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Abstract
Image-based relighting (IBL) is a technique to change the
illumination of an image-based object/scene. In this paper,
we define a representation called the reflected irradiance
field which records the reflection from an object surface ir-
radiated by a point light source that moves on a plane. This
representation is dual to that of the light field. It synthe-
sizes a novel image under a different illumination by in-
terpolating and superimposing appropriate recorded sam-
ples. Furthermore, we study the minimum sampling prob-
lem of the reflected irradiance field, i.e., how many point
light sources are needed during sampling. We find that there
exists a geometry-independent bound for the sampling in-
terval whenever the second-order derivatives of the surface
BRDF and the minimum depth of the scene are bounded.
This bound ensures that the error in the reconstructed im-
age is controlled by a given tolerance, regardless of the ge-
ometry. Experiments on both synthetic and real surfaces are
conducted to verify our analysis.

1 Introduction
Image-based Modeling and Rendering (IBMR) synthesizes
realistic images from pre-recorded images without a com-
plex and long rendering process as in geometry-based com-
puter graphics. Much of the previous work in IBMR as-
sumes that the lighting condition is fixed and the surface
is Lambertian. Obviously, these assumptions cannot fully
satisfy computer graphics needs, since illumination modifi-
cation is a key operation. Therefore image-based relighting
(IBL) receives much attention in recent years. Its goal is
to modify the illumination in an interactive fashion while
preserving correct visual appearance. This presents an im-
portant and challenging problem in IBMR.

There are several approaches for changing the lighting
condition. Wong et al. [23, 22] proposed to extend the di-
mensionality of the plenoptic function [1] in order to change
the lighting and move the viewpoint. Yu and Malik [24] and
Sato et al. [20] endeavored to recover the surface BRDF
and rough geometry. Alternatively, Debevec et al. [6] de-
fined a variant of the extended plenoptic function called the
reflectance field, to represent the radiance reflected from
human face, where dense samples were captured and in-
terpolation was ignored. At the same time, singular value

decomposition was also applied to extract a set of basis im-
ages [2, 25], where novel images were obtained by linearly
combining the basis images. All the above approaches,
however, ignored the issues of sampling and reconstruction
error. Though the relit images were visually appealing, their
correctness was never ensured.

In this paper, we propose a representation of the plenop-
tic function called the reflected irradiance field for IBL and
study its sampling problem. The reflected irradiance field
stores the reflection of surface irradiance as an illuminating
point light source moves on a plane. With the reflected irra-
diance field, the relit object/scene can be synthesized sim-
ply by interpolating and superimposing appropriate sample
reflections. Although the scene is captured with an illumi-
nating point light source, the image can be relit by any kind
of luminaire, including directional light sources.

Like other IBMR problems, IBL is a problem of sam-
pling and reconstructing the plenoptic function. Though for
IBMR, the sampling problem of the light field [14, 10] has
been studied by Lin and Shum [15] and Chai et al. [4], no
previous work has addressed the sampling problem of IBL.
Clearly, the sampling criterion of relighting and that of the
light field are different. Light field rendering is a view in-
terpolation technique. Therefore, its sampling is related to
geometry. In contrast, sampling in relighting is more con-
cerned with surface reflectance. In this paper, a theoretical
analysis on the sampling problem of the reflected irradiance
field is presented. We find that there exists a geometry-
independent sampling bound that eliminates artifacts, such
as incorrect intensity, position and size of highlights.

The rest of our paper is organized as follows. The defini-
tion of reflected irradiance field is presented in Section 2. In
Section 3, we present a theoretical analysis on the problem
“how many samples are sufficient for relighting?” Experi-
mental results are presented in Section 4. Section 5 extends
our analysis to the case of directional light sources. Finally,
conclusions and future directions are drawn in Section 6.

