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Fig. 1. Our method automatically extracts structural lines and removes textures from manga images. ©Takarai Rihito

Extraction of structural lines from pattern-rich manga is a crucial step
for migrating legacy manga to digital domain. Unfortunately, it is very
challenging to distinguish structural lines from arbitrary, highly-structured,
and black-and-white screen patterns. In this paper, we present a novel data-
driven approach to identify structural lines out of pattern-rich manga, with
no assumption on the patterns. The method is based on convolutional neural
networks. To suit our purpose, we propose a deep network model to handle
the large variety of screen patterns and raise output accuracy. We also
develop an efficient and effective way to generate a rich set of training data
pairs. Our method suppresses arbitrary screen patterns no matter whether
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these patterns are regular, irregular, tone-varying, or even pictorial, and
regardless of their scales. It outputs clear and smooth structural lines even
if these lines are contaminated by and immersed in complex patterns. We
have evaluated our method on a large number of mangas of various drawing
styles. Our method substantially outperforms state-of-the-art methods in
terms of visual quality. We also demonstrate its potential in various manga
applications, including manga colorization, manga retargeting, and 2.5D
manga generation.
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Fig. 2. Possible combinations of screening on the two sides of the structural
line.
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Fig. 3. Various types of patterns.

1 INTRODUCTION

With the wide popularity of portable devices and the low-cost distri-
bution over the internet, there has been an increasing trend to con-
vert legacy manga to digital form. Comparing to traditional paper-
based manga (typically printed in black-and-white for cost saving),
electronic manga or e-manga is more visually appealing as more
visual elements, such as color presentation and powerpoint-like
animation, can be easily introduced. With vectorization, e-manga
may even be retargeted to the desired resolution on the portable
device for optimal display, and free of over-blurring or aliasing.
Manga digitization usually starts with scanning and continues
with various semantic processing procedures, such as segmenta-
tion, object layer extraction, or structural-line and screen-pattern
separation. While scanning mangas to raster images is trivial, the
subsequent semantic processing procedures are much more chal-
lenging. Most of these semantic processing procedures require the
identification/extraction of structural lines. Here, the structural lines
may be exterior boundaries of white or screen pattern regions (e.g.
blue box in Fig. 1 and Fig. 2(a)-(c)) or interior lines immersed in
screen patterns for decoration/structure depiction (e.g. orange box in
Fig. 1, and Fig. 2(d)). Furthermore, the screen patterns are black-and-
white, and can be of arbitrary types and styles. They can be regular
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Fig. 4. Comparison of existing line extraction methods.

patterns (Fig. 3(a)), irregular patterns (Fig. 3(b)), tone-varying pat-
terns (Fig. 3(c)), or even pictorial patterns (Fig. 3(d)). They can be
composed of lines, just like the structural lines we aim for (orange
box in Fig. 1 & 4(a)). This is also why high-quality tracing of struc-
tural lines is still done by hand in the current manga industry, which
is labor-intensive and time-consuming.

To automate the extraction of structural lines, one may apply ex-
isting edge detection techniques [Canny 1986; Ito et al. 2015; Kang
et al. 2007]. However, these methods easily get confused by the tex-
tural lines of screen patterns commonly used in manga (e.g. dress of
the person in Fig. 4(a)) and may also result in double-edge artifacts
(Fig. 4(b)). Texture removal and texture smoothing techniques can
also be applied [Tomasi and Manduchi 1998; Vese and Osher 2003;
Xu et al. 2012]. But most of them rely on local oscillations, so they are
only good for suppressing small-scale textures and fail to suppress
large-scale textures that exhibit similar features as the targeting
structural lines (Fig. 4(c)). While several manga-tailored screen pat-
tern extraction methods have also been proposed, they either have
strong assumptions on the types of the screen patterns [Kopf and
Lischinski 2012; Yao et al. 2017] or rely on user guidance [Qu et al.
2006].

Our goal is to extract structural lines from manga laid with ar-
bitrary screen patterns. Due to the wide variety of screen patterns,
extracting structural lines from arbitrary screen patterns is a hard
recognition problem. Learning-based method has recently been
demonstrated to be effective in solving several other image recogni-
tion problems. In this paper, we propose an automatic data-driven
method based on convolutional neural networks (CNN) to tackle
this challenging structural line extraction problem. We demonstrate
that, by properly designing the network structure of the CNN and
providing sufficient training data for training the CNN, we can ef-
fectively and efficiently extract the structural lines immersed in
arbitrary screen patterns (Fig. 1).

To achieve that, we develop a rich dataset that contains a large
number of training pairs, containing rich styles of screen patterns
as well as different styles of structural lines. As manual labeling
is very tedious and labor-intensive, we also propose an automatic
method to generate the training data pairs. To apply CNN to our
application, we propose a relatively deeper network structure to
handle the large variety of screen patterns. We further improve



our network by borrowing the ideas from the recent advances such
as residual network [He et al. 2016a] and symmetric skipping net-
work [Ronneberger et al. 2015] to increase output accuracy and
robustness to high-frequency components. Through feeding with
the training data, the system learns a sequence of convolutional
operators in multiple scales for structural line extraction purpose.
After the offline training, the online structural line extraction is
simply a set of convolutional operations with trained filter weights.
It takes the manga image as input, and generates an output image
containing only the structural lines, with all screen patterns being
filtered away.

