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Figure 1: An example of image color theme enhancement using our method. Left: Original image; middle: recolored result with the
“nostalgic” color theme, and right: recolored result with the “lively” color theme.

Abstract

It is often important for designers and photographers to convey or
enhance desired color themes in their work. A color theme is typ-
ically defined as a template of colors and an associated verbal de-
scription. This paper presents a data-driven method for enhancing a
desired color theme in an image. We formulate our goal as a unified
optimization that simultaneously considers a desired color theme,
texture-color relationships as well as automatic or user-specified
color constraints. Quantifying the difference between an image
and a color theme is made possible by color mood spaces and a
generalization of an additivity relationship for two-color combina-
tions. We incorporate prior knowledge, such as texture-color rela-
tionships, extracted from a database of photographs to maintain a
natural look of the edited images. Experiments and a user study
have confirmed the effectiveness of our method.
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1 Introduction

Designers and photographers carefully conceive the color compo-
sition of their posters or images to convey desired color themes.
Psychological studies confirm the strong associations between col-
ors and semantic themes. For instance, “graceful” is often associ-
ated with a combination of pinkish and purple colors while “sad”
is typically defined using a combination of blue and grey colors.
In general, a color theme is a template of colors and an associated
verbal description. Given a color theme, our goal is to perform
color theme enhancement of an image, which seeks a global trans-
formation of the colors in the original image so that it maintains
the realism of natural images while the new color composition is
perceptually close to a desired color theme. This paper develops
techniques that can digitally enhance a desired color theme in an
image through means of image processing.

Unfortunately, editing the color composition of an image to en-
hance a color theme can be a painful experience. Powerful com-
mercial software, such as Photoshop, does not explicitly support
color theme editing. A user may have to search for suitable image
editing operations that can achieve a desired color theme through a
large number of trials. Furthermore, such software typically maps
the original colors to a new range of colors in a global manner,
mimicking the effect of an optical color filter. Such an approach
relinquishes control and may result in over-modification and unnat-
ural results (e.g. leaves may be colored in blue).

On the other hand, directly forcing image regions to closely fol-
low colors from a desired color theme may sometimes be over-
aggressive and violate commonsense knowledge, especially when
the color theme is dramatically different from the original colors in
the image. For example, leaves may be colored in blue. As natural
materials, such as grass and tree bark, are usually recognized via
their textures, we propose to learn the relationships between texture
classes and color histograms. With this texture-color knowledge,
we can suppress over-aggressive coloring.

Hence, a desired approach should automate color editing according
to a user-desired theme, while respecting natural textures and leav-
ing sufficient control to users. In this paper, one of our major contri-
butions lies in casting the problem of color theme enhancement as



an optimization problem that searches for a new color composition
of the input image that approximately matches the desired color
theme while still making the image look natural. Our optimization
tries to balance among the colors of a desired theme, the colors of
natural materials as well as user-defined color constraints.

Another contribution of this paper is the quantification of differ-
ences between an image and a color theme. Note that an image has
a large number of pixels while a color theme is typically defined
by a small template of colors and a vague verbal description such
as “graceful” and “African painting ”. To quantify the differences
between the two, we use color mood spaces developed through psy-
chophysical studies [Ou et al. 2004a]. Both the image and color
theme are first mapped to points in a color mood space and their
differences are computed as the distance between the points.

Our system can automatically modify the colors of input images
once the user selects a desired color theme. To achieve flexible
local control and facilitate color propagation, we divide the image
into multiple soft segments. A user can incrementally refine the
color assignment by scribbling on any interested local regions with
desired colors. Our system treats such user-specified colors as soft
constraints in the optimization. In the rest of this paper, we describe
in detail our algorithms and demonstrate the effectiveness of our
method with experimental results and a user study.

2 Background and Related Work

2.1 Related Work

Color Editing and Transfer. Much work has been performed
on image color transfer and editing. Early work on color trans-
fer [Reinhard et al. 2001] performs a statistical analysis to impose
the color characteristics of one image onto another. When two im-
ages are not compatible, users may have to manually set swatches
for each color region to define a match between them. Welsh et
al. [2002] introduces a technique for transferring the chromatic in-
formation from a color image to a grayscale image. Similarly, the
procedure was enhanced by allowing users to match areas of the
two images with rectangular swatches.