2 The Reflected Irradiance Field
2.1 Tri-planar Parameterization
Adelson and Bergen proposed a multi-dimensional plenop-
tic function [1] for evaluating low-level human vision mod-
els. The function describes environment appearance that
our eyes observe. Besides the six parameters for the posi-



tion and direction of the viewpoint and the wavelength of
the light, the time parameter models all other unmentioned
factors, such as the change of illuminationand the change of
environment. When it is constant, the scene is static and the
illumination is fixed. Techniques [16, 10, 14] based on this
model naturally inherit this rigidity. However, the ability to
modify the illumination configuration is very important in
computer graphics. To express the change of illumination,
we may extract an illumination component from the aggre-
gate time parameter and explicitly specify it.

In general, the illumination component is a high dimen-
sional function. It is necessary to assume a special type of
light source in order to reduce the dimension. Usually, di-
rectional light sources are used, such as the apparent BRDF
of pixels in [23] and the reflectance field in [6]. They are
simple and convenient for synthetic images. However, they
pose practical difficulties in capturing large object/scene be-
cause they can only be approximated by positioning strong
spotlights at a distance that greatly exceeds the size of the
object/scene. A point source, on the other hand, can be rea-
sonably approximated by a tiny yet strong light bulb, such
as a halogen bulb, which need not be placed far away. Be-
cause of this advantage, we do not use directional sources
like previous approaches [23, 6]. Instead, we utilize point
light sources. Nonetheless, our analysis on sampling can
be extended to the directional-source case. The extension is
presented in Section 5.

The major disadvantage of the point-source formula-
tion is that three parameters (rather than just two for the
directional-source) are needed. To reduce the dimensional-
ity, we constrain the point light source to lie on a 2D light-
source plane. Hence only two parameters �q� r� are needed.
This approach is inspired by the light field [14] and Lumi-
graph [10].

Then our extended plenoptic function can be represented
by three planes (Fig. 1). The viewpoint is constrained to lie
on the camera plane (uv plane) while the point light source
is constrained to be on the light-source plane (qr plane).
Together with the object plane (st plane), this representa-
tion requires six parameters. Each captured value in the six-
dimensional table represents the radiance reflected through
the window �s� t� and received at a certain �u� v� when the
scene is illuminated by a point source positioned at �q� r�.
In other words, this six-dimensional representation is pa-
rameterized by the light vector �q� r� s� t� and the viewing
vector �s� t� u� v�. Here we would like to emphasize that the
parameterization is in ray space. The object plane may dif-
fer from the scene object and the volume enclosed by the qr
and st planes need not be coincident with the one enclosed
by the uv and st planes.

2.2 Reflected Irradiance Field
It is apparent that the tri-planar representation reduces to
a four-dimensional light field and Lumigraph if the lighting
condition is fixed (Fig. 1(b)). On the other hand, if the view-
point �u� v� is fixed, the tri-planar representation reduces to

(b)

(a) (c)
Figure 1: The tri-planar configuration and the dual light
slab parameterization. (a) Each captured value represents
the radiance reflected through �s� t� and received at a cer-
tain �u� v� when the scene is illuminated by a point source
positioned at �q� r�. (b) The light field is parameterized by
the viewing vector and (c) The reflected irradiance field is
parameterized by the light vector.

another four-dimensional function (Fig. 1(c)). It seems that
any light vector passing through the qr and st planes can
be represented by the quadruple �q� r� s� t�. However, this
four-dimensional function does not directly represent the ir-
radiance incident on object surface, since it is the radiance
that is seen by the observer. Instead, it stores the reflected
irradiance from pixel �s� t� when there exists a point source
at �q� r�. Hence, we call this four-dimensional function of
�q� r� s� t� the reflected irradiance field.