To validate the effectiveness of our method, we test our method
with a rich variety of challenging cases. Convincing and clear struc-
tural lines are obtained. Fig. 1 shows our result of a challenging
real-world example that fails most existing methods. We also com-
pare our results to those of existing methods to demonstrate our
robustness in handling arbitrary screen patterns. In addition, we
further demonstrate how to make use of our clear structural lines
for multiple interesting applications, including manga colorization,
manga retargeting, and 2.5D manga. Our contributions can be sum-
marized as followed.

e We propose a novel convolutional neural network frame-
work tailored for extracting structural lines from manga
with arbitrary screen patterns.

e We propose an effective way to automatically generate a
rich set of training data.

e We demonstrate multiple potential applications to utilize
the clear structural lines resulted from our extraction en-
gine.

2 RELATED WORKS

Before introducing our method, we first review existing works on
line extraction. They can be roughly classified into three categories,
namely edge detection methods, texture removal methods, and CNN-
based techniques.

Edge Detection Edge detection is a classical research problem. Many
edge detectors have been proposed, such as Canny edge detec-
tor [Canny 1986], Laplacian of Gaussians (LoG), and flow-based
difference of Gaussians [Kang et al. 2007]. However, they all heavily
rely on the gradient, and are easily confused by the black-and-white
high-contrast screen patterns. Attempts have also been made in
boundary detection for natural images [Arbelaez et al. 2011; Isola
et al. 2014; Kokkinos 2015]. While these methods are tailored for de-
tecting overall structure of objects, they generally perform poorly in
extracting fine structural lines in manga images, especially when the
lines are immersed in screen pattern. In particular, Isola et al. [2014]
proposed to extract crisp-boundary by learning the pairwise pixel
dependency of image features and grouping the pixel affinity func-
tion. Their method achieves reasonable results for natural images,
but fails to identify the structural lines immersed in screen patterns
due to the high similarity of local statistics.

Several cartoon-tailored line extraction methods have been pro-
posed based on edge detection. Sykora et al. [2004] proposed to
extract potential edge pixels by applying the LoG filter followed by
a negative mask. Zhang et al. [2009] proposed to combine Canny
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edge detector and Steger’s linking algorithm to detect decorative
lines in cartoon animations. Liu et al. [2013] proposed to extract
the edges by applying adaptive histogram equalization followed
by a median filtering. Mao et al. [2015] further proposed a region-
based approach to classify edge regions and non-edge regions. Note
that all above methods are mainly designed for cartoons that typi-
cally contain significantly fewer screen patterns. In sharp contrast,
bitonal manga images are usually dressed up with screen patterns
to compensate its lack of colors. These high-contrast patterns usu-
ally fail those cartoon-tailored methods. Ito et al. [2015] combined
existing edge detectors and suppressed high-frequency noise to sep-
arate lines from screen patterns. However, it still relies on gradients
and may easily fail when the structural line is immersed in screen
patterns. In contrast, our learning-based method does not solely
rely on gradient information.

Texture Removal Attempts have also been made in identifying
structural lines by removing textures. For regular or near regular
patterns in natural images, several approaches have been proposed
[Hays et al. 2006; Liu et al. 2008, 2004a,b], but they may fail on arbi-
trary screen patterns. To handle arbitrary textures, texture smooth-
ing techniques have been proposed based on local oscillations, such
as bilateral filtering [Tomasi and Manduchi 1998], total variation
regularization [Vese and Osher 2003], Ly gradient optimization [Xu
et al. 2011] or relative total variations [Xu et al. 2012]. These meth-
ods can also be used to differentiate structures from screen patterns,
but are usually quite limited to small-scale patterns due to their local
nature. Unfortunately, manga images usually contain large-scale
screen patterns such as sparse grids or stripes that can easily fail
these methods, as demonstrated in Fig. 4(c).

To identify the screen patterns, multiple manga-tailored methods
have been proposed. Qu et al. [2006] proposed to segment screened
regions via level-set by analyzing its Gabor wavelet features. While
texture-analysis based methods above can recognize arbitrary screen
patterns, they fail to precisely identify the boundary as texture fea-
tures change abruptly near the boundary. The resultant boundaries
are usually very noisy or rough. Interior structural lines are usually
missed if the texture features of these lines are very similar to that
of the surrounding screen patterns. In contrast, our learning-based
method can accurately identify both exterior boundaries or interior
structural lines.

Kopf et al. [2012] proposed to reconstruct and vectorize halftoned
comics by modeling the dotted patterns. Yao et al. [2017] proposed
to analyze and recognize three types of screen patterns: dots, stripes,
and grids. If the target pattern falls into their modeled ones, their
results should be very nice. However, real-world screen patterns
usually do not fit well into their limited number of screen pattern
models, and hence fail their methods. In contrast, our learning-based
approach makes no assumption of the types of screen patterns.

Convolutional Neural Networks Based on deep neural networks,
several edge extraction methods have been proposed recently, such
as HED [Xie and Tu 2015] and DeepContour [Shen et al. 2015].
HED employs a multi-scale feature extraction network and gen-
erates holistic edge map from the fusion of network outputs with
different reception fields. DeepContour subdivides edges into differ-
ent classes and processes them with different network parameters.
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Fig. 5. System overview. ©Minamoto Tarou

While both methods generate reasonable results when applied on
natural images, they may incorrectly identify textural lines of the
screen pattern (such as the dress in Fig. 4(a)) as structural lines
when applied on manga. This is because that screen patterns in
manga may exhibit similar line features as structural lines we aim
for. The CNN structures and training data of the existing works are
not designed to differentiate the small semantic difference between
large-scale screen patterns and structural lines. In this paper, we
design a novel CNN structure and prepare the training data specifi-
cally for our manga structural line extraction purpose. In particular,
our design pays extra attention on the quality of the extracted lines,
to counteract the blurry or noisy edges.