To avoid this, Chang et al. [2005] proposed an automatic approach
to stylize an image. This method captures the statistical character-
istics within each image category, and color transfer is only per-
formed between images within the same category. Recently, Piti et
al. [2007] extended [Reinhard et al. 2001] by finding a linear map-
ping to minimize the displacement cost. Their solution is based on
the Monge-Kantorovitch (MK) theory of mass transportation and
can avoid odd results to a certain extent. Nevertheless, the quality
of the results still relies on the compatibility between source and
reference images.

Bae et al. [2006] and Lischinski er al. [2006] focus on effective
tone adjustment through manipulating the luminance channel only
while Cohen-Or et al. [2006] performs color adjustment according
to harmonization rules. Recently, Shapira et al. [2009] proposed
an interesting method to edit image appearances interactively using
Gaussian mixture models (GMM). Though their editing results may
potentially convey a certain mood or theme, their technique was not
originally designed for steering the colors in a given image towards
a specific color theme while our technique in this paper has been
designed for image color theme enhancement.

Edit Propagation. Manually editing the appearances of images
and videos is a labor intensive process even using commercial soft-
ware such as Photoshop. Recently, intuitive stroke-based meth-
ods [Levin et al. 2004; Lischinski et al. 2006; Qu et al. 2006; Luan
et al. 2007; Pellacini and Lawrence 2007; An and Pellacini 2008]
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Figure 2: A list of popular color themes from Adobe Kuler. Left:
the color templates. Right: the associated verbal descriptions.

have been proposed to simplify this process. In these methods,
users need to supply edits by drawing scribbles in different regions.
These edits automatically propagate to the rest of the image by ex-
ploiting the constraint that pixels with high affinities should receive
similar edits. Among them, An and Pellacini [2008] develop a gen-
eral and robust framework by efficiently approximating the all-pairs
affinity matrix. In this paper, we adapt this edit propagation method
to obtain a soft image segmentation. More recently, an acceleration
technique for affinity-based edit propagation has been developed in
[Xu et al. 2009] using adaptive clustering based on k-d trees.

2.2 Color and Mood

Research on relationships between colors and their evoked mood
or emotions has a long history. Much work [Sato et al. 2000; Ou
et al. 2004a] has also been devoted to the development of quanti-
tative color mood models. Such models give specific formulae to
calculate mood scales from color appearance attributes such as lu-
minance, hue and chroma. In particular, Ou et al. [2004a] proposes
a three-dimensional color mood space which agrees well with find-
ings in [Sato et al. 2000]. In Ou ef al. [2004a]’s psychological ex-
periments, 20 colors on 10 color mood scales, such as warm-cool,
heavy-light and tense-relaxed, were assessed by a number of ob-
servers from different countries. Three major factors were extracted
from these ten different scales using Principle Component Analy-
sis (PCA). Each factor corresponds to one of the first three prin-
cipal components and is partially associated with multiple mood
scales. For example, the second factor is partially associated with
the following mood scales: hard-soft, heavy-light and masculine-
feminine. The three extracted factors are named activity, weight,
and heat, respectively, and form the three coordinate axes of their
three-dimensional color mood space. Ou et al. [2004a] further pro-
poses empirical formulations that quantitatively connect the color
mood space with the CIELAB color space (see Appendix for more
details). In this paper, we rely on such a color mood space to com-
pute the differences between an image and a color theme.

In [Ou et al. 2004b], three similar factors have also been identified
by PCA for color pairs, indicating a coherent color mood space for
a single color and two color combinations. More importantly, the
additivity relationship [Hogg 1969] was found to hold for color
moods evoked by two-color combinations. This means the color
mood coordinates of a color pair in the three-dimensional color
mood space can be predicted by simply averaging the color mood
coordinates of individual colors in the pair. Since pixel colors in
an image may form more than two color clusters, inspired by [Ou
et al. 2004b], we propose to generalize the additivity relationship
to color combinations with more than two individual colors in this

paper.
3 Overview

The framework of our system is illustrated in Figure 3. It consists of
an offline phase (lower row) and a runtime phase (upper row). Prior
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Figure 3: The overall pipeline of our framework. Each sub-image in (b) is an influence map of a soft segment. Each soft segment finds the most
relevant texture class in (f) and adopt the corresponding color histogram in (g). The histograms in (g) are further converted into continuous
probability density distributions using Gaussian Mixture Model(GMM). The user needs to select a desired color theme from (d), then our
optimization solver takes the prior knowledge (color probabilities), the desired color theme and the image segments into consideration to

generate final recolored images in (h).

knowledge of texture-color relationships is obtained in the offline
phase and such relationships are further converted to probability
density functions (Section 4). Since our color theme representation
(3- or 5-color) is compatible with industrial practices, we allow the
usage of popular color themes available from online communities,
such as Adobe Kuler.

