
Accelerating ‘Intelligent Scissors’ Using
Slimmed Graphs

Kevin Chun-Ho Wong Pheng-Ann Heng Tien-Tsin Wong
Dept. of Computer Science & Engineering

The Chinese University of Hong Kong

Abstract

In this paper, we describe an acceleration technique for the semi-automatic
image segmentation algorithm, intelligent scissors. Using intelligent scis-
sors, user can accurately and interactively extract the object from the digi-
tized image. However, the original algorithm suffers from slow performance
when large images are treated. In practice, pixels within the non-edge re-
gions are seldom involved in the determination of boundaries (segmentation
curves). If these pixels are removed before boundary determination, the per-
formance of intelligentscissors can be sped up. We generate a slimmed graph
to achieve such goal. Significant improvement in response time is resulted
using the slimmed graph.

1 Introduction

Accurate segmentation of an interested object from a digitized image has long been
an open problem in the field of computer graphics, computer vision and user in-
terface. Many previous work concentrate on designing fully automatic algorithms.
However, we believe fully automation is not possible if no knowledge of the world
is modeled in the algorithm. Analyzing pixel values alone is not enough to ac-
curately determine those segmentation curves (boundaries). On the other hand,
semi-automatic algorithm allows the user to enter his/her knowledge of the world
and leave the algorithm to automatically refine the boundary. Mortensen and Bar-
rett [4] introduced an semi-automatic tool known as intelligent scissors to assist
the segmentation of desired object. Unfortunately, the computational cost of the
original algorithm is highly dependent on image resolution. Hence large image is
slow to process. In this paper, we describe a technique to accelerate the intelligent
scissor algorithm by reducing the number of pixels to search during the segmenta-
tion.

1

During the image segmentation, the user is required to specify the starting point
(seed point) and ending point (goal point) of the boundary curve. After that, the
boundary curve between these two points is obtained by searching the ”optimal”
path. The searching is done using an optimal path searching algorithm similar to
Dijkstra’s algorithm [1]. The optimality is defined by an objective function. To
find the path, the image is first modeled as a graph. Each pixel is mapped to a
node connecting with its eight neighboring pixels (nodes) by edges (Figure 1). A
cost value is assigned to each edge. Hence, anW �H image is represented by a
graph ofW �H nodes and 4WH�3(W +H)+2 edges. A dynamic programming
technique of time complexityO(n) is used to search the path, wheren is the total
number of nodes in the graph. Therefore, the performance of intelligent scissors
is highly dependent on the size of the graph. By observation, most nodes within
the non-edge regions are seldom involved in the path searching. If these nodes are
pruned before path searching, the performance can be significantly improved. We
call the pruned graph theslimmed graph. For a real-time application, the speed is
critical. Fast segmentation tool provides users an interactive control and real-time
response on the screen.

In this paper, we discuss how to speed up the intelligent scissors by generat-
ing the slimmed graph. Section 2 briefly illustrates the original intelligent scissors
algorithm. Section 3 discusses how we generate the slimmed graph to reduce the
computation. Results of using our fast intelligent scissor is also shown. Conclu-
sions and future directions are drawn in Section 4.

2 Intelligent Scissors

When using intelligent scissors, the user is asked to specify two pixels in the im-
age, namely the seed point and the goal point. Then the algorithm will try to find
the cost-minimized path from the seed point to the goal point. To find the path,
the image is first modeled as a graph. Each pixel is replaced by a node in the
graph. Every node connects to its eight neighbors by edges (Figure 1). Each edge
is associated with acost. The cost value is determined by a cost function. A path
searching algorithm similar to Dijkstra’s algorithm [1] is then used to search for
the optimal path. Algorithm 1 shows the steps of this 2D dynamic programming
searching algorithm. Since the main focus of this paper is not on the searching
algorithm, readers are referred to Mortensen and Barrett’s paper [4] for detail de-
scription of the algorithm. We shall not repeat here. The right diagram in Figure 1
shows an example boundary (optimal path) determined by intelligent scissor.