The concept of the reflected irradiance field is close to
that of the reflectance field [6]. However, the most general
reflectance field is eight dimensional, while the reflected ir-
radiance field is only four dimensional. Moreover, the 8D
reflectance field is currently impractical because of the huge
data volume and the difficulty of acquiring the incident light
field. As a result, in [6] apart from fixed viewpoint, the in-
cident light field has to be reduced to two dimensional and
the illuminating light source is directional, which is roughly
approximated by a spot light at a mild distance. In the re-
flected irradiance field, the viewpoint is also fixed but a
point light source is used to illuminate an object. In ad-
dition, both our representation and analysis can be easily
extended to the simplified 4D reflectance field.
2.3 Relighting
The rectilinear structure of reflected irradiance field allows
us to simplify the relighting process. To determine the radi-
ance received at a given �u�� v�� reflected from �s�� t�� with
light at �q�� r��, we can linearly interpolate the values of the
nearest neighbors in the 4D reflected irradiance field in a
pixel-by-pixel manner. This interpolation process is similar
to that in light field and Lumigraph rendering. Generally
speaking, the interpolation is quadri-linear because it is bi-
linear in both st and qr. If the resolution of the output image
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Figure 2: (a) A graphical illustration of parameters in the
analysis. (b) To reconstruct the exposure when a novel light
source is positioned at q, linear interpolation (1D case) is
done among neighbors.

is the same as that of the input images, then the interpolation
reduces to bilinear interpolation in qr. Real-time relighting
can be done by utilizing the bilinear interpolation module
in texture-mapping hardware in the same fashion as [10].
Moreover, the image can be relit by various kinds of light
sources different from the one used during capturing thanks
to the linearity of light transport.

Since the relit image is synthesized from sampled ones,
it is inevitable that there is reconstruction error. If the novel
light source is on the qr plane, the interpolation error is en-
sured to be smaller than a given tolerance. This will be
studied in great detail in Section 3. However, if the novel
light source is off-plane, the error will increase due to the
lack of scene geometry. Similar phenomenon also occurs in
the light field/Lumigraph [14, 10]. Incorrect geometry may
result in incorrect ray query, incorrect interpolation weights
and incorrect intensity attenuation. The property of this off-
plane error requires further investigation.

3 Sampling Analysis for Relighting
Obviously, the quality of the interpolated image depends on
the sampling rate. In this section, we determine the maxi-
mum allowable sampling interval on the qr plane such that
the intensity error in the relit image is smaller than a user-
specified tolerance, hence eliminates noticeable artifacts in
the relit images.
3.1 Background
We assume that the camera is pin-hole and its aperture is
finite in order to collect enough light. Our analysis focuses
on local reflection. Refraction, shadowing, interreflection
and subsurface scattering [11] are all ignored. The ma-
jor assumption in our analysis is that the BRDF (�) in the
scene must be second-order differentiable and its second-
order derivatives are bounded. It is a reasonable assump-
tion because a wide range of reflectance models satisfy
this assumption, including the Lambertian model, Lafor-
tune model [13], Ward’s anisotropic model [21] and Oren
and Nayar’s non-Lambertian model [17].

As the camera records exposure instead of irradiance
directly, we move on slightly to exposure. Referring to
Fig. 2(a), the exposure at the pixel of �A is:

E � Iv�t�

where Iv is the irradiance at the pixel of �A and �t is the ex-
posure time. Iv is related to the intensity of the light source
via [12]:

Iv � cos� ��Ff��Ir � Ir � ���� ���� ���d��Il�

where � is the incident angle at �C w.r.t. the optical axis of
the camera, �F is the area of aperture, f is the camera focal
length, Ir is the reflected radiance at �A towards �C, � is the
surface BRDF, d is the distance between the light source and
the surface element, Il is the radiance of the light source,
and ��� �� and ��� �� are the local directional coordinates of
�L and �V w.r.t. local frame f �N , �M ,�Pg at �A1, respectively.

Hence
E � ���� ���� ��	��

where

���� ���� �� � ���� ���� ���d��� 	� � Il�F�tf��


cos� � disappears because most cameras are designed to
eliminate the diminishing artifact introduced by it.

As 	� is constant throughout our analysis, the change
of exposure depends on � only, which is a function of the
light source position �q� r�. Therefore we analyze how �
changes as the point light source moves on the qr plane.