During the runtime phase, we first compute K soft segments(/
usually is set from 5 to 12, depending on the images). Mathemati-
cally, every pixel ¢ in an image is associated with a /K'-dimensional
vector, Pr = (P, ...y Pirc), Zfil P/, = 1, where P}, is the prob-
ability of pixel ¢ belonging to segment 7. The probability vectors
over all pixels of a given image define a new image with K chan-
nels. We adapt the edit propagation method in [An and Pellacini
2008] to obtain K soft segments starting from seed patches, which
can be user-specified (via scribbling) or automatically generated
based on texture labeling (described in Section 6). The colors of
the resulting K soft segments form the unknown variables in the
subsequent optimization.

The user starts an editing session by choosing a desired color theme
from a list (obtained from existing literature or online communi-
ties). Then our goal is to recolor each soft segment so that the
overall color composition of the recolored image approximately
matches the chosen color theme while retaining the natural appear-
ance of the original image. This is achieved via an optimization that
tries to balance between the colors of a desired theme and the colors
of natural materials. For an image segment with texture patterns,
we use the texture descriptor of the segment as a key for search-
ing the best matched texture class in our texture library (obtained in
the offline phase), and use the corresponding color probability den-
sity function to constrain the optimization. Users can fine-tune the
color composition by scribbling on selected image segments. User-
specified colors are regarded as soft constraints in the optimization.

The optimization is detailed in Section 5.

After optimization, the i-th soft segment is assigned with a target
average color c¢;'. Hence, the i-th channel (which corresponds to the
i-th soft segment) of a pixel can be recomputed by multiplying the
ratio ¢j /cf, where ¢ is the original average color of the soft seg-
ment. The final color of a pixel is computed by linearly combining
colors from all channels. Specifically, the final color of pixel ¢ is
equal to Zfil Py (clr/c9)ce, where ¢ is the original color of pixel
t.

4 Data-Driven Prior Knowledge Extraction

Color Theme Based Image Labeling We start with building two
databases in an offline phase, one is a color theme database and the
other is an image database. The theme database consists of repre-
sentative color themes from existing literature and online commu-
nities such as Adobe Kuler (Figure 2), and the image database was
built by randomly choosing a subset of tens of thousands of color
images downloaded from Flickr. We then use the theme database to
label each image from the image database. Specifically, we set up
discrete histogram bins by quantizing colors from these images in
the CIELAB color space using the K-means algorithm. A normal-
ized color histogram was computed for every image. Since a color
theme is typically associated with a template of 3 or 5 colors, we
use the colors corresponding to the 3 or 5 most frequent bins in a
histogram to form a color composition of the corresponding image,
and compute the distance between this color composition and ev-
ery chosen color theme based on Earth Mover’s Distance [Rubner
et al. 1998]. Every image in the database is labeled with the closest
color theme. In this way, each adopted color theme has at least 500
automatically labeled images.
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Figure 4: Color histograms for textures “sky” and “grass” among
all images labeled with the same color theme. Their top five color
bins are visualized by setting L=60 (as luminance is excluded dur-
ing indexing).

Texture-Color Relationship Textures of natural materials are
usually highly correlated with certain color combinations. For ex-
ample, the “grass” texture is more likely to be associated with the
green color than the blue color. Furthermore, such color associ-
ation may vary across different color themes. For example, in a
lively theme, the grass texture may be most frequently associated
with the green color while in another bleak theme, it may be more
frequently associated with the yellow color. For these reasons, we
build color histograms indexed by both color themes and texture
classes.

