evolution, the state X can finally form a
reaction-diffusion like pattern. Note that the original
approach [12] only produces a random stripe pattern.
In order to resemble a source image P , we carefully
utilize the autonomous CNN in such a way that P is
persistently fed into the system by the setting,

X(0) = c1Pm, I = c2Pm, (4)

where Pm = gray(P ) is the grayscale version of image
P with pixel values linearly remapped to gray levels in
[r1, r2].

The first setting X(0) = c1Pm helps us to maintain
the salient structures in the source image. The second
setting I = c2Pm is to reinforce the reaction and diffusion
around salient edges. The linear remapping is specified

because when feeding the system with P , the image
regions with pixel values around 0.5 can evolve to be
stripe patterns while the regions with pixel values close
to 0 or 1 evolve to be dot patterns (as demonstrated
in Figure 3(b)). In particular, we set the parameters
r1 = 0.396 and r2 = 0.588 to enforce the generation of
stripe patterns in the whole image. We also choose the
coefficients c1 = 2 and c2 = 1 empirically, with which
the resulting stripe pattern represents the source image
visually well. To apply the CNN, Pm has to undergo the
mapping f(x) = 2x−1 before the evolution. Accordingly,
the output Y within the range [−1, 1] requires the inverse
mapping f−1(x) = (x + 1)/2.

The set of Equations (1)-(4) defines our basic RD-
simulator. To help understand how it works, Fig-

r1 r2

(a) (b) (c)

Fig. 3. The remapping setting. (a) The input image P is a gray
ramp contaminated by uniform noise. (b) Without remapping,
the gray values below r1 result in white dot patterns while those
above r2 lead to black dot patterns. (c) With remapping, an
entire stripe pattern results.
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ures 2(b)-(d) visualize the evolution process given the
source image in Figure 2(a). It is obvious that the salient
structures like spots on the ladybug enforce stronger
impact on the generation of stripe patterns. As a result,
the salient structures are automatically and faithfully
retained when an equilibrium is reached in Figure 2(d).

Unlike previous approaches using separate procedures
to generate regular and organic mazes, our basic RD-
simulator can create both of them within the same pro-
cess. When the source image contains mainly the smooth
regions without much noise, the evolved stripe pattern
is rather regular and its appearance is determined by the
salient interior edges and region silhouettes (as demon-
strated in Figure 4(b)). It is similar to those using level-
set method [21] or concentric contour approach [8]. On
the other hand, when the source image contains rough
interior regions, the rough contents will compete with
the salient edges or silhouettes during the evolution,
and will finally lead to an organic stripe pattern. For
example, Figure 4(c) shows the results by simply intro-
ducing random noise to the source images (perturbing
the grayscale level in the interior regions).

(a)

(b)

(c)

Fig. 4. Regular and organic stripe patterns: (a) the source
images; (b) the corresponding resulting regular stripe patterns;
and (c) the evolved stripe patterns after adding noise to the
source images in (a).

3.3 Multi-scale RD-simulator

The basic RD-simulator, however, generates stripe pat-
terns with a fixed passage spacing, which is independent
of image size. This is because the 5× 5 neighborhood is
used for each pixel. Here we define the passage spacing
as the distance between the centers of black walls. It is
known that the maze designers usually convey the sense
of perspective effect by using larger passage spacings
in the near and smaller passage spacings in the distant.
They may also adjust the passage spacing to represent
different structure complexity, or to reproduce the spa-
tially varying image tone.

To change the passage spacing, one may suggest em-
ploying other stripe-generating cloning templates with
different sizes. However, it is quite difficult to theo-
retically deduce the cloning templates of larger sizes.
Moreover, this scheme requires the template size to

Fig. 5. The multi-scale RD-simulator generates spatially vary-
ing passage spacing by spatially adjusting the size of the
neighborhood for convolution. The convolution neighborhood
in orange has the minimal size of 5×5, while the blue one is
modulated by a larger S value.

be a discrete integer, making it incapable of obtaining
arbitrary passage spacing. A possible solution is to use
the 5 × 5 cloning template and scale the source image.
But such solution can hardly support spatially varying
spacing. To address this problem, we propose a multi-
scale RD-simulator. Its basic idea is to adjust the size
of the pixel neighborhood during the convolution while
using the current 5 × 5 cloning template, as illustrated
in Figure 5. This is equivalent to scaling the image and
hence can change the passage spacing. By controlling the
neighborhood size locally, it is also possible to seamlessly
generate different passage spacings at different regions.