The cost function is usually defined as a function of local image features in-
cluding image gradient and Laplacian zero-crossing. Mortensen and Barrett [4]

2

Notation
s is the seed point.
L is the list of active nodes.
N(q) is the neighborhood of nodeq.
e(q) indicates whether nodeq is marked/processed.
T (q) returns the total cost froms to q.
cost(p;q) returns the local cost fromp to q.
min(L) returns the node with minimum cost within the listL.
B(q) is the back pointer of nodeq.

Algorithm Boundary-Searching
T (s) = 0
Add s to L
While (L 6= empty)

q = min(L)
e(q) = TRUE
For eachr 2 N(q) s.t. note(r) do

If r 2 L andT (q)+cost(q; r)< T (r) then
Remove r from L

If r not2 L then
T (r) = T (q)+cost(q; r)
B(r) = q
Add r into L

Algorithm 1: 2D dynamic programming algorithm for boundary searching, pro-
posed by Mortensen and Barrett.

defined the cost function between two neighbor pixelsp andq as,

cost(p;q) = ωZ fZ(q)+ωD fD(p;q)+ωG fG(q) (1)

whereωZ, ωD andωG are user-defined weights,
fZ is the Laplacian zero crossing,
fD is the gradient direction,
fG is the gradient magnitude,

Stalling and Hege [5] defined the cost function as,

cost(p;q) = max(fG(p); fG(q))�
1
2
(fG(p)+ fG(q)) (2)

It is not surprise that the cost function defined is tightly related to the local
image gradient properties because we want to identify the edge region (region con-
tains boundaries). In other words, there is less interest in searching in the non-edge
region. Most of the nodes (pixels) in the non-edge region are seldom included in
the final path. However, the original intelligent scissors algorithm treats every pixel
and every region in the image equally. Hence, these nodes (pixels) still consume

3

Figure 1: The image is represented as a graph during boundary determination.

computation and memory. If we can reduce this kind of nodes before searching,
the algorithm can be sped up and less memory is consumed.

3 A Fast Image Segmentation Tool

The construction of the slimmed graph is a preprocessing step. In the slimmed
graph, a node may represent a region (of pixels), instead of a single pixel. Larger
regions are formed if the gradient is low. On the other hand, smaller regions are
formed if the gradient is high. The problem is how to subdivide the image into
regions (blocks of various sizes). This can be done through binary space parti-
tioning (BSP) [3]. Obviously the gradient information is a good criterion to guide
the image subdivision. During this subdivision process, split lines are used to seg-
ment the image into rectilinear blocks. Smaller blocks are generated in the region
with higher gradient while larger blocks are used in the region of lower gradient.
Another problem in generating the slimmed graph is how to connect neighboring
nodes (which now represent regions instead of pixels) and how to assign cost value
to edges.

3.1 Subdivision Using BSP

The first step to generate the slimmed graph is to segment the image into blocks
of various sizes according to the total sum of normalized gradient magnitude of
pixels in the block. A user-controlled threshold is used to limit the total sum of
gradient magnitude in each block. One scheme to subdivide the image is quadtree.
However, quadtree is not flexible enough to generate rectangular blocks and it may
introduce unnecessary fragmentation. Instead we use BSP-tree which allows the
generation of rectangular blocks and the number of children sub-blocks needs not
be four.

Figure 2 illustrates the BSP-tree subdivision scheme graphically. The sub-
division starts with an image of normalized gradient magnitudes. This image is

4

Figure 2: Segmenting the image using BSP-tree.

obtained from the original image by calculating the normalized magnitudeG(i; j)
of 2D gradient vector at each pixel(i; j),

G(i; j) = 1� η
max(η)

η =
q
(dI

dx)
2+(dI

dy)
2

wheredI
dx and dI

dy are the partial derivatives inx andy directions respectively. Func-
tion max(η) returns the maximum gradient magnitude over the whole image. Fig-
ure 5(b) shows one such map of the original image in Figure 5(a).