Simo-Serra et al. [2016] proposed a CNN-based sketch simplifi-
cation method. They optimized the network structure and trained
it with a dataset tailored for their sketch simplification application.
Since the CNN structure is tailored for line drawings, their method
cannot be directly applied to our application as manga images with
arbitrary screen patterns are usually more complex than line draw-
ings. In our application, a deeper network structure is needed to
overcome the overcrowded details in manga, while remains able to
recognize the pattern-immersed structural lines.

3 OVERVIEW

Fig. 5 illustrates the major processes in our system. It involves an of-
fline training phase and an online phase of structural line extraction.
During the online phase, our system takes an arbitrary input manga
(Fig. 5(a)), and generates an image containing mainly the structural
lines with screen patterns removed (Fig. 5(c)). Both input and output
images have the same resolution and are in grayscale. The reason we
allow input to be grayscale is to take care those manga images that
are scanned in lower resolution (bitonal content scanned as blurry
gray values). The computation is mainly a series of convolutional
operations that can be rapidly performed on modern GPU.

The weights used in convolutional operations are the training re-
sults obtained from CNN model training. This training is done only
once and offline (Fig. 5(b)). During the training phase, a large-scale
training dataset is needed to train the network for better perfor-
mance. However, preparing thousands of training pairs of manga
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Fig. 6. Variants of screen patterns.

images and clear structural lines images is not trivial, as manu-
ally tracing structural lines from manga is extremely tedious and
time-consuming. Instead of tracing structural lines from real-world
manga, we can generate screened manga images from clear line
drawings (without any screen pattern) by laying a rich library of
screen patterns, as illustrated in the Fig. 5(b). The details of prepar-
ing the training dataset and the design of CNN are described in
Section 4.

Once the structural line image is generated, it can be used for the
subsequent applications. Depending on the application, the struc-
tural line image can be used as guidance map to guide the processing
on the input manga, or directly used for image creation. In both
cases, the structural line image is first binarized with a fixed thresh-
old Tj, = 225 in which the pixel value range is [0,255]. Here, we
use a relatively high threshold for binarization and vectorization to
preserve low-gradient structural lines. Vectorization of this struc-
tural line image is optional. It is especially needed if the application
changes the resolution. Detail description on each application can
be found in Section 6.

4 LEARNING-BASED STRUCTURAL LINE EXTRACTION
4.1 Training Data Preparation

A key to the success of CNN-based methods is the variety/richness
of the training data. This also means that a large number of training
data is needed for good performance. Each training data pair should
contain a screen-rich manga and its corresponding screen-free coun-
terpart. Asking experienced artists to trace structural lines from
manga images is extremely labor-intensive, time-consuming, and
costly. Besides, manual tracing is basically a re-drawing process
of the structural lines. Both the location (e.g. misalignment) and
the style (e.g. different line width) may not be exactly the same as
that in the original manga. This is not desirable in training. In this
paper, we propose to automatically generate a large-scale training
dataset. Instead of tediously tracing structural lines from existing
manga, we adopt a reverse process to synthesize the screen-rich
manga from the screen-free line drawings, by laying a rich library
of screen patterns. With this approach, we avoid the tedious tracing,
misalignment, or line style inconsistency issues mentioned above.
To generate the training dataset, we start with 117 bitonal line
drawings of various styles drawn by different artists, and 110 com-
monly used screen patterns from existing mangas in the Manga109
database [Matsui et al. 2015]. These screen patterns include 36 regu-
lar patterns, 24 irregular patterns, 27 tone-varying textures, and 23
pictorial patterns (see Fig. 3 for some examples). To enrich the screen
pattern library, for each type of screen pattern, we further collect or
create multiple variants by varying its density (Fig. 6(b)), orientation
(Fig. 6(c)), and line width (Fig. 6(d)). This results in 56,700 various
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Fig. 8. (a) A tiny region. (b) Without Rule 1, we may fill region (a) with
large-scale patterns and lead to ambiguity. (c) With Rule 1, small regions
is only filled with small-scale patterns. (d) Two regions of different areas.
(e) Without Rule 3, we may fill the small region with unrecognizable tone-
varying patterns. (f) Tone-varying patterns can only be used to fill large
regions. (g) A region with an interior structural line. (h) Without Rule 3,
we may fill (g) with solid black and completely hide the interior line. (i)
With Rule 3, we avoid such hiding. (j) Two neighboring regions. (k) Without
Rule 3, both regions may be filled with solid black and hide the in-between
structural line. (I) With Rule 3, such hiding is also avoided.

screen patterns in total. Readers are referred to the supplementary
materials for a more detailed listing of sample screen patterns and
line drawings.

