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ABSTRACT
Given a dataset containing sensitive personal information, a statis-
tical database answers aggregate queries in a manner that preserves
individual privacy. We consider the problem of constructing a sta-
tistical database usingoutput perturbation, which protects privacy
by injecting a small noise into each query result. We show that the
state-of-the-art approach,ε-differential privacy, suffers from two
severe deficiencies: it (i) incurs prohibitive computationoverhead,
and (ii) can answer only a limited number of queries, after which
the statistical database has to be shut down. To remedy the prob-
lem, we develop a new technique that enforcesε-different privacy
with economical cost. Our technique also incorporates aquery re-
laxationmechanism, which removes the restriction on the number
of permissible queries. The effectiveness and efficiency ofour so-
lution are verified through experiments with real data.

1. INTRODUCTION
The evolution of information technology has enabled an organi-

zation (e.g., hospitals, retailers) to collect large volumes of sensitive
personal data (e.g., medical records, transaction history), which is
usually referred to asmicrodata. To facilitate research, these or-
ganizations often need to provide public access to their microdata,
which, however, may pose a risk to individual privacy. For exam-
ple, assume that the Census Bureau maintains an online database
for answering count queries on the microdataT in Table 1, which
contains three columns,Age, Zipcode, and Income(Nameis in-
cluded to facilitate row referencing). Consider an adversary who
knows the age20 and zipcode15000 of Alice, and the fact that
Alice is involved inT . To infer the income of Alice, the adversary
may issue the following two queriesq0 andq′0:

q0: SELECT COUNT(*) FROM T
WHERE Age∈ [20, 20]AND Zipcode∈ [15k, 15k]

AND Income∈ [80k, +∞)

q′0: SELECT COUNT(*) FROM T
WHERE Age∈ [20, 20]AND Zipcode∈ [15k, 15k]

AND Income∈ (−∞, 80k)
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Name Age Zipcode Income
Alice 20 15000 85k
Bob 25 52000 32k

Cathy 33 41000 25k
David 38 23000 37k
Eva 44 26000 43k

Frank 47 18000 65k
George 53 31000 28k
Helen 61 35000 54k

Table 1: The microdata

The answers ofq0 and q′0 are1 and0, respectively. Once these
results are returned, the adversary can assert that Alice’sincome
must be above 80k, a close guess of Alice’s real salary 85k.

The above problem motivatesstatistical databases, which an-
swer counting queries without leaking individuals’ privacy. An ef-
fective approach isoutput perturbation[2, 6, 11, 13], which works
by injecting a small random noise into each query result. For
queries that pinpoint sensitive information (e.g.,q0 andq′0), their
answers are dominated by noise; hence, privacy is preserved. On
the other hand, the noise has little effect on queries that retrieve
high-level statistics (e.g., find the number of people earning more
than 30k), since they usually have large results.

Numerous output perturbation techniques are available in the
statistics literature (see [2] and the references therein). Those tech-
niques, however, are not based on a rigorous definition of privacy
[12]. To overcome this defect, Dinur and Nissim [11] develop
a principle calledε-differential privacy(to be elaborated in Sec-
tion 2), and employs it to avoid queries that can reveal sensitive
information. Specifically, letQ be the set of previously answered
queries. Given a new queryq, the database determines whether
{q} ∪ Q violatesε-differential privacy. If yes,q is rejected; oth-
erwise, the database reports a noisy result. As proved in [11], this
approach guarantees that an adversary can recover any sensitive in-
formation with very low probability, even if s/he has audited the
results of all the queries in history.

1.1 Motivation
Despite being the state of the art,ε-differential privacy has two

drawbacks that severely reduce its practical applicability. First,
somewhat surprisingly, there is no existing solution for checking
ε-differential privacy. As detailed in the next section, thedifficulty
stems from the computation of the so-calledL1 sensitivity, which
is a crucial component in verifyingε-differential privacy. The best
efforts are due to Dinur et al. [13], who point out several special
cases whereL1 sensitivity can be calculated. Similar attempts have
also been made in [5, 20, 24]. Unfortunately, the calculation prob-
lem in general is still open. In other words, currentlyε-differential
privacy is virtually inapplicable when arbitrary queries are allowed.