We start with the extraction of a universal texture library. 200
classes of textures are extracted from images across all adopted
color themes. We achieve this by first dividing each image into
small patches using the method in [Felzenszwalb and Huttenlocher
2004]. Then we calculate the mean and standard deviation of the
pixelwise Gabor filter (scale=4, rotation=6) responses within ev-
ery patch [Manjunath and Ma 1996]. This gives rise to a 48-
dimensional texture descriptor for every patch. We cluster these
texture descriptors using the K-means algorithms [Leung and Ma-
lik 2001](K=200). The cluster centers define the texture library.
During the indexing of color histograms, only the chrominance
channels (a™ and b™) of the CIELAB space are involved, as the lu-
minance channel is mainly due to the lighting condition instead of
the body color of texture. We empirically set up 100 histogram bins
by running vector quantization over this 2D subspace only. The
number of histogram bins was determined arbitrarily, and a larger
number is likely to further improve the results. As the correlation
between chrominance values and texture classes may also be de-
pendent on the color theme, for each set of images labeled with the
same color theme, we compute a family of color histograms, one
for each class of texture. Figure 4 shows two typical histograms for
sky and grass textures.

Continuous Probability Density Estimation Since much of the
statistical knowledge we gathered from the example images is ex-
pressed as color histograms with discrete bins, it would be help-
ful to convert these histograms into continuous probability density
functions for subsequent gradient-based color theme optimization
in the following section. We still represent colors in the CIELAB
color space. The set of histogram bins for each class of textures is
denoted as U, and each histogram bin represents a combination of
the a* and b* channels. For an image segment s;, we first identify
the most likely texture class for s;, which is denoted as 7;. Let
us further use H7; to denote the pre-computed color histogram in-
dexed by 7; and the color theme currently selected by the user, and
use h; € {1,2,...,|U|} to denote the label of a color bin cor-

responding to a base color (a},bj) € U. The frequency of the
base color can be expressed as Hr, (h;). To estimate the under-
lying probability density, we construct Gaussian Mixture Models
(GMMs) from discrete histograms. For any color ¢ = (If, af, b})
(I, ay and b; are the three channels in the CIELAB space respec-
tively), its probability density in texture class 7; is expressed as
follows.
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where o; is estimated as the average distance between (aj, b} ) and
the base colors of its three nearest color bins. Figure 5 shows ex-
amples of continuous models based on this construction.

Figure 5: Continuous probability density functions for sky (Left)
and grass (Right) textures respectively, converted from discrete his-
tograms

5 Color Optimization

We cast image color theme enhancement as an optimization prob-
lem, which tries to strike a balance among the selected color theme,
the precomputed texture-color relationships as well as color con-
straints. Suppose there are K soft segments in a given image. The
color composition of this image is optimized by searching for an
optimal state for every segment so that the edited image exhibits
the desired theme. The energy function is defined as follows.

E = aF: + BE; + vEs, 2)

where

léi — &’||?, ascribble over segment s;
lléi — &°||?, otherwise

v = {

and ¢; = Ci.., %max = argmax; Pt;.

FE) defines the first energy term which indicates how well soft color
constraints are satisfied. ¢; denotes the new color of segment s;
that needs to be optimized. It has three channels. ¢;° denotes the
average color of a representative patch of s; in the original image
while ¢;’ denotes the color of a scribble. We take these two types of
colors as soft constraints for scribbled and non-scribbled segments
respectively. An important reason why we take the original colors
of non-scribbled segments as soft constraints is that we would like
to alter the original image as little as possible but still significantly
enhance the desired color theme.



Color distance is computed using the Euclidean distance. FEs in-
corporates color preferences encoded in the underlying probability
density function H/:q to ensure naturalness and realism. We take
the negative logarithm of the probability density H'Ti (&) to penal-
ize colors that are not probable in the example images.

FE5 is a least-squares energy term, which steers the color compo-
sition of the image towards the desired color theme. Note that an
image has a large number of pixels while a color theme is typically
defined by a small template of colors. They are not directly com-
parable. To overcome this problem, we rely on a three-dimensional
color mood space. Both the image and color theme are first mapped
to three-dimensional points in this color mood space and their dif-
ference is then computed as the Euclidean distance between the
points. In this paper, we adopt the three dimensional color mood
space (activity, weight, and heat) developed in [Ou et al. 2004a].
Note that our optimization formulation does not prevent us from
using other color mood spaces.