Next, we generate the screen-rich mangas by laying various com-
bination of screen patterns over the line drawings. Before that, we
need to segment the regions in the line drawing, as manga artists
typically fill up the regions with screen patterns. Instead of sophisti-
cated segmentation technique, a simple flood-filling is sufficient to
serve our purpose (see Fig. 7(b) for these regions). At first glance, it
seems that we can generate screen-rich manga by filling a randomly
selected region with a screen pattern randomly selected from the
library. If we do so, the trained CNN model will be contaminated
by unrealistic manga images that may not exist in the real world.
Imagine that random selection can fill a tiny region with large-scale
screen patterns or pictorial patterns. Readers (as well as our CNN
model) can no longer differentiate whether the filled pattern is a
screen pattern to ignore or fine details to preserve (see Fig. 8(b) for
example). Moreover, we also found that CNN model trained with
random screening is very poor and extracts noisy and broken struc-
tural lines. We believe manga artists understand that some rules are
required to avoid the resultant manga confusing the readers, and
hence they intentionally avoid such undesirable screening. So we
mimic manga artists in screening a region, by following the rules
below:

e Rule 1: Larger regions tend to be filled with larger-scale
screen patterns, and vise versa (Fig. 8(a)-(c)).
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e Rule 2: Larger regions are more likely to be filled with tone-
varying/pictorial patterns (Fig. 8(d)-(f)).

o Rule 3: Solid black is also regarded as a type of screen pat-
tern. It will not be selected for region containing interior
structural lines. Otherwise, interior structural lines will
become no longer observable (Fig. 8(g)-(i)). Besides, two
neighboring regions cannot be filled with solid black simul-
taneously (Fig. 8(j)-(1)).

o Rule 4: A region may be filled with screen patterns or left
solid white. We leave 20% of the regions to be solid white.

Fig. 7(c) shows some generated screen-rich mangas. They may
not be the same as the real-world manga as our generator lacks of
semantic understanding of the drawing, but these mangas are good
enough for training purpose.

To train the CNN model to tolerate different scanning resolutions
of the input manga, we resample each training pair to multiple
resolutions by downscaling the images into 7/8, 3/4, 5/8 and 1/2 of
the original dimensions. During the training, we extract 512x512
patches cropped from the screen-rich manga as training inputs, and
the corresponding 512x512 patches cropped from the screen-free
line drawing as training outputs. We also randomly flip the patches
horizontally to reduce overfitting.

4.2 CNN Model

In designing an appropriate CNN model, we have two requirements.
Firstly, the extracted structural lines need to be aligned to those of
the input in a pixel level. Misalignment or line thickening/thinning
should be minimized. Secondly, as the input is in gray level (depend-
ing on the scanning resolution), it is better to preserve the pixel
intensity of the structural lines in the output, without introducing
extra information or removing the original information of the struc-
tural lines. To achieve these, a pixel-wise CNN model [Noh et al.
2015; Simo-Serra et al. 2016] is more desirable.

A typical pixel-wise CNN model is composed of two parts: an
encoding network and a decoding network. The encoding network
is inspired by traditional classification networks [Krizhevsky et al.
2012; Simonyan and Zisserman 2014], and compresses the input into
feature vectors. This feature extraction process is usually modeled
by a sequence of blocks consisting of three types of layers including
convolutional layers, activation layers, and pooling layers. The pool-
ing layers with strides are regularly used to reduce the dimension of
the input. The decoding network is built after the encoding network.
It is used to reconstruct the desired output from the encoded feature
vectors. Similar to the encoding network, the decoding network
is also modeled by a sequence of blocks containing three types of
layers including convolutional layers, activation layers, and unpool-
ing layers. Here, unpooling layers are used to resample the feature
vectors into the original image resolution. Fig. 9 illustrates our pro-
posed network structure. It has a downscaling-upscaling structure.
The left half is the downscaling network while the right half is the
upscaling network.

Downscaling and Upscaling Networks The downscaling network

extracts image features via a sequence of downscaling blocks and
regular blocks in multiple levels (left part of Fig. 9). Blocks with
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2015] and a rectified linear unit layer ReLU as shown in Fig. 10(a).
Here, a block can be downscaling, upscaling, or regular, and the

(a) Plain block corresponding convolutional layer Conv in the block may be down-

scaling, upscaling, or flat convolutions as defined in Simo-Serra et

BN —ReLU—» Conv—» BN —»ReLU—» Conv al. [2016]. However, this basic block Conv-BN-ReLU is too “plain”

T Shortont mapping. | and may lead to degrading problem due to its streamlined nature,
: ! as gradient is hard to propagate from higher levels to lower levels.

(b) Residual block It may be unable to produce high-quality results when the input

Fig. 10. Plain block structure vs. residual block structure.

the same size are on the same level. In particular, each level con-
sists of one downscaling block followed by a sequence of regular
blocks to increase the network depth. Instead of downscaling to
1 % 1 feature vectors, we propose to have 3 levels of downscaling
to avoid information loss. We found that 3 levels of downscaling is
already sufficient to filter away most of the textural components
of various scales. Further increasing the downscaling levels does
not improve the result, but unnecessarily filters away important
structural components and leads to blurry structural lines in the
output. On the other hand, reducing the number of downscaling
levels to 1 or 2 cannot filter away the textural pattern due to the lim-
ited receptive field. So a downscaling network of 3 levels is optimal
for our application (left part of Fig. 9).

While the downscaling network produces rough approximations
of the structural lines in coarser scales, the upscaling network de-
convolves the rough approximation and reconstructs the output
from coarse to fine. In our model, the upscaling network also con-
tains 3 upscaling levels (right part of Fig. 9) corresponding to the
downscaling network. Each level is composed of one upscaling block
followed by a sequence of regular blocks. Note that, the number of
upscaling blocks and the number of downscaling blocks must be
the same to ensure that the output has the same resolution as the
input.