The multi-scale RD-simulator is described by the fol-
lowing equation,

dX
(t)
i,j

dt
= −X

(t)
i,j +

∑
k,l∈η(i,j)

ak−i,l−jY
(t)

k̃,l̃
+ Ii,j . (5)

The grid point (k̃, l̃) in the neighborhood of (i, j) is given
by,

k̃ = i +
k − i

1 − Si,j
, (6)

l̃ = j +
l − j

1 − Si,j
, (7)

where the parameter Si,j ∈ [0, 1) is a scale value at pixel
(i, j). Intuitively, larger Si,j values lead to larger passage
spacings. When Si,j = 0, the multi-scale RD-simulator
reduces to the basic RD-simulator (Equation 1). When
Si,j > 0, Equations 6 and 7 define a convolution neigh-
borhood larger than the size 5×5, in which the neigh-
boring point values can be computed by interpolation.
Note that the multi-scale RD-simulator has different
evolution dynamics from the basic simulator. For nearby
image pixels, the set of points in their convolution
neighborhoods may not overlap when Si,j > 0. How-
ever, we can conceptually split the multi-scale simulator
into multiple basic simulators, each corresponding to a
part of the image. Their convolution neighborhoods are
regularly overlapped. By coupling these basic simulators
through the interpolation computation, the multi-scale
RD-simulator can finally converge to a stable equilib-
rium. Figure 6 demonstrates how the passage spacing
changes with respect to the scale.
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(a) input (b) S=0 (c) S=0.373 (d) S=0.75 (e) S=0.75

Fig. 6. Varying passage spacing. Top row: (a) is the source
image while (b)-(e) are the scale maps with constant values
S=0, 0.373, 0.75 and 0.75. Bottom row: the evolved stripe pat-
terns exhibit increasing passage spacings. (e) shows aliasing
artifacts due to sampling the neighborhood for convolution. (b)-
(d) are free from such artifacts by applying Gaussian filtering
to the state X in each iteration.

The multi-scale RD-simulator, however, may cause
aliasing artifacts due to the sampling of 5 × 5 neighbor-
hood during the convolution (as shown in Figure 6(e)).
Larger Si,j values may give more severe artifacts. This
is because large scale values bring weak coupling in
the evolution dynamics. To strengthen the coupling, we
apply a spatially varying Gaussian filter to the state X
of each cell in each iteration, with a larger Gaussian
kernel for a larger S value. This is controlled by setting
the Gaussian filter parameter σ = α − β · (1 − Si,j).
In all our experiments, we found that α = 0.6 and
β = 0.6 are sufficient to avoid aliasing. The results in
Figures 6(b)-(d) are obtained by applying this Gaussian
filtering approach in each iteration.

With the multi-scale RD-simulator, users can modu-
late the passage spacing in a spatially varying manner
by providing or drawing a scale map, similar to that
employed in [7]. In fact, we can estimate the passage
spacing Di,j analytically. It is determined by the scale
value Si,j where Di,j = D0

i,j/(1 − Si,j) − 1 (this relation
holds when the Gaussian filtering is applied). Here, we
observe that D0

i,j = 8 when a convolution neighborhood
of size 5×5 is used. Since the passage spacing tends to
infinity when Si,j is close to 1, we limit the value of Si,j

in the range of [0, 0.9], in practice. In addition, Si,j = 1 is
used as a flag to mask out the unwanted image region.

Figure 9(f) shows a result. In this example, the sea-
horse body has a larger structure than its head and tail,
so we adjust the passage spacing accordingly (see the
scale map in Figure 9(b)). As shown, the continuous
change in the scale value yields a smooth change in the
passage spacing, e.g., the transition between the body
and head/tail parts. Even with a sharp transition in scale
values, the abrupt change in the structure between the
fin and body is also maintained in the evolved stripe
pattern. We further demonstrate the adjustment of scale
values to create the perspective effect on the ground
in the “pyramid” example (Figure 14). Examples of
reproducing image tone with spatially varying passage
spacing can be found in the middle column of Figure 11.

4 CREATING MAZES FROM STRIPE PATTERNS

The evolved stripe pattern may not be a solvable maze
since it may contain many isolated passages. To convert
it to a maze, we construct a planar graph from the stripe
pattern and build a solution path on the graph.

4.1 Graph Construction

To construct the planar graph, we first binarize the stripe
pattern and skeletonize the black walls by tracing the
central lines [22]. Next we detect each white passage
(chamber) and represent it as a node in the graph. Adja-
cent chambers separated by a black wall are connected
with an edge in the graph. Figures 2(e) and (f) show the
color-coded chambers and part of the associated graph
respectively.