3.2 Problem Formulation
When a novel point light source is positioned on the qr
plane but not at any sample point, the exposure can be inter-
polated by those recorded values from neighboring qr grid
points. Throughout the analysis, we assume that bilinear in-
terpolation is used for reconstruction since it is simple and
can yield satisfactory image quality.

To simplify the discussion, we now look into the 1D in-
terpolation along dimension q (Fig. 2(b)). Then the bilinear
interpolation becomes linear.

Given an error tolerance �, we want to find the maximum
allowable spacing between samples along the q-axis such
that the difference between every reconstructed exposure
and the true exposure is smaller than �. Obviously E is not
band limited. Therefore, if the exposure is treated in a con-
tinuous manner, it is usually impossible to exactly recon-
struct the reflected irradiance field from discrete samples.
However, exact reconstruction is unnecessary due to quanti-
zation, or the mapping from exposure to discrete greylevels.
If the greylevel corresponding to the interpolated exposure
is identical to that of the exact exposure (signal-level re-
construction) or the difference is not visually noticeable
(perception-level reconstruction), we may still say that the
reflected irradiance field is perfectly reconstructed. Hence
the sampling problem can be formulated mathematically as
follows:

Find the maximum allowable spacing �q between the
sampling grids, such that

j�E�q�� � ��� ��E�q���E�q�j � �� � �A� and ��q�� q�� q�
satisfying � � q� � q� � �q and q� � q � q��

where � � jq�qjjq�q�j.



Figure 3: An exposure curve can be plotted for each pixel
in the image as the light source moves along q. Curve a is
for the pixel marked ‘a’, while curve b is for the pixel ‘b’.

3.3 Geometry-Independent Sample Spacing
We find that there exists a geometry-independent bound
for the qr sampling interval whenever the object BRDF is
second-order differentiable and the second derivatives are
bounded. As long as the sampling interval does not exceed
the bound and the novel light source lies on the qr plane,
the reflected irradiance field can be correctly reconstructed
without knowing any geometric information, neither depth
nor normal. This is important as surface reflectance depends
heavily on the normal and acquiring accurate normal is even
harder than acquiring depth.

For a pixel of interest, we can plot the curve of its expo-
sure as a function of q as the light source moves along the
q-axis. Fig. 3 shows the plots for two specific pixels in the
left image. The difference in the shape of the curve is due to
the surface normal orientation of the surface element visible
through the pixel, and the distance from this surface element
to the light source. Given a tolerance �, one can find an opti-
mal sampling interval �qi for each specific curve such that
the difference between the linearly-interpolated value and
the true value is smaller than �. For example, in Fig. 3, the
optimal sample spacing for pixel ‘a’ is �q�, while it is �q�
for pixel ‘b’.

If we find the minimum sample spacing among all possi-
ble �q (i.e. all possible combinations of normal orientation
and depth), we can ensure that the reconstruction is correct
(within a tolerance) without knowing the geometric details
of the scene. Fig. 4 illustrates this idea graphically. All we
need to know is the BRDF and the minimum distance zmin

(see Fig. 2(b)) between the object and the qr plane. In the
following, we show that for BRDFs with bounded second-
order derivatives, the bound is positive.

From interpolation theory, there exists �q � 	q�� q�
, such
that,

E��E�q��������E�q���E�q�� �
��q�q���q��q�E

��
qq��q��

where f ��ij stands for ��f

�i�j
(similar notations are used in the

sequel for simplicity). Therefore,

jEj � �
�

h
�q�q����q��q�

�

i�
	�B� � �

���q��	�B�� (1)

1 �P is not drawn since it is perpendicular to the page.