Residual Network Structure The basic block used in typical CNN
model is a plain block consisting of a convolutional layer Conv
followed by a batch normalization layer BN [loffe and Szegedy
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has a complex content, such as the screen patterns in our manga
application, even with deeper levels of convolutions. To increase
the depth of the network while avoiding this degrading problem,
we adopt the residual block [He et al. 2016b] in our CNN model.
This residual block performs the BN-ReLU-Conv structure twice
as the main streamline where the first convolutional layer may be
downscaling, upscaling, or flat convolutions. Its major difference is
the introduction of a shortcut mapping directly from the input to the
output to preserve important information of the input (Fig. 10(b)).
Through the shortcut mapping, the input bypasses the streamline
processing and directly adds to the output channel by channel. In
particular, for regular blocks where the input and the output are in
the same dimension, the shortcut mapping is an identity matrix. For
upscaling and downscaling blocks where the input and the output
are in different dimensions, the shortcut mapping is a dimension
adaptation convolution which adapts the dimension of the input
to fit the dimension of the output. By replacing the basic blocks
with the residual blocks, it allows direct information propagation
between the input and the output. Such deeper network structure
leads to easier training and better line extraction quality.

Convolution/Deconvolution Layers with Strides Typical max-pooling
used in CNN model is a parameter-fixed function and generally
leads to loss of spatial relation in every 2 X 2 downscaling win-
dow during the downscaling. Unfortunately, manga images usually
contain subtle high-frequency details, such as repetitive 2 x 2 dots
(Fig. 11(a)). In this case, max-pooling simply takes the local maximal
value in every 2 X 2 window (which is white) and outputs an im-
age with crucial information loss (Fig. 11(b)). The information loss
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further affects the output quality. To preserve spatial relation and
image details, instead of using the standard pooling/unpooling for
downscaling/upscaling, we adopt the convolutions/deconvolutions
with strides [Springenberg et al. 2014] in our downscaling/ upscal-
ing residual blocks (Fig. 11(c)). With this convolutional downscal-
ing/upscaling layers, the parameterized kernels are learnable during
the training process. Therefore, the details of the input are more
likely to be preserved by the downscaling network, and this signifi-
cantly improves the quality of the extracted structural lines.

Skipping Structures Inspired by U-Net [Ronneberger et al. 2015],
we create a symmetric skipping between layers of the same scale
to further reduce the information loss caused by the dimension
reduction. With skipping layers, image information (e.g. gradient)
at certain level in the downscaling network can be directly passed
to the layer of the same level in the upscaling network without
compression. This means that details of the input can be better
preserved, and hence leads to better output accuracy. To do so, for
each level in the upscaling network, we add a merging layer as
the final layer of the level (blue layer in Fig. 9), which sums the
skipped image and the sequentially processed image in a channel-
wise manner. The merged results are then used for next upper level
of upscaling.

Table 1 lists our network structure in detail. For the ease of im-
plementation, we pad the width M and height N of the input image
to multiple of 16 to make sure the input of the merge layers has
identical dimensions. Fig. 12 presents a visual comparison between
the typical “plain” network model and ours.

4.3 Learning and Optimization

During training, a variety of similarity measurements can be used
as the objective function to measure the objective loss of train-
ing examples. Among the similarity metrics, structural similarity
index (SSIM) along with mean absolute error (MAE) is the most
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Name  Type Output Size  Filters X Rpt.  Parents
input  Input Mx N -
downl Downscaling M XN 32%x4 input
down2 Downscaling M/2XN/2 64X%6 downl
down3 Downscaling M/4X N/4 128X 9 down2
flat1 Flat M/8X N/8 256 X 12 down3
upl Upscaling M/4xXN/4 128 %9 flat1
skipl ~ Merging M/4xXN/4 128 upl
down3
up2 Upscaling M/2XxXN/2 64%X6 skip1
skip2 ~ Merging M/2XxXN/2 64 up2
down2
up3 Upscaling MXxN 32%x4 skip2
skip3 ~ Merging MxN 32 up3
down1
flat2 Flat MXxN 16 X 3 skip3
output  Flat MXxN 1x1 flat2

Table 1. The network structure. All downscaling, upscaling, and flat layers
are residual-based.

appropriate for our case [Zhao et al. 2016]. However, SSIM is com-
putationally demanding for our training usage. MAE tends to search
for the median and thus generates “binarized” results, so the tones of
the structural lines are generally lost with the MAE metric. Instead,
we adopt the mean square error (MSE) as the measurement metric
since smoother structural lines can be obtained with nearly accurate
intensity and pressure.

We train the model with the ADAM solver [Kingma and Ba 2014]
(learning rate = 0.001, § = 0.9) against the objective function from
scratch. The solver adaptively adjusts the learning rate for faster
convergence. The training process is terminated when the objective
loss stops decreasing.

5 RESULTS AND DISCUSSIONS

To evaluate our method, we test it on several manga images of
different styles, including western (Fig. 18(g)) and Japanese (Fig. 1,
13(a)-(d), and 18(a)-(f)) styles. More results can be found in the
supplementary materials. Fig. 18 compares our method to multiple
state-of-the-art methods in terms of the ability to extract structural
lines from regular patterns (dots in Fig. 18(a) and stripes in Fig. 18(b)),
irregular patterns (Fig. 18(c) & (d)), fine-scale pattern (Fig. 18(e)),
large-scale pattern (Fig. 18(f)), and solid black region (Fig. 18(g)).