Some chambers, however, may have loops inside,
bringing circular paths in local regions. As shown in
Figure 7(a), when the chamber centerlines form closed
curves, there exist two possible paths between arbitrary
two points (in red color) on the chamber centerlines. To
remove the loops, we need to detect which chambers
contain loops and then break the loops by adding aux-
iliary walls.

(a) (b) (c) (d)

Fig. 7. Loop removal. (a) illustrates two common cases in
which the color-coded chambers contain loops inside. (b)
shows that the chamber centerlines (in dashed curves) form
closed regions. In (c), we select appropriate points and add
auxiliary walls. Note the loops are successfully removed. (d)
demonstrates a more complicated example.

For loop detection, instead of checking whether the
chamber centerlines form the closed curves, we detect
whether they enclose isolated regions (or loop regions),
as shown in green color in Figure 7(b). Here, we exclude
the chamber walls in the detection. Then, if the chamber
wall in the loop region (the inner wall) is a closed
curve (such as the upper example in Figure 7(c)), we
randomly select a point on the wall and connect it to
its nearest point on the chamber wall outside the loop
region (the outer wall). If the inner wall is an open curve
(such as the lower example in Figure 7(c)), we choose
one ending point on the wall and elongate it along the
curve direction until it reaches the outer wall. Figure 7(d)
shows a more complicated example where many loops
exist in one chamber (see the color-coded loop regions).
To ensure all the loops to be removed, we require that
the auxiliary walls must reach the outer walls. For this
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purpose, we iteratively detect the loops and convert the
inner walls with auxiliary walls added to the outer walls
in each iteration.

Note that the process to remove the loops takes place
in chambers. It does not introduce more chambers or
change the layout of the chambers. Hence the planar
graph remains the same.

4.2 Building Solution Path

Given the planar graph, constructing a solvable maze
can be achieved by traversing the graph, and building a
solution path is equivalent to finding a path in the graph.
Here, we consider the perfect maze, a common type in
maze production, which contains no circular paths. Then
maze construction can be easily done by establishing a
random spanning tree of the graph using any standard
maze algorithm. To offer the user an intuitive control
over the routing of the solution path, we allow the
sketching of a guiding curve on the top of the stripe
pattern. We then try to build a solution path that follows
but may not exactly match the guiding curve.

As shown in Figure 8(a), the user-drawn guiding curve
suggests which chambers are on the solution path. How-
ever, the curve may visit one chamber multiple times, as
the chamber could be long and complex in the layout.
Consequently, cycles may occur in the solution path. To
remove such unexpected cycles, we require one chamber
be visited only once. By omitting the nodes (chambers)
between the redundant chambers, we yield a solution
path without cycles in the graph (see Figure 8(b)). Then
the entire spanning tree of the graph is constructed
starting from the obtained solution path. To get the
solvable maze, we link two adjacent chambers on the
tree by breaking the wall (edge) that separates them at
an arbitrary point. Figures 2(g) and (f) show the solution
path in the maze and in the corresponding graph respec-
tively. Another example showing the guiding curve and
the solution path can be found in Figure 14.

(a) (b)

Fig. 8. Solution path construction. (a) shows the user-drawn
guiding curve (in red color). It determines which chambers
may be on the solution path. (b) shows the blue solution path
without cycles as well as the chambers (in orange) contributed
to the solution path. Note the final solution path follows but not
exactly match the guiding curve.

Careful readers may notice that the guiding curve was
also adopted by Pedersen and Singh [7]. Their work
differs from ours in that they used the guiding curve to
guide the dynamic evolution of the labyrinth, while we
use it after the dynamics of obtaining the stripe pattern.
Xu and Kaplan [8] allowed users to sketch a solution
tree with which they needed an image segmentation to
generate the final solution path.

4.3 Vectorization

So far, all the computations are accomplished in the
domain of raster image. To avoid jaggy walls due to
aliasing, we vectorize the constructed maze [23]. Then
the vectorized maze (Figure 2(h)) can be scaled arbitrar-
ily without unpleasant jaggy walls.

5 USER CONTROL

Our RD-simulator provides a convenient platform to
control the appearance of stripe pattern. By adjusting
the input parameters in appropriate ways, the user
can intuitively, directly and locally modify the pattern
appearance. In our system, we provide a paint-brush
interface to facilitate the user intervention. Here we
highlight its major functionalities.