Figure 4: Since the surface element (indicated by spheres)
can be located anywhere (indicated by the color of the
spheres, where darker color means larger depth) behind
zmin (see Fig. 2(b)) and may have any normal orientation
(indicated by the arrows), the minimum sample spacing
�qmin is found among all possible normal orientations and
all possible depths.

where
B� � G
I
max j���

qq�q�j�

or the geometry-independent upper bound of j���
qq�q�j. In

other words, B� is the maximum value of j���
qq�q�j for all

possible positions of the light source and all possible posi-
tions and orientations of �A.

For a general BRDF, we can prove, by a hybrid method
of numerical computation and analytical deduction, that
if the second-order derivatives of the BRDF are bounded,
then:

B� � �zmin���max�������fj�����j� 
��j�����j�


���j�����j� �
��j���j� �
��j���j� ��g�
(2)

where �� and ��� are 1st-order and 2nd-order partial deriva-
tives of �, respectively, and zmin is the minimum depth of
the scene w.r.t. the qr plane. Due to space limitations, we
omit the details of the proof here. However, the complete
proof for the Lambertian case is given below.

From Equations 1 and 2, we know that the geometry-
independent upper bound of the sampling interval exists.
Unfortunately, the analytic bound provided by the right
hand side of Equation 2 is usually much larger than B�, ex-
cept for the Lambertian bound shown below. Therefore, it
is better to find the bound by direct numerical computation.
In our experiments, we simply performed full search to find
B�. One trick is that searching along depth is unnecessary
because B� must be attained when the depth of the surface
element is zmin.

With B� computed and by making the right hand side of
Equation 1 less than �, the sufficient bound for �q (sample
spacing) is:

�q �

r
��

	�B�

 (3)

It can be seen that the sampling bound is tightly related
to the maximum magnitude of the second-order derivatives
of the BRDF. With the geometry-independent bound, we
can use identical sampling intervals on the qr plane to sam-
ple the reflected irradiance field, regardless of the actual
geometry. Next, we show the bounds of two popular re-
flectance models in computer graphics, namely Lambertian
and Lafortune models.



(a) 0.0938 (sufficient) (b) true image (c) 0.187 (insufficient)

Figure 5: Results of relighting a glossy Lafortune surface.
The sampling bound is 0.103. (a) When the sample spacing
is sufficient, no observable error can be detected. (b) The
true image. (c) When the sample spacing is larger than the
sampling bound, the reconstruction error is apparent. Note
that the highlight is blurry and dim.

3.3.1 Lambertian Bound
For Lambertian surfaces, � � ��. After some manipula-
tion, we have

���
qq � ����d����� � �n�l� � ��l����

where �n�� n�� n	� and �l�� l�� l	� are the global directions
of �N and �L, respectively.

Since
� � �n�l� � 
�l�

�
� n��	� 
l�

�
�l� � n���� 
l�

�
�l� � n���� 
l�

�
�l� �

j�Lj � �, and j �N j � �, using Cauchy’s inequality, we have

j� � �n�l� � 
�l�
�
j �

p
��	�
l�

�
�l�������
l�

�
�l� ������
l�

�
�l� �

�
p


l�
�
��l�

�
��

Therefore

j���
qqj � h�q� � ����d��

q
�l�� � �l�� � �


Taking the partial derivative of h�q� shows that
max
q
fh�q�g � h�q�jl���� hence

B� � �����zmin�
��


It can be seen that for some special surface elements the
equality holds.

3.3.2 Lafortune Bound
Another model of interest is the Lafortune model [13] be-
cause of its capability of modeling a wide range of reflection
phenomena including diffuse, specular, off-specular, non-
Lambertian, anisotropic and retro-reflection.

In the Lafortune model,

���� ���� �� �
X
i

�Ci�����Ci���� �Ci�	���
ki �

where ��� �� �� and ��� �� �� are the local coordinates of the
normalized vectors �L and �V , respectively, i is the index of
cosine lobe, and Ci��, Ci��, Ci�	 and ki are the parameters
defining the nature of surface reflectance.

An analytic bound of B� in the case of the Lafortune
model is:

B� � �zmin�
��
X
i

bi��
���k
�
i � �
��ki� �
�����

where bi � maxfjCi��j
ki� jCi��j

ki � jCi�	j
kig.