Visual Comparison We first compare our method to a crisp-boundary
extraction method proposed by Isola et al. [2014] in Fig. 13(a). As
Isola’s method is tailored for natural images, it generally fails to
extract clear and smooth structural lines from manga images, es-
pecially when the structural lines are immersed in screen pattern.
Furthermore, fine structural lines (e.g. hair and wrinkle on the gown)
are missed since Isola’s method mainly tailors for detecting large-
scale object boundaries. In comparison, our method can extract clear
and fine structural lines while removing screen pattern.

In Fig. 13(b), we compare our method to manga colorization [Qu
et al. 2006], which is essentially a screen pattern segmentation

ACM Transactions on Graphics, Vol. 36, No. 4, Article 117. Publication date: July 2017.
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Fig. 13. Comparisons with Isola et al. [2014], Qu et al. [2006], Yao et al.
[2017] and manually labeled result. ©Kiriga Yuki, Chih-Yuan Yao, Yagami
Ken

method using Gabor wavelet analysis. Both methods can handle
arbitrary screen patterns. As the texture analysis needs a window to
analyze and the texture features near the boundary are substantially
different from that at the region center, noisy and unclear boundaries
are usually obtained by their method, as demonstrated in the pants
of the left boy. In contrast, our method can successfully obtain clear
structural lines.

In Fig. 13(c), we compare our method to that of Yao et al. [2017].
If the screen pattern falls in one of the dot, grid or stripe categories

ACM Transactions on Graphics, Vol. 36, No. 4, Article 117. Publication date: July 2017.

(prior models), their method tries to model the pattern, as demon-
strated in the blown-up blue box. Any misalignment or breakage of
the stripes may interfere such modeling. On the other hand, since we
do not explicitly model the patterns nor assume the type of pattern,
our method is resistant to misalignment or breakage. Nevertheless,
our method is still able to obtain comparable high-quality result.
Yao et al. [2017] also proposed a method, based on relative total
variation (RTV), to handle screen patterns besides the three prior
models. Since we cannot obtain the original code of Yao et al. [2017],
we compare to the RTV in the second column of Fig. 18 instead.
Yao’s method should share the similar problems as that of RTV, e.g.
over-smoothing of pattern-immersed whiskers and collar of the
cat (Fig. 18(d)) and inability to smooth large-scale screen pattern
(Fig. 18(e)). In comparison, our method can faithfully extract the
structural lines immersed in patterns of similar scale or even larger
scale (the rightmost column of Fig. 18).

In Fig. 18, we compare our approach to more methods, including a
texture smoothing method [Xu et al. 2012] (second column), a filter-
based manga line and screen separation method [Ito et al. 2015]
(third column), and an existing CNN model tailored for simplifying
line drawings [Simo-Serra et al. 2016] (fourth column). The method
of Tto et al. [2015] is the state-of-the-art automatic method for ex-
tracting structural lines from arbitrary screen patterns. The method
of Xu et al. [2012] is originally proposed for image smoothing by
utilizing the local oscillation assumption. Yao et al. [2017] adopted
a similar metric for their application. Simo-Serra et al. [2016] pro-
posed a CNN model to simplify sketches to clean line drawing. Note
that the methods of Xu et al. [2012] and Simo-Serra et al. [2016] are
not originally designed for structural line extraction. However, they
are related to our goal and hence chosen for comparison.

In the second column of Fig. 18, we only show the smoothing
result of Xu et al. [2012], without introducing further error in the
line extraction. Their method cannot remove large-scale screen pat-
terns (Fig. 18(a)&(f)) as such patterns violate the local oscillation
assumption. It may also over-smooth the structural lines immersed
in patterns (hair in Fig. 18(c) and collars in Fig. 18(d)). Ito et al. [2015]
employed Laplacian of Gaussian filters and flow-based differences
of Gaussian filters to remove screen patterns (the third column of
Fig. 18). Their method shares similar difficulties in removing large-
scale screen patterns (Fig. 18(f)) and irregular patterns (backgrounds
of Fig. 18(c)&(d)), due to its filtering nature. For lines overlapped
with the patterns (e.g. suit in dotted pattern in Fig. 18(a)), their
extracted lines are also rough. The method of Simo-Serra [2016]
(fourth column of Fig. 18) can remove most of the screen patterns,
except the large-scale one (Fig. 18(d)). As their original applica-
tion is sketch simplification, their method unavoidably groups the
structural lines with the detailed structures in the patterns, and
is sometimes overly aggressive in removing details including fine
structural lines ((Fig. 18(b)-(g)). In sharp contrast, our method out-
performs all competitors in terms of the abilities in removing screen
patterns (regular, irregular or pictorial, fine-scale or large-scale) and
preserving structural lines, even these lines are fully immersed into
the screen patterns (whiskers and collar in Fig. 18) or overlapped
with large-scale patterns (suit in Fig. 18(a)).