5.1 Local Structure Manipulation

To preserve the desired structure in the source image,
we provide a wall brush and a passage brush. For instance,
in Figure 9(a), although some edges are not sufficiently
strong to guarantee the generation of walls in the stripe
pattern (see Figure 9(d)), they may be perceptually
important. To preserve them, users can directly draw
walls with the wall brush (the blue stroke) as illustrated
in Figure 9(e). After re-running the RD-simulator, the
additional walls seamlessly merge with the surrounding
stripes (Figure 9(f)). Similarly, users can explicitly draw
passages via a passage brush (the yellow strokes). The
wall and passage brushes are realized by setting the
state value X of each pixel on the updating strokes as
−1 and +1 respectively in each iteration (recall that −1
corresponds to black and +1 corresponds to white). In
practice, one-pixel thickness is sufficient for the updating
strokes. The brush strokes in Figure 9(e) are thickened
for the illustration purpose.

Besides, users can provide additional patterns, such
as a brick pattern or dot pattern, to replace a region
in the source image with a pattern brush. This generates
stripe patterns with the user-defined structure naturally
fused with the intrinsic structures in the source image.
Figure 14 demonstrates such fusion of a real pyramid
photo with regular brick patterns. In this example, the
stone bricks in the original photo is too small to gener-
ate meaningful brick structures in the final maze. The
pattern-based scheme is especially useful for design
purposes. Users can create a variety of maze types by
replacing image regions with their favorite patterns.
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(a) source image (b) scale map (c) final maze
from (f)

(d) stripe pattern (e) structure (f) stripe pattern
from (a) enhanced from (e)

Fig. 9. Local structure enhancement: (a) the source image; (b)
the scale map; (c) the final maze created from (f); (d) the stripe
pattern directly evolved from (a) may not capture some edges
in the source image; (e) the original image is enhanced. (f)
the stripe pattern evolved from (e) better resembles the source
image.

Note that similar to the case of natural images, only
salient structures in the patterns can be retained via the
RD-simulator. From our experience, simple and black-
and-white patterns are preferable. One more example
can be found in Figure 15. A cross pattern is applied
on the chest of the “Winged Guardian Bull”.

5.2 Regular/Organic Control

As mentioned before, noise can be introduced to make
the maze more organic. Therefore we allow the user to
enforce a smooth region to evolve into organic stripe
pattern using an organic brush (the red stroke). This is
simply realized by adding a strong white noise to the
brushed region in the source image. Similarly, users can
also use a regular brush (the green stroke) to smoothen
the noisy region so as to generate more regular stripe
patterns. This smoothing is achieved by applying the
Gaussian filtering to the brushed region. Figure 10 shows
the organic and regular brushes in action.

(a) organic brush

(b) regular brush

Fig. 10. Organic and regular brushes. The top and the bottom
rows show the organic and regular brushes in action. The
left, middle, and right columns show the source images, the
initial stripe patterns with user brushes, and the updated stripe
patterns, respectively.

5.3 Passage Spacing Manipulation

To generate a stripe pattern with the desired local pas-
sage spacing, we offer the scale brush. Once a desired
scale value (grayscale level) is chosen, users can fill a
region in the scale map with the selected value. In this
way, users can intuitively and directly edit the scale map
in a spatially varying manner. To avoid unnatural seams
between the regions with different passage spacings, a
smooth transition of scale values is needed in the scale
map. This can be achieved by blurring the scale map.
Examples using manually designed scale maps can be
found in Figures 9, 14 and 15. Note that the evolved
mazes exhibit spatially varying passage spacings in a
natural way.

Besides the hand-drawing scale brush, we also devel-
oped two methods to automatically generate the scale
map. One is based on the image tone and the other is
based on the structure complexity. For both methods, we
first segment the source image [24]. In the tone-based
method, we compute the average intensity P ′ for each
segment. The scale map is then calculated by a linear
mapping, S = τ · P ′, where τ = 0.6. We also excessively
blur the scale map with a Gaussian filter to avoid abrupt
change in the scale map. The middle column of Figure 11
shows a scale map (top) created with this method and its
corresponding maze (bottom). Note the passage spacing
decreases in the region with lower image tone, which
helps to reproduce the image tone.