The basic idea for deriving the Lafortune bound is the
same as that for the Lambertian case, but the details are
more complex and are skipped due to page limit.

4 Experimental Results
To verify our analysis, we carried out experiments on both
synthetic and real images. Before going through the exper-
imental details, we need to choose a reasonable error toler-
ance �. It can be chosen to be the smallest exposure differ-
ence between two successive greylevels to achieve signal-
level reconstruction. However, images captured by CCD
cameras usually contain noise of around 9 greylevels. There
also exists noise in synthetic images generated by renderers
utilizing stochastic sampling [5]. Moreover, the visual dif-
ference of a few greylevels is not apparent. Therefore, we
suggest choosing a tolerance of about 16 greylevels.

For synthetic experiments, we only consider the surface
radiance and hence those parameters of a real camera, f ,
�F and �t, are not taken into account. Since the mapping
from computed radiance and greylevel is linear, the error
tolerance � can be set as:

� �
ne
���

Imax�

where ne is the tolerable error in greylevel, and Imax is the
radiance that corresponds to greylevel 255.

A glossy surface is chosen for testing. It is represented
by the Lafortune model. The qr plane is placed at a distance
of 2 units from the glossy dinosaur object. In this case, the
computed bound of the geometry-independent sampling in-
terval is 0.103 when the error tolerance is 16 greylevels.
Fig. 5(a) and (c) show the relighting results from images
sampled with spacing 0.0938 and 0.187 on the qr plane re-
spectively. Information on sample spacing is also shown at
the bottom of each image. The true image is shown in the
middle (Fig. 5(b)) for better visual comparison. It can be
seen that there is no observable difference between the suf-
ficiently sampled one in Fig. 5(a) and the true image, while
the image in Fig. 5(c) exhibits blurry and dimmed high-
lights. The blurriness and dimness are due to the incorrect
blending of reference images with spatially-different high-
lights.

To carry out the experiment on real surfaces, we built
a computer-controllable system that precisely moves the
point light source over a vertical X-Y table. The experi-
ment setup is shown in Fig. 6(a) where the left part is the
computer-controlled qr plane and a halogen bulb is used
to simulate a point light source. The whole capture pro-
cess took place in a dark room with the halogen bulb as
the sole light source, and measures were taken to minimize
the interreflection between the object and the environment.
Moreover, the camera aperture and exposure time are care-
fully tuned in order to minimize the saturation.

Both radiometric and geometric calibration are neces-
sary in real experiments. For radiometric calibration, we
applied the algorithm in [7] to recover the response func-
tion of the camera. The error tolerance � can be set as:

� � Ee �Emax�

where Ee � �� �� is the tolerable error in exposure that cor-
responds to tolerable error ne in greylevel, and is normal-



(a) 1 cm (sufficient) (b) 2 cm (c) 4 cm (d) 8 cm

(e) 1 cm (sufficient) (f) 2 cm (g) 4 cm (h) 8 cm
Figure 7: Results of relighting steel surfaces. The sampling bound is 1.01 cm. Upper row: Surface 1. Lower row: Surface 2.
(a) & (e): The sample spacing is just below the sampling bound. Note that highlight and glare are well preserved. (b) to (d)
& (f) to (h): The sample spacing is insufficient. Hence the highlight and glare are separated.

(a) (b)
Figure 6: Elements of real experiments. (a) Experiment
setup. (b) Real surfaces tested in the experiment.

ized by Emax. Exposure Emax corresponds to the greylevel
255. It can be found by shooting the camera at the light
source and tuning down both the aperture and the exposure
time until the light source produces a greylevel near 255. In
this way, we only need to record the aperture and the ex-
posure time, without measuring the focal length because it
will be cancelled during computation.