We also compare our result with manually labeled result (groundtruth)

in Fig. 13(d). While our method produces visually similar results



in most cases, these results may still differ from the groundtruth.
For example, our method regards the hatching lines surrounding
the nose as screen pattern and removes them completely, while
the human artist regards these lines are semantically important
(expressing emotion) and preserves them (the blue box). Conversely,
our method identifies the shadow lines behind the shoe as structures,
but the artist knows that they do not depict the object structure and
removes them (the red box). The differences are due to the fact that
our model lacks of higher level semantic understanding of the visual
content (e.g. emotion-expressing hatching and shadow-depicting
pattern).

Quantitative Evaluation To ¢.004
evaluate our method quanti-
tatively, we first measure the
training loss of our CNN model. ¢.002
It is the error between the con-
volved output from the net-
work (using the current trained 0 5 10 15 20 25 30
weights) and the ground truth in the training data. This loss is mea-
sured in terms of mean squared error (MSE) normalized by the image
resolution to the range of [0, 1]. The right figure shows the training
loss throughout the whole training epochs. It rapidly reduces after
the first few epochs and stabilized at around 25 epochs.

Besides, we also evaluate the accuracy of our method on manga
images that do not exist in our training data. They include both
the synthetic and the real-world manga images. The synthetic ones
are created from 39 line drawings that have not been used in the
training data. A set of 137 manga images are created from these 39
line drawings using the generation method described in Section 4.1.
These 39 line drawings are therefore the ground-truth for validation.
Besides the synthetic ones, we also prepare 37 real-world manga
images randomly selected from Manga109 database [Matsui et al.
2015]. The ground-truth structural line images are manually labeled
by artists (e.g. Fig. 13(d)). More manually labeled data can be found
in the supplementary materials.

In this quantitative evaluation, we compare our method to sev-
eral state-of-the-art methods [Isola et al. 2014; Ito et al. 2015; Simo-
Serra et al. 2016]. Note that the method proposed by Simo-Serra
et al. [2016] is not originally trained for structural line extraction.
For a fair comparison, we also train their model with our train-
ing data in order to better measure the improvement of our net-
work design. During the experiment, we feed the testing manga
images to our method and our competitors, and then measure the
difference between the ground truth and results from different
methods, in terms of peak signal-to-noise ratio (PSNR), structural
similarity index (SSIM), and the region coverage rate (RCR). Here,
RCR = (E A G)/(E V G), where E is the extracted image and G is
the corresponding ground truth. Since binarization is needed for
measuring RCR, we adopt the same binarization threshold T, = 225
for all methods whenever necessary. The statistics for synthetic and
real-world manga images in Tables 2 and 3 respectively.

For all three measurements metrics, the higher the values are, the
more accurate the extraction results are. Our method achieves the
highest accuracy in all three measurement metrics, for both syn-
thetic and real-world manga images. The superiority is substantial.

0.003

0.001
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PSNR  SSIM RCR

Isola et al. [2014] 14.151  0.7666  0.0967
Ito et al. [2015] 9.101 0.6328  0.3869
Simo-Serra et al. [2016] 12.852  0.5989  0.2884
it o it 2155 09268 0600
Ours 28.050 0.9957 0.9444

Table 2. Extraction accuracy on the synthetic manga images.

PSNR  SSIM RCR

Isola et al. [2014] 12.590 0.4908 0.1792
Tto et al. [2015] 16.383  0.8877  0.7631
Simo-Serra et al. [2016] 11304 0.6150  0.2883
SeSers B0 s o osi
Ours 21.087 0.9502 0.8196

Table 3. Extraction accuracy on real-world manga images.

Fig. 14. Limitations. (a) Input. (b) Our method mistakenly identifies the
upper eyelids of the girl (very thick structural lines) as small black regions.
It also fails to recognize the step-edges around the reflection of the eyeballs.
(c) The binarization may lead to occasional loss of structural lines, such as
the discontinuous hairs. ©Kiriga Yuki

The method of Isola et al. [2014] is tailored for boundary detection
in natural images, which only works well in detecting large and
high-contrast structure. The method of Ito et al. [2015] relies on
LoG and FDoG, which only works on a limited scale of the spatial
domain and can only work well on regular and near-regular screen
patterns. Their line abstraction method may also generate noisy
lines. The method of Simo-Serra et al. [2016] achieves better PSNR
due to the clarity of their output. However, its line abstraction and
simplification goals may change the position and topology of the
structural lines, and hence hurt its SSIM and RCR scores. With our
training dataset, acceptable results can already be obtained with the
plain network proposed by Simo-Serra et al. [2016]. However, as we
have discussed in Section 4.2, the plain network is unable to produce
high-quality results when the input content is rich and complex
(e.g. Fig. 12). In contrast, our network model retains the position
and topology of the structural lines with minimized roughness and
noisiness.

ACM Transactions on Graphics, Vol. 36, No. 4, Article 117. Publication date: July 2017.
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Fig. 15. An example of manga colorization. ©Yamada Uduki

Timing statistics All experiments are conducted on a PC with
Intel Core i7-4710 2.5GHz, 16GB RAM. Our current system is im-
plemented with the keras framework [Chollet 2015] accelerated
by NVIDIA GeForce TITAN X (Maxwell) GPU. The offline training
process takes approximately two days with 30 epochs of training.
On average, the online filtering process consumes only 0.84 seconds
in average to process 1 million pixels.