The image is subdivided into two blocks if the total sum of normalized gra-
dient magnitude exceeds a user-controlled threshold. For simplicity, we call the
total sum of normalized gradient magnitudes thegradient sum. Each block will be
recursively subdivided until the gradient sum is below the threshold. In each subdi-
vision, a block is divided into two sub-blocks by either a horizontal or vertical split
line. Vertical split line will be used if the width is longer than the height of block.
Otherwise, horizontal line will be used. The two sub-blocks need not be equal in
size. Once the subdivision is done, the image can be transformed into a slimmed
graph by replacing each block with a node and connecting neighboring nodes by
edges (Figure 2).

3.1.1 Placement of Split Lines

To decide where to place the split lines, we first calculate the gradient sum of the
horizontal and vertical scanlines. A split line is placed at the scanline with the
maximum difference of gradient sum across all scanlines in the block. Let the size
of block beN�M, whereN andM are the width and height respectively. IfN >M,
we calculate gradient sumSy(i0) for each vertical scanlinei0 in the block and place
vertical split line. On the other hand, ifM � N, we calculate gradient sumSx(j0)
for each horizontal scanlinej0 and place horizontal split line.

Sy(i0) =
M�1

∑
j=0

G(i0; j)

5

Sx(j0) =
N�1

∑
i=0

G(i; j0)

Next, we compute the finite difference ofSx andSy,

∆Sx(j) = Sx(j+1)�Sx(j)
∆Sy(i) = Sy(i+1)�Sy(i)

If vertical split line is needed, the split line is positioned between the vertical
scanlines with indexim and im + 1 such that8 vertical scanlinek in the block,
j∆Sy(im)j � j∆Sy(k)j. That is the split line is placed at a position with the largest
difference of gradient sum. Similarly, in the case of horizontal splitting, the split
line is placed in between the horizontal scanlines with indexj m and jm + 1 such
that8 horizontal scanlinek in the block,j∆Sx(jm)j � j∆Sx(k)j.

3.1.2 Acceleration with Summed Area Table

Naively computing the gradient sums and the finite differences is expensive. A
faster computation of∆Sx(j) and∆Sy(i) can be achieved by using the summed
area table [2]. LetA(x;y) be the precomputed summed area function where

A(x;y) =

�
∑x

i=0∑y
j=0G(i; j) 0� x <W; 0� y < H
0 otherwise

whereW �H is the resolution of the whole image.
Suppose the top-left and bottom-right corners of a block are(xl;yt) and(xr;yb).

The gradient sums of the horizontal scanlinej and the vertical scanlinei in the
block are simply,

Sx(j) = A(xr; j)+A(xl�1; j�1)�A(xl �1; j)�A(xr; j�1)
Sy(i) = A(i;yt)+A(i�1;yb�1)�A(i�1;yt)�A(i;yb�1)

respectively. And the finite differences of the horizontal and vertical gradient sums
are

∆Sx(j) = A(xr; j+1)+2A(xl �1; j)+A(xr; j�1)
�A(xl �1; j+1)�2A(xr; j)�A(xl �1; j�1)

∆Sy(i) = A(i+1;yt)+2A(i;yb�1)+A(i�1;yt)
�A(i+1;yb�1)�2A(i;yt)�A(i�1;yb�1)

As all values ofA(x;y) are precomputed and stored in a 2D array, the finite
difference∆Sx(j) and∆Sy(i) can be computed in constant time.

6

3.2 Slimmed Graph Generation

Algorithm 2 shows our pseudocode that generates the slimmed graph. In the al-
gorithm, the image is recursively subdivided into blocks until (1) the gradient sum
of block is smaller thanλ or (2) the area of block is smaller thanκ. Both λ and
κ are user-controlled parameters. Parameterλ limits the gradient sum of a block
while parameterκ controls the minimal size of a block. When the values of both
parameters increase, a slimmer graph is obtained. At the same time, the accuracy
of the resultant boundaries reduces.

Notation
G is the graph.
T is a list of blocks to be subdivided.
Nr(n) is a list of neighboring nodes of noden.
B(n) is the corresponding block of noden.
n(B) is the corresponding node of blockB.
B0 is the initial block representing the whole image.