The first part of E'3 maps the edited image to the color mood space.
Here N denotes the number of pixels in the image. For computa-
tional efficiency, instead of linearly combining colors from multi-
ple segments, the current color ¢; at pixel ¢ is approximated by the
color of the most probable segment at ¢. F transforms a color from
the CIELAB color space to the color mood space. Detailed for-
mulations of F can be found in the appendix. By generalizing the
additivity relationship in [Ou et al. 2004b], we calculate the color
mood of an image by averaging the color mood of every pixel. The
second part of F’3 maps the chosen color theme to the color mood
space. By transforming the colors in the color theme to the color
mood space and taking average of the transformed results, we are
able to represent a color theme as a 3D vector. Here m is the num-
ber of distinct colors in the color theme, and c_,i represents a specific
color in the color theme. m = 3, 5 in our experiments.

«, B and +y are the weighting coefficients of F1, F2 and E3 respec-
tively. In general, we fix one of them and adjust the other two. For
example, in our experiments, we set v to 1 and 8 10-50 times as
large as a. These three terms altogether try to make the recolored
image perceptually consistent with the desired color theme while
ensuring naturalness and realism. Figure 6 demonstrates the im-
portance of the optimization. Figure 7 shows the importance of
the energy term FE73 in steering the image towards the color theme.
Projecting an image to the color mood space discards much infor-
mation, therefore, E'3 has a low discriminative ability. There exists
a large number of distinct color compositions that can minimize
E5. However, our goal is to find the optimal composition that also
makes the image look natural and realistic which cannot be guaran-
teed only through E3. By incorporating £ and E» into the energy
function, we can narrow down our choice.

Figure 8 shows the importance of prior knowledge in enhancing
the realism of the result for a texture image. For images with rich
textures, automatic results without any user scribbles are often ad-
equate. For textureless image segments, however, prior knowledge
can not provide enough constraints. To avoid over-modification and
unnatural results, we adopt the average color of the segments in the
original image as soft constraints(Figure 9 (b) and (c)). We also
support user scribbles to facilitate local adjustment. Users can give
a rough hint of their preferred colors by directly scribbling on the
regions (Figure 9 (d) and (e)).

In practice, we minimize the energy function in Equation (2) us-
ing sequential quadratic programming (SQP) [Lawrence and Tits
1996]. SQP is well suited for optimizing differentiable objective
functions subject to linear and/or nonlinear constraints as well as
simple bounds on the variables. In our problem, the color channels
we wish to optimize have both lower and upper bounds. The ac-

Figure 8: Left: an input image and a color theme. Middle: result
image without E>. Right: result image with Es.

tual bounds we use are [0, 100] for the L channel and [—126, 126]
for the A and B channels. We adopt the FSQP [Lawrence et al.
1997] package in our implementation. To apply FSQP, we need
to start with an initial feasible solution. We simply generate such
an initial solution by sampling near the original image colors for
non-scribbled segments and sampling near the scribble colors for
scribbled segments. Experiments show that such a selection strat-
egy makes SQP converge more quickly than a purely random initial
solution.

5.1 Automatic Theme Driven Scribbles

To effectively steering an image towards a given color theme,
we automatically generate color scribbles over a subset of image
segments. There is an automatic scribble associated with every
color from the template of the target color theme. We still need
to decide which image segment an automatic scribble should be
drawn over. Suppose there are K segments (KX > m). De-
note ¢, (I € 1,2,...,m) as one of the colors in the theme,
Wi = % 3| 8i, argmax, P,, Where d;; = 1 when i = j, and
d;; = 0 otherwise. Then the segment where ¢y, should be scribbled
over is determined as follows.

- T -0
argmax w;cr; - ¢; -, 3)
J

where c}o is the average color of segment s; in the original image.
Intuitively, a color in the theme is assigned to a segment with a large
area and a similar average color. We choose an appropriate segment
for each color in the theme one by one using this greedy method.
Note that each segment can be chosen only once in this process.

6 Soft Segmentation

Our soft segmentation mainly follows the method in [An and Pel-
lacini 2008] except for an extra step at the end to convert edit prop-
agation results to probability channels. Suppose there are K seed
areas, each of which is assigned a distinct scalar number. The seeds
along with their assigned numbers serve as edits for the algorithm
in [An and Pellacini 2008], which propagates these edits and gener-
ates an influence value for every pixel. Suppose the scalar numbers
in the K edits are {v1,v2,...,vx } (0 < v; < 1) and the influence
value at pixel ¢ is f; (0 < f; < 1). We define the probability vector
for pixel ¢ as follows.