Limitations While our model can process manga images with
arbitrary screen patterns, it still lacks very high-level semantic
understanding to correctly handle sparse hand-drawn hatching.
Occasionally, such hatching can be decorative and undesirable to
remove (e.g. the blue box in Fig. 13(d)). In other cases, such hatching
may only serve for shading purpose and can be removed (e.g. the
red box in Fig. 13(d)). It is actually dependent on the user application
need. Also, our method may get confused by small black region and
thick structural line. For example, the upper eyelids of the girl in
Fig. 14 are perceived as very thick structural lines to readers, but
our method mistakenly identifies them as small black regions in the
result. Besides, since our method is tailored for extracting structural
lines instead of step edges, it may fail to recognize the step edges (e.g.
the reflection of the eyeballs in Fig. 14). Additionally, our current
binarization strategy in vectorization is quite naive. It does not adapt
to the local statistics of grayness, resulting in occasional loss of
structural lines (e.g. hairs in Fig. 14). The thickness of the structural
lines after binarization and vectorization is also not guaranteed
to be the same with the input. Furthermore, since learning-based
method strongly relies on the training data. Bias could exist if the
variety of training data is insufficient, or the training data is not
carefully prepared and balanced for diversity of styles. Therefore, if
the training data is too dissimilar from the actual manga, the result
could be unsatisfactory.

6 APPLICATIONS

With the clean structual lines extracted, we can utilize the result in
many interesting digital manga applications. Here, we demonstrate
three potential applications, including including manga colorization,
manga retargeting, and 2.5D manga generation.

Manga Colorization As legacy mangas are mostly in black-and-
white, manga colorization is probably the first interesting extension
for digital reproduction of the mangas. With the extracted high-
quality structural lines, we can easily and accurately separate the
screened regions for colorization. Fig. 15 presents two styles of col-
orization. Fig. 15(b) demonstrates the color-bleeding style [Qu et al.
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Fig. 16. An example of manga retargeting. ©Minamoto Tarou

2006] in which the screen pattern is retained. Fig. 15(c) demonstrates
the style of color replacement, in which the screen pattern is re-
placed by a colorized region with the spatially varying intensity that
ressembles the original spatially varying screen tone. Comparing to
the texture-analysis based manga colorization [Qu et al. 2006], we
can reproduce clearer and smoother boundaries.

Manga Retargeting With varying display resolutions of modern
portable devices, naive resampling may lead to blurry presenta-
tion of lines and screen patterns on low-resolution displays (left
of Fig. 16(b)), or annoying blocky appearance on high-resolution
displays. Once the structural lines and screen patterns are sepa-
rated, we can retarget the manga to different display resolutions
with higher visual quality. We first vectorize the structural lines,
so that we rasterize clear structural lines in the target resolution.
For screen patterns, we can adopt texture synthesis [Barnes et al.
2009] to obtain a larger pattern. Note that it may not be desirable
to proportionally scale up or down the screen pattern to the target
resolution, because each screen pattern should have a valid range
of display resolution. For instance, proportionally scaling up the
stripe pattern (hair in Fig. 16(a)) may loose its original tonal mean-
ing and turns it into structure. In Fig. 16(b) and (c), we impose a
lower and upper bound on the scaling of impainted stripe pattern
to obtain sensible visual appearance. We can even introduce the
level-of-details to present the screen pattern smartly. For instance,
the cross pattern in the background region of the original manga
can be replaced by a dot pattern for low-resolution display (right of
Fig. 16(b)), and replaced by a star-shaped pattern for high-resolution
display (Fig. 16(c)). This is analogous to hinting in typography.

2.5D Manga Generation With the clear structural lines, we can
also deduce the depth semantics to produce 2.5D manga. Fig. 17
shows one such example. To do so, we first obtain the region map
(Fig. 17(e)) from our clear structural line image (Fig. 17(d)). Then we
adopt the T-junction analysis [Liu et al. 2013] to deduce the depth
ordering of these regions (Fig. 17(f)). With the 2.5D manga, we can
displace our viewpoint, or even generate a stereoscopic manga pair.
On the other hand, depth analysis directly on the original manga
is not feasible due to the interference of highly-structured screen



(d) Extracted lines  (e) Region map of (d) (f) Depth layer of (e)

Fig. 17. An example of 2.5D manga generation. ©Minamoto Tarou

patterns. Excessive amount of regions may be extracted (Fig. 17(b)),
leading to a lot of errors in the followed depth analysis (Fig. 17(c)).

7 CONCLUSION

In this paper, we proposed a CNN-based method for extracting clear
and smooth structural lines from screen-rich mangas. A tailor-made
CNN model of deeper network structure is proposed to handle the
large variety of screen patterns and increase output accuracy. We
also developed a practical way to generate a rich training data set.
Our system significantly outperforms the existing methods in terms
of visual quality and quantitative measurements, without making
assumption on the type of screen patterns. We also demonstrate
multiple potential applications utilizing our high-quality extraction
results.

Hand-drawn contents (such as hatching and fine details) are
sometimes hard to be classified as screen pattern or structural details.
The interpretation is also application-dependent. Currently, the
removal of screen patterns is fully automatic. Therefore, the future
direction is to have an intelligent GUI that allows user to selectively
enable/disable the removal of the screen patterns, especially those
ambiguous hand-drawn patterns. Such user guidance or feedback
can be further used to train the CNN model to adapt to a specific
user need.
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Fig. 18. Comparisons with RTV [Xu et al. 2012], Ito et al. [2015], and Simo-Serra et al. [2016]. ©Minamoto Tarou, Okuda Momoko, Kiriga Yuki and Ebihurai.
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