Algorithm Slimmed-Graph-Generation
T = fB0g
G = fn(B0)g
While (T 6= empty)

Pop b from T
If size ofb� κ and gradient sum ofb� λ then

Split blockb into b1;b2

Add b1;b2 to T
Remove n(b) from graphG
Add n(b1);n(b2) to graphG
Connect n(b1);n(b2) with an edge
For each neighbor nodep in Nr(b)

If B(p) andb1 are neighborsthen
Connect p;n(b1) with an edge

If B(p) andb2 are neighborsthen
Connect p;n(b2) with an edge

Algorithm 2: Generation of slimmed graph.

Once the image is subdivided into blocks, it can be transformed to a graph.
Each block is represented by a node. Neighboring blocks are connected by edges.
Since the node no longer represents a single pixel, but a block, it may connect
to variable number of neighboring nodes. Any two blocks that touch each other
are considered as neighbors. Figure 3 illustrates two cases of neighborhood. Let
(xi;l;yi;t) and(xi;r;yi;b) be the corner positions of a blocki. Whether or not blocki
and blockj are neighbors is determined by the following criteria:

xmin = min(xi;l;x j;l) xmax= max(xi;r;x j;r)

7

Figure 3: Two cases of neighborhood.

Figure 4: An example of connecting neighboring nodes while subdividing a block.

ymin = min(yi;t ;y j;t) ymax= max(yi;b;y j;b)

If xmax�xmin � (xi;r�xi;l)+(x j;r �x j;l)
and ymax�ymin � (yi;b�yi;t)+(y j;b�y j;t)
then blocki and j are neighbors.

Instead of connecting the nodes after the image is completely subdivided, the
graph is constructed gradually while subdividing the image. New edges are added
to connect the newly created node to its neighboring blocks. Figure 4 illustrates
how a node is split into two connected nodes during the image subdivision. It also
demonstrates how neighboring nodes are connected by new edges. The detail steps
are described in Algorithm 2.

3.3 Cost Function

Once the slimmed graph is generated, it will be used to determine the boundary
curves during the run time. Note that the slimmed graph generation is done only
once and in the preprocessing phase. During the run time, the user is asked to
select a seed points, the block enclosing this pointB(s) is then located. The cor-
responding noden(B(s)) will be used as the starting node. After the user selects
the goal pointg, the optimal path between the nodesn(B(s))andn(B(g))would be
calculated by 2D dynamic programming algorithm (Algorithm 1) as in the original
intelligent scissor algorithm.

8

Slimmed Graph The graph Slimmed Graph % of size

Thresholds in Original I.S. in Fast I.S. reduced

Figure Size(pixels) κ λ # of node # of edge # of node # of edge node edge

5 100�100 0.08 5 10000 39402 1043 3619 89.57 90.82
6 320�240 0.08 5 76800 305522 8134 27391 89.41 91.03
7 512�512 0.08 7 262144 1045506 17825 59848 93.20 94.28
8 416�600 0.12 7 249600 995394 18370 60514 92.64 93.92

Table 1: This table shows the reduction in size of the slimmed graph in various
types of images.

Since the cost functions (Equations 1 & 2) in the original intelligent scissor
algorithm is designed for traversing between two pixels, they are no longer ap-
plicable to our case which each node represents a region. To determine the cost
between two nodes, we first calculate the center of mass and the average gradient
magnitude for each block. The position of the center of massck of a blockk is
determined by,

ck =
∑xr�1

i=xl
∑yt�1

j=yb
G(i; j)p(i; j)

∑xr�1
i=xl

∑yt�1
j=yb

G(i; j)
(3)

where(xl;yt) and(xr;yb) are the top-left and right-bottom corners of blockk,

p(i; j) =

�
i
j

�
is the 2D position of the pixel(i; j).