2 K 2
Pl; = exp (%) /jz::lexp (%) ,i=1,.., K
C))

where « is used to control the “softness” of the segmentation. When
« approaches zero, the largest channel approaches 1 while all other
channels approach 0, which becomes a “hard” segmentation. When



Figure 6: Left: an input image and a color theme. Middle: image generated by the greedy initial assignment in section 5.1, without further

optimization. Right: final image with further optimization.

Figure 7: Left: an input image and a target color theme. Middle: result image without Es. Right: result image with Es.

« approaches infinity, all channels approach 1/K. An appropriate
« should keep one of the channels dominant (P;; > 0.5) while
also maintaining smooth transitions across segment boundaries. We
typically set « between 0.2 and 0.5.

Automatic Generation of Seed Areas For complex images, it
is tedious for a user to scribble all seeds for soft segmentation.
Thus, we provide an option to generate seed areas automatically.
We over-segment the input image into many small patches [Felzen-
szwalb and Huttenlocher 2004] and compute the average color and
Gabor-wavelet texture descriptor for every patch. The basic idea
for automatic seeding is to label every patch with a texture class so
that nearby patches sharing similar appearances should be labeled
with “similar” textures. Here “similar” means either the same tex-
ture class or different texture classes with similar color histograms.
We build a graph G = {V, £}, where V is the set of M nodes corre-
sponding to the set of patches and £ is the set of edges connecting
neighboring nodes. Obviously, this is a graph labeling problem,
where every node is associated with an unknown label that needs to
be solved. The label refers to one of the texture classes we have.

We define the following energy function for texture labeling.

E'=Y Eili)+6 Y BEs(lily), )
ey (i,j)€E
Eu(ls) = 177 = T, ©)

- =2 . .
E5(li7lj) = exXp (_H‘uqnigu]”) ||le - Hlj||27 (7

where [; is the texture label for patch 4, ’Z_Zp represents the texture
descriptor of patch ¢, ’Z}: represents the descriptor of texture class

l;, (v; represents the average color of patch i, and H , represents
the color histogram corresponding to texture class ;. § controls
the relative importance of the two energy terms, and 7 controls the
smoothness of the labeling result in local regions. All the histogram
distances are determined by L2 norm.

The first term in (5) means it is more likely for a patch to be labeled
with a texture class if the texture descriptors of the two are similar.
The second term means the smaller the difference between the av-
erage colors of two neighboring patches, the more likely they are
labeled with the same texture class or different texture classes with
similar color histograms.

Loopy Belief Propagation Belief propagation (BP) is an in-
ference algorithm for graph models, such as Bayesian networks
and Markov random fields (MRF), Nevertheless, BP has been fre-
quently used for minimizing energy functions defined on a graph
as long as the energy function only involves pairwise interactions
among the graph nodes. For a graph without any loops, belief prop-
agation guarantees to reach the globally optimal solution in a finite
number of iterations. For a graph with loops (e.g. the loops ex-
isting in G for our case), BP can still be applied using loopy be-
lief propagation (LBP) [Yedidia et al. 2003]. Studies [Freeman
et al. 2000] show that BP often achieves a very good approxima-
tion of the global solution even for graphs with thousands of loops.
Since (5) only involves pairwise interactions between neighboring
patches, LBP can be readily applied to minimize (5).

Once we have obtained the texture labeling result, patches with the
same texture label are grouped into the same region. Note that the
number of regions is influenced by n. A larger n usually gives rise
to a smaller number of regions. In our experiments, we typically set
6 =100 and n = 50.

The above labeling process might lead to over-segmentation. A fi-
nal step in our algorithm merges any pair of resulting regions if the
difference between their average colors is sufficiently small. Within
each final region, we choose the patch with the largest belief value
as the seed area of an image segment. An example with automati-
cally generated seeds can be found in Figure 10.



(d

Figure 9: (a) input image and color theme; (b) recolored image without any color constraints. (c) recolored image with original image colors
as soft constraints. Note that the color of the tabletop and whiteboard have been adjusted from green to white, indicating the usefulness of
this constraint. (d) user scribbles. (e) recolored image with scribble colors as additional soft constraints.