Similarly, we can generate the scale map according
to the structure complexity. Here we want to introduce
smaller passage spacing for regions with higher structure
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Fig. 11. Automatic generation of scale maps. Left column: the source image (top) and its segmentation map (bottom). Middle
column: the scale map (top) generated based on intensity and the evolved maze (bottom). Right column: the scale map (top)
generated based on the structure complexity and the corresponding maze (bottom).

complexities. It is observed that complex regions usually
correspond to the smaller segments. Hence, we can sim-
ply assign the segment size as the scale value of pixels
within the segment and then map it to the range [0, τ ].
Again, Gaussian filtering is applied to avoid the abrupt
change. The right column of Figure 11 shows a scale
map (top) generated by this method and its correspond-
ing maze (bottom). In the result, the passage spacing
decreases when the structure complexity increases.

5.4 Wall Thickness Adjustment

Besides the passage spacing, we may change the wall
thickness to reproduce the image tone. Although the
walls in the stripe pattern have a width larger than 1,
their thickness does not reflect the image tone (as shown
in Figure 2(d)). So we simply discard the original wall
thickness by thinning the walls to one-pixel width and
take the resulting pattern as the base for wall thickness
adjustment. Users can optionally turn on this thickness
control.

Let the desired wall thickness be W . The relationship
between wall thickness W , passage spacing D, and the
pixel intensity P̃ can be modeled as W = D(1−P̃ ) [8]. As
mentioned before, the passage spacing D is determined
by D = D0/(1 − S) − 1. We also impose a minimal wall
thickness ζ and a minimal passage thickness ξ to avoid

(a)

(b) (c)

Fig. 12. Maze with varying wall thickness: (a) the source
image; (b) the maze without spatially varying thickness and (c)
the maze with spatially varying thickness that resembles the
image tone.

the passage from being stuck. Hence, the valid range of
wall thickness W is [ζ, D−ξ]. Given the centerlines of the
maze walls, we can render a maze with spatially varying
wall thickness by using a brush with a varying size W .
Figure 12(c) shows the rendered maze which resembles
the tone in the source image in 12(a).
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6 RESULTS AND DISCUSSIONS

In this section, we first validate our method using more
examples, then we present the timing performance of our
system and finally discuss the limitations of our method.

6.1 Experimental Results

Figures 2, 9, 11, 12, 14-17 demonstrate the results of
the evolved mazes from different images. Note how
the salient interior structures in the source images are
well preserved in the mazes. Figure 15(c) shows a maze
created from a picture depicting the sculpture of the
“Winged Guardian Bull”. The original pattern on the
wings of the bull is convincingly preserved. Such an
effect is actually hard to achieve using existing maze
generation algorithms. In Figure 16, we blend a real-
life leaf photo with the corresponding maze. Note that
the maze exhibits clear structures of the main veins in
the leaf photo. Figure 17 superimposes a maze of “Van
Gogh Self Portrait” with the source image. Obviously, the
evolved maze keeps the rich directional brush patterns
in the image.

From our experience, our system is able to provide
the users a flexible control over the maze appearance.
For example, Figure 15(a) shows the regular brush ap-
plied to the legs and the organic brush applied to the
background regions. We also modulate the scale map in
order to represent different image structures, tones, or
the perspective effect. In the pyramid maze (Figure 14),
we edit the scale map at the bottom of the image, so that
the perspective effect can be formed on the ground. The
similar scale manipulation (Figure 15(b)) is applied to
the base of the bottom stone in Figure 15(a). In addition,
varying passage spacing can help to differentiate the
objects in the image. In Figure 15(c), the bull body,
legs and the background are clearly distinguished by
assigning different passage spacings. Figure 14 demon-
strates the fusion of multiple sources. Here, several brick
patterns are laid over the real-world photograph. In
Figure 15(c), by replacing a cross pattern at the front bull,
an interesting pattern can be formed that naturally fuses
with the surrounding. The drawing of several parallel
walls on the beard of the bull also introduces pleasing
maze patterns.

6.2 Timing Performance

Since the proposed RD-simulator (Equation 5) is highly
parallelizable, we implement it with a GPU shader. Cur-
rently we build our system on a machine installed with
Intel(R) Core(TM)2 CPU 6400 @ 2.13GHz and nVidia
GeForce 8800 GTX GPU. The main cost of generating
a maze is on the stripe pattern evolution, which is an
iterative process. To ensure the RD-simulator to reach
a stable equilibrium, we empirically adopt the setting,
0.01 time increment and 3000 iterations, in all our ex-
periments. The timing of the evolution relies also on the
image size. For example, to evolve the maze in Figure 14,

it takes about 35.7 seconds to obtain the stripe pattern
for a valid image region of 475,736 pixels. For a mid-size
image, like the seahorse in Figure 9, which has the size
of 400× 699 and a valid image region of 95,643 pixels, it
only takes 11.6 seconds. On the other hand, the timing
of converting a stripe pattern to maze depends on the
image size (for loop removal) and the size of the planar
graph associated to the stripe pattern (for building the
solution path). The whole conversion normally takes less
than 20 seconds given the user-specified guiding curve.

