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1. Network Architecture
Figure 1 illustrates the detailed network architecture,

which is employed in both our dithering network and
restoration network.

Pretrained Network for Guidance Loss. As mentioned
in the training details, we propose to initially warm up the
halftoning network with a guidance loss that is formulated
through a pretrained inverse halftoning network. In our ex-
periment, we employ a network with the same architecture
as shown in Figure 1 and train it end-to-end. The training
dataset and training details exactly follow the settings of [5]
but the input halftone is the one obtained by applying Os-
tromoukhov method [1] on each grayscale sample. Once
the training is converged, we take this pre-trained network,
denoted as F, to compute the guidance loss as defined in
Eq.12 of the paper.
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Figure 1. Network architecture. ”N” denotes the channel number
of feature maps in each layer, where for the last layer, N = 1 in
the dithering network and N = 3 in the restoration network. ”S”
denotes the striding size of convolution layers. The upsample layer
means ×2 upscaling the feature maps by nears neighbor strategy.

2. Visual Comparison on Halftone
We compare our invertible halftone with Ostromoukhov

method [1] and structure-aware halftoning [2] on several
typical examples, as illustrated in Figure 2, Figure 3, Fig-
ure 4, and Figure 5. For quantitative reference, the PSNR
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Figure 2. ”Cat” example. All images are of resolution 660× 560
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Figure 3. ”Bat” example. All images are of resolution 400× 220.

and SSIM values are annotated with each resultant image.
It shows that our invertible halftone achieves comparable
visual quality with the state-of-the-art halftoning methods.
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Figure 4. ”Bush” example. All images are of resolution 440×360.
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33.850 / 0.2911 Figure 5. ”Bush” example. All images are of resolution 380×360.

3. Visual Comparison with Inverse Halftoning
To show the significant superiority over inverse halfton-

ing algorithms, we perform comparative results on several
challenging examples, as illustrated in Figure 6. Particu-
larly, PRL-Net [5], as the state-of-the-art inverse halfton-
ing method on error diffusion, is employed for comparison.
The input to PRL-Net is error diffusion, while the input to
our model (decoder) is the invertible halftone. Due to the
encoded information, our method can restore the grayscale
images with very high fidelity, even for those very fine de-

tails. On the contrary, the PRL-Net can only recover the
global appearance but has no way to get back those fine de-
tails from the error diffusion.

4. Robustness to Real-World Scanning

To validate our restoration ability in real world, we con-
duct an experiment to restore the color image from the print-
ed hardcopy. Specifically, we first printed the generated in-
vertible halftone on a regular A4 paper with a black frame.
Then we scan the printed paper using a regular office scan-
ner (default scanning: 300 dpi.). The scanned image is then
cropped and rescaled to the original resolution. Finally, we
binarize the scanned image by simple thresholding (0.5 as
threshold) and feed this binary image to our restoration net-
work.

Figure 7 illustrates three examples of restoring from
printed halftones. Despite of various potential noise con-
tamination during the scanning process, the scanned bitonal
image contains binary pixel error less than 1% when com-
pared to the original invertible halftone, thanks to its bitonal
nature. For quantitative evaluation, we apply impulse noise
(black/white dot) to the halftones and restore the color im-
ages from these noisy halftones. Over our testing dataset,
the statistic result of noise ratio p% vs. restoration accu-
racy as (p / PSNR): 0/28.13, 1/27.72, 5/25.81, 10/23.70,
15/21.99, 20/20.59.

The decent robustness to outside disturbance implies that
our method has a good potential in real-world printing ap-
plications. For instance, publishers may employ the invert-
ible halftone in their product, and users would be able to
enjoy the original color version of bitonal prints via down-
loading a decoder APP from the publisher.

5. Application of Noise Incentive Block

As we described in the paper, convolution degradation
potentially affect the CNN performance on those tasks that
expect non-flat output from flat input. In Figure 8 and Fig-
ure 9, we provide more qualitative results to inspect the ben-
efits of the noise incentive block (NIB) to color image en-
coding [4] and image synthesis from semantic layout [3].
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Figure 6. Restoration results of challenging cases. All images are of resolution 256× 256.
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Figure 7. Restoration from printed-and-scanned halftones. All images have the same resolution of 256× 256.
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Figure 8. Applying NIB to color image encoding. In those flat regions, the color restoration failure is because the texture patterns are
unable to be encoded on the grayscales due to the convolution degradation. Readers are recommended to zoom in the encoded grayscales
to spot texture patterns.
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Figure 9. Applying NIB to semantic image synthesis. The red arrows point to regions with blurriness or artifacts.
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