Figure 10: Left: Patches serve as graph nodes for texture labeling.
Middle: Labeling result with color-coded regions. Right: Seed
patches after the final merging step are indicated in white.

7 Results and Analysis

Performance We have fully implemented our algorithms and
successfully tested them on a variety of images from many differ-
ent sources, including the Corel Image Database and Flickr. Some
of the color theme editing results can be found in Figures 1, 12
and the supplementary materials. If the image size is 1024 x 1024,
and there are up to 10 soft segments, color optimization in Sec-
tion 5 typically converges around 100 iterations and takes 0.25 sec-
onds on a PC with an Intel Core 2 Duo 2.6GHz processor and 2GB
RAM, which allows real-time interactions. We would like to em-
phasize that many factors contribute to the overall impression a hu-
man viewer has about an image. The color composition of the im-
age is just one of them. However, in this section, we only evaluate
the color theme of an image.

Comparison with Color Transfer To enhance a color theme in
an image using color transfer, one must provide a reference image
with the desired color theme. Color transfer by histogram matching
is the most straightforward method to accomplish this task. How-
ever, this simple method suffers from unnatural colorization and ar-
tifacts (such as green sky in Figure 11(b)). The MK linear mapping
method [Piti and Kokaram 2007] can avoid this problem to a cer-
tain extent. However, it still requires highly consistent global color
statistics between the source and reference images; otherwise, arti-
facts may occur (such as the purple color on the mountain in Figure
11(c)). It is extremely hard to locate a reference image with both
the desired color theme and the same color statistics as the source
image. Furthermore, color transfer is a completely automatic pro-
cess that does not allow any user intervention and local control.
Users often need to try multiple reference images before obtain-
ing a marginally acceptable result. In contrast, our approach takes
advantage of color themes available from online communities (e.g.
Adobe Kuler), saving the user’s effort in finding suitable reference

images. Besides, soft image segmentation and color scribbling fa-
cilitate local color editing.

Comparison with Simple Filtering Existing filtering-based ap-
proaches (e.g. using Photoshop) can be performed with or without
region segmentation. Without segmentation, the user would have
to apply a single color filter to the entire image, which can proba-
bly produce certain color themes at the expense of reduced quality
and diversity of the colors in the original image, i.e. the color of
certain regions may be changed in a dramatic way to violate com-
monsense knowledge (e.g. grass region is colored in purple). On
the other hand, with region segmentation, the choice of color filters
for individual regions still has to be manually determined. Novice
users may have to try a large number of different filter settings in
order to achieve a desired color theme. In contrast, our system ini-
tializes and optimizes color automatically according to the chosen
color theme and texture information, while letting the user set color
constraints in individual regions. In summary, our system achieves
a global transformation of the image color composition, while en-
suring that each segment of the image only undergoes reasonable
changes.

User Study We have carried out a user study to evaluate the con-
sistency between the color composition of the recolored image and
the user desired color theme. For every chosen color theme, a paired
T-test was conducted to evaluate the difference between the original
and the recolored images.

We invited 25 participants (14 females and 11 males) with ages
ranging from 18 to 45. Among them, 5 are professional designers.
All of them have normal vision. We chose 20 test images, including
both indoor and outdoor scenes. They were divided into 7 groups
each of which needs to be recolored to match one of 7 chosen color
themes (Table 1). The number of images in each group is {3, 3, 2,
4, 2, 3, 3}, respectively. These 25 participants were also divided
into two groups. We randomly chose 5 participants to form the
first group and asked each of them to perform theme enhancement
on 4 test images using our system. Before the test, a 10-minute
training session was conducted to give them instructions and make
them familiar with the system environment. Each participant in
this group should complete the task as soon as possible, but was
encouraged to edit the image until satisfaction.