6.3 Discussion and Limitation

Our RD-simulator favors salient structures in the source
image. This is reflected in two aspects. First, strong
gradients enforce strong correlation between the image
and the stripe pattern. In other words, the boundaries
with strong gradients can defeat those with weak gra-
dients during the dynamic evolution and dominate the
resulting stripe pattern. Second, since the minimal pas-
sage spacing is D0 = 8, small-scale image structure or
texture pattern smaller than that cannot be preserved.
For example, the bull in Figure 15(c) does not faithfully
capture the face. Also, for the leaf in Figure 16, the
evolved stripe pattern does not have a clear structure
of those weak and fine leaf veins (the blowup shown
in Figure 13(b)). By sharpening the image edges, the
weak but large-scale image structures can become more
apparent (Figure 13(c)), but the fine veins may still not
be recognizable. To keep small-scale image structures,
denser stripes have to be created, which can be achieved
by up-sampling the source image (Figure 13(d)). This,
however, may be inconvenient when users want to in-
crease the stripe density only in local regions.

(a) (b) (c) (d)

Fig. 13. Structure preserved in stripe pattern. (a) shows one
region of the leaf photo in Figure 16. (b) is the stripe pattern
corresponding to (a). Note that both weak and fine leaf veins
are poorly preserved. (c) By enhancing the edges in the source
image, some weak vein structures become more apparent. (d)
After scaling the image by 1.5, the stripe pattern provides a
more recognizable structure even for the fine veins.

Another property of our method is that the RD simu-
lation always grows concentric stripes on both sides of
a strong feature unless there are other salient structures
nearby. Although such propagation can be constrained
by using a segmentation map, there is no intuitive way
to avoid it. In addition, the RD-simulator only considers
2D information in nature and cannot handle complex
3D effects, even though we can adjust the scale map to
fake the perspective effect to some extent. One may also
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(a) source image

(b) edited source image

(c) scale map (d) our evolved maze

Fig. 14. The maze of pyramid. (a) is the original image. (b) is the edited source image. (c) is the scale map to control the
passage spacing. The evolved maze is shown in (d), with the red guiding curve and the blue solution path. Note that the maze
preserves the salient interior structures of the pyramid image, while the transition from the edited parts to the original source
image is natural in the final maze.

(a) source image with user control (b) edited scale map (c) our evolved maze

Fig. 15. The maze of “Winged Guardian Bull”: (a) the source image edited with different brushes; (b) the scale map; (c) our
evolved maze. Note how the salient structure on the bull wings is faithfully preserved in the result.

be curious whether our approach can faithfully generate
a maze pattern with sharp right angled wall. This is
dependent on the structures in the image. For example,
the brick patterns on the pyramid in Figure 14(b) can
evolve to right angled walls.

7 CONCLUSION

In this paper, we present a novel RD-simulator to evolve
image-resembling mazes from the source images. Unlike
traditional reaction diffusion models, we develop the
(multi-scale) RD-simulator on the CNN computational
platform. The evolved mazes can faithfully retain the
salient interior structure in the images. In addition,
our RD-simulator enables the direct and intuitive con-
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E

Fig. 16. A real leaf photo blended with the corresponding maze.

E

S

Fig. 17. The maze of “Van Gogh’s Self Por-
trait” superimposed on the source image.

trol over the maze appearance. With a set of different
“brushes”, users can locally manipulate the maze struc-
ture, control the organic and regular look, and adjust the
passage spacing.

Our method can be extended in several ways. First, we
may speed up the stripe pattern refinement by locally
applying the RD-simulator since the manipulation is
usually performed in local regions. But we must be
careful since local changes may eventually propagate
to the other remote image regions. Second, we may
break the wall near the intersection points between the
sketched guiding curve and the chambers, other than
at an arbitrary point which is what we have done cur-
rently. Third, the evolved stripe pattern may contain long
chambers, which may be undesirable for some users. To
solve this problem, we may construct grids on the stripe
pattern before building the solution path. Readers can
find more information about the work at
http://www.cse.cuhk.edu.hk/∼ttwong/papers/maze/maze.html
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