We also calculate the average gradient magnitude in the blockk using,

gk =
∑xr�1

i=xl
∑yt�1

j=yb
G(i; j)

(xr�xl)(yt �yb)
(4)

Since the slimmed graph is no longer in grid structure, the distance between
two nodes should affect the cost. Hence, the cost of the edge between two neigh-
boring blocks is defined as a function of distance between the two centers of mass
and their average gradient magnitudes.

cost(n1;n2) = ωDjc1�c2j+ωF(1�g1)(1�g2) (5)

whereωD andωF controls the smoothness and the fitness of boundaries respec-
tively. Note that both weights are positive.

3.4 Results

We have implemented the described algorithm on SGI Indigo2 with CPU MIPS
R4400 250MHz. Different types of images including noisy image captured from

9

low-cost video camera, medical image and other real-world images are tested. Ta-
ble 1 summarizes the size of slimmed graph generated in each test case. The statis-
tics in the table indicate that our slimmed graph generation algorithm can signif-
icantly reduce the size of graphs. The reduction in the searching time is directly
proportional to the reduction in the total number of nodes shown in the table.

Figure 5 shows the slimmed graph and subdivided blocks of an image of a Chi-
nese character. Figures 6 to 8 show the boundaries found by our fast intelligent
scissors. Figure 6 shows a noisy image captured from a low-cost video camera.
Note that our algorithm can effectively extract the boundary of the furry toy. Fig-
ure 7 shows the result of segmenting the essential features in the CT image using
our algorithm. Figure 8 shows how the four wooden rods can be conveniently ex-
tracted from the image even though the background contains subtle details such as
leaves and stones.

4 Discussion

The key of the described technique is the graph slimming algorithm. The algorithm
offers two parameters,λ (maximum gradient sum) andκ (minimum block size), to
control the total number of nodes and edges to be generated. Increasing either one
of these two parameters will generate a slimmer graph. Hence, the user can trade
off the accuracy of boundaries with the interactiveness of program.

No matter how intelligent the algorithm is, the user may still not satisfy with
the generated path. In this case, the desired path may have to be constructed by
a series of shorter segments. The user can anchor the goal point of each segment
by clicking on it. The goal point of a segment will then be the seed point of the
following segment.

Gradient magnitude may not be the best criterion for guiding the BSP-tree sub-
division. In the future, we will use more sophisticated criterion to guide the sub-
division process. This will improve the accuracy of the boundaries being tracked
even though the total number of nodes is restricted to be small.

References

[1] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. The MIT
Press, Cambridge, MA, 1989.

[2] F. C. Crow. Summed-area tables for texture mapping. InComputer Graphics
(Proceedings of SIGGRAPH’84), volume 18, pages 207–212, 1984.

10

(a) A 100� 100 image of a Chi-
nese character ’Red’

(b) The image of normalized
gradient magnitude

(c) The blocks generated by
BSP-tree subdivision

(d) The slimmed graph

Figure 5: The slimmed graph generation process of a Chinese character image.

[3] H. Fuchs. On visible surface generation by a priori tree structures. InComputer
Graphics (Proceedings of SIGGRAPH’80), volume 14, pages 124–133, 1980.

[4] E. N. Mortensen and W. A. Barrett. Intelligent scissors for image composition.
In Robert Cook, editor,SIGGRAPH 95 Conference Proceedings, Annual Con-
ference Series, pages 191–198. ACM SIGGRAPH, Addison Wesley, August
1995. held in Los Angeles, California, 06-11 August 1995.

[5] D. Stalling and H.-C. Hege. Intelligent scissors for medical image segmen-
tation. In B. Arnolds, H. M¨uller, D. Saupe, and T. Tolxdorff, editors,Pro-
ceedings of 4th Freiburger Workshop Digitale Bildverarbeitung in der Medizin,
Freiburg, pages 32–36, March 1996.

11

Figure 6: (a) A noisy image captured from the video camera. (b) Result of seg-
mentation.

Figure 7: (a) The left figure is a 512�512 CT image which shows the cross-section
of a male chest. (b) The left lung has been segmented out by our fast intelligent
scissors. 11 seed points are used to outline the boundary.

12

Figure 8: (a) An image with many subtle details. (b) Four wooden rods are seg-
mented out.

13