Once the first group had completed their task, we collected 20 orig-
inal images and 20 recolored ones. These 40 images were sorted
in a random order, and shown one by one to participants in the
second group (20 members). Participants rated their confidence
on the color theme in each image according to their first impres-
sion, and they were not allowed to go back to previously viewed
images. Specifically, the color composition of an image was com-
pared with each of the 7 color themes, and an overall confidence
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Figure 11: Comparisons with histogram matching and color transfer. The source image is shown in Figure 7 Left. (a) a reference image
and its corresponding color theme, (b) result image generated by histogram matching, (c) result image generated by MK-based color transfer

[Piti and Kokaram 2007], (d) theme enhancement result by our method.

score for each theme was measured by considering two criteria at
the same time: (1) how good a recolored image conforms to the
color theme; and (2) the visual quality (naturalness) of the recol-
ored image. In short, if a participant feels that the recolored image
looks natural and also matches the color theme, he/she should give
a high confidence score.

Confidence is quantified into 101 discrete levels ranging from O to
100. Every participant performed the same task in a single room,
on a computer with a 19-inch monitor (1280x 1024 resolution).

Thus, we collected two sets of sample confidence values for the
original and recolored images, respectively, for each theme. A
paired T-test was performed on these samples to check if p, is sig-
nificantly smaller than p using the following hypotheses

Hy @ pa > po,
Hy @ pa < p,

where p, represents the mean confidence value of the original im-
age, while u;, represents the mean confidence value of the recolored
image. Hypothesis Hy means that the original image is more con-
sistent with a given theme, which means our recolorization fails to
enhance and express the theme.

Table 1 shows all 7 paired T-test results. Note that all two tailed
P values are less than 0.05, and all T values are negative, indi-
cating that Hy is rejected with statistical significance while H; is
accepted. This concludes that our algorithm has significantly en-
hanced the desired color themes.

Table 1: Paired T-test Results (o = 0.05)

No.  Theme T P(two-tail)
1 |l 2716 .000865
2 Bl 9309 .000000
3 M| 2016 .005843
4 W 8753 .000000
5 || -3.135 .003255
6 -11.703 .000000
7 [ 9326 .000000

In addition, participant feedback shows that our system is easy to
use and very intuitive to recolor an image. For example, tests from
the first group show that our system can produce the desired result
within half a minute. One user from the first group particularly
liked the scribbling support for direct local adjustment. Two de-
signers gave us valuable comments on the user interface. We are
considering these and other suggestions for improving the user ex-
perience.

8 Conclusions and Discussion

We have presented an example-based method for steering the color
composition of an image towards a desired color theme impression.
We formulate our goal as a unified optimization that simultaneously
considers a desired color theme, texture-color relationships as well
as color constraints. Experiments and a user study have confirmed
the effectiveness of our method.

Limitations In previous psychological studies [Hogg 1969; Ou
et al. 2004b], the additivity relationship has been found to hold for
color moods evoked by two-color combinations. To compute the
color mood of an image which may have multiple segments, we
have generalized this additivity rule to multiple color combinations.
We have found our color optimization algorithm partially based on
this rule can steer the color composition of an image towards a de-
sired color theme. Nevertheless, a thorough psychological study is
necessary to fully validate our generalization.

Although texture-color relationships learned from examples have
proven to be useful in reducing user-supplied color constraints,
color scribbles are often necessary over textureless regions. Like-
wise, out-of-focus image segments, whether they have texture or
not, impose a challenge to our method because they appear blurred.
In such cases, color inference based on texture-color relationships
tend to generate random results. This is shown in Figure 13, where
the out-of-focus green leaves have been recolored purple.

Figure 13: A failure case for out-of-focus regions. Left: an input
image. Right: the recolored result.
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Figure 12: A variety of images and their recolored ones with different color theme enhancements.

The first column shows the original images.
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A Color-Mood Transformation

A three-dimensional color mood space was introduced in [Ou et al.
2004a; Ou et al. 2004b]. The three coordinate axes of the space
are called activity, weight, and heat. Empirical formulations of the
transformation from the CIELAB color space to the proposed color
mood space were also developed. Given a color ¢ = (L*,a",b"),
its corresponding point, €, in the color mood space is a nonlinear
function of ¢, € = F(€), where F is defined by the following three
equations:

activity:
—2.140.06[(L* — 50)% + (a* — 3)% + (111_7417)2}1/2, ®)
weight:
—1.8 +0.04(100 — L*) + 0.45 cos(h — 100°), )
heat:
—0.5 + 0.02(C*)"°7 cos(h — 50°), (10)

where L™ = CIELAB lightness; C* = CIELAB chroma; h =
CIELAB hue angle; o™, b* are the CIELAB coordinates.