For geometric calibration, we applied the toolbox in [3]
to compute the intrinsic parameters and the algorithm de-
scribed in [8] to compute the transform between the coor-
dinates of the camera and the light source plane. Since the
FOV of the camera confined the camera to viewing both
the light source and the object, during calibration phase
we fixed a thin, light and long straight bar beside the light
source and perpendicular to the qr plane so that the cam-
era can see its far-reaching end. By taking images of the
bar when the light source was moved on the qr plane, the
transformation matrix could be computed because both the
intrinsic parameters of the camera and the positions of the
end of the bar were known.

Fig. 6(b) shows the two real surfaces we have captured
for verification. Both surfaces 1 and 2 were made of steel
and are anisotropic. They were both by 52cm away from the

qr plane. With the Lafortune coefficients we found for the
surface BRDF, the geometry-independent bound is 1.01cm
when the error tolerance is 16 greylevels.

Fig. 7 shows the result of relighting from image sets with
different sampling intervals. Results of surfaces 1 and 2
are shown in the upper and lower rows respectively. The
leftmost images (Fig. 7(a) & (e)) are the results of suffi-
ciently sampled image sets. From left to right, the sampling
rate is reduced, each time by a factor of 2. As shown in
Fig. 7(b) to (d), the highlight band incorrectly enlarges and
double images of the highlight appear in (c) & (d) due to
the blending of undersampled images. Moreover, the glare
at the edge (left hand side) of the disk becomes separated
except for the sufficiently sampled one in Fig. 7(a). Simi-
larly, from Fig. 7(e) to (h), double images of the highlight
appears when the scene is undersampled. Note that the glare
due to highlight is also separated in Fig. 7(f) to (h).

5 Extension to Directional Source
Our analysis can be easily extended to the case when a di-
rectional light source is used during scene capture. Instead
of determining the maximum allowable sample spacing �q,
we can calculate the maximum allowable sampling angle
�� � �qzmin (in either latitudinal or longitudinal direc-
tion).

Rewrite Equation 3 as:

�q

zmin

�

r
��

B�z�min
� Ilf���F�t

	

r
��


B��Il�z�min
���

�

where �B� � B�z
�
min . In fact, �B� is the max term in

Equation 2. Ilz
�
min is the emitted radiance of the direc-

tional light source. We can denote this term by �Il. Making
zmin � �, we obtain the angular sample spacing for the
directional light source as:

�� �

r
��

�� 
B�

�

where 	� � �Ilf���F�t.



6 Conclusions and Future Work
In this paper, we have defined the reflected irradiance field
for image-based relighting and studied its sampling prob-
lem. The reflected irradiance field is based on a tri-planar
representation for the extended plenoptic function that al-
lows the change of both the light source and the view-
point. For its sampling problem, we prove that there ex-
ists a geometry-independent bound of the sampling inter-
val, which is analytically related to the BRDF of the scene.
Our analysis can be straightforwardly extended to the case
of directional light sources. Experiments are conducted to
verify our theoretical analysis.

Currently we choose the error tolerance according to a
physically-based metric, so we refer to it as the radiomet-
ric tolerance. In some cases, humans may not notice arti-
facts even though the radiometric error is large in the re-
constructed image. What is interesting and useful for future
work is to determine the photometric tolerance which takes
the response function of human vision into account. Re-
cent work in psychophysical computer graphics [18, 9] pro-
vides a psychophysical framework for measuring the sen-
sitivity of human vision to artifacts due to undersampling.
Another way to incorporate human perception into our sam-
pling analysis is to analyze the bounds of the psychophysi-
cal reflection model that was recently proposed [19].

In the current work, we have not embarked on the com-
pression problem of the reflected irradiance field. In our
experiments, all the data are stored in uncompressed form
and the volumes vary from 240MB to 320MB. Some com-
pression techniques, such as vector quantization, JPEG, and
wavelet transform, can be utilized to reduce the data vol-
ume. Random-access and selective decoding must be con-
sidered in selecting compression schemes to improve the
performance of our relighting system.
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