The second defect ofε-differential privacy also exists in all



the previous output perturbation solutions. Specifically,when the
database denies a query, it simply returns nothing. This incurs
rather negative user experience, because a legitimate userwould
have to spend a long time trying different queries before getting an
answer. Even worse,ε-differential privacy supports only a finite
number of queries [11]. In other words, after a period of time, the
statistical database will have to go offline, and all future queries are
directly refused.

In fact, for a denied queryq, it is possible to return a useful
synthetic answer, which is synthesized from the reported answers
of the past queries. To illustrate, assume that the databasereported
an answera1 for queryq1:

q1: SELECT COUNT(*) FROM T
WHERE Age∈ [20, 50] AND Income∈ [40k, 70k]

and now receives a queryq′1:

q′1: SELECT COUNT(*) FROM T
WHERE Age∈ [20, 51] AND Income∈ [40k, 70k]

If q′1 needs to be denied for privacy preservation, we may still return
a1 to the user, along with the definition ofq1 (so that the user knows
a1 is the result of queryq1 that relaxesher/his original queryq′1).
Since the predicates inq1 andq′1 are similar, the answera1 would
still be useful to the user. We refer to the process asrelaxation.

In general, relaxation may combine the results of multiple
queries. To illustrate, consider:

q2: SELECT COUNT(*) FROM T
WHERE Age∈ [30, 69] AND Income∈ [0, 39999]

q3: SELECT COUNT(*) FROM T
WHERE Age∈ [30, 69] AND Income∈ [40000, 99999]

q′3: SELECT COUNT(*) FROM T
WHERE Age∈ [30, 69] AND Income∈ [0, 99999]

The exact result ofq′3 equals the sum of those ofq2 andq3. Assume
that the database has returned a resulta2 (a3) for q2 (q3), but denies
q′3. In this case, we may report a synthetic answera2 + a3 for q′3.
Note that the answer is approximate, becausea2 anda3 are noisy.
Furthermore, returning the synthetic answer does not compromise
any privacy guarantee. This is because both queriesq2 andq3, as
well as their reported resultsa2 anda3, are already public knowl-
edge. Anything derivedsolelyfrom such knowledge is also public
knowledge.

It is worth pointing out that the meaning of query relaxationin
our context is drastically different from its counterpart in relational
databases [19, 27]. Specifically, in [19, 27], when an SQL query
returns an empty result, relaxation performs the smallest modifica-
tion to the query predicates in order to retrieve at least onetuple.
The solutions in [19, 27] cannot be adapted to our circumstances.

1.2 Contributions
This paper proposes a novel output-perturbation solution based

on an in-depth study of the algorithmic aspects ofε-differential pri-
vacy. First, we prove, for the first time, that exact computation of
L1 sensitivity is NP-hard. Recall thatL1 sensitivity is required in
checkingε-differential privacy. Thus, the NP-hardness result rules
out the existence of any algorithm for verifyingε-differential pri-
vacy efficiently.

Fortunately, it is possible to efficiently calculate a 2-approximate
upper bound of theL1 sensitivity. This result leads to a fast ap-
proach that verifiesε-differential privacy in a safe, conservative,
manner. Specifically, whenε-differential privacy does not hold,

our solution always correctly indicates so, thus guaranteeing that
privacy breach can never happen.

Another salient feature of the proposed technique is that itincor-
porates an effective query relaxation mechanism, to provide useful
answers to the denied queries. This remedies the common defect
of all the previous output-perturbation solutions (mentioned in Sec-
tion 1.1), because now a user no longer needs to go through the
annoying process of modifying her/his query repetitively.Instead,
s/he immediately obtains a similar query suggested by the database,
together with the query’s answer. We perform extensive experi-
ments to evaluate our algorithms, and confirm their effectiveness
and efficiency in practice.

The rest of the paper is organized as follows. Section 2 reviews
ε-differential privacy and its related concepts. Section 3 studies
the computation ofL1 sensitivity, and presents our conservative
method for verifyingε-differential privacy. Section 4 elaborates
the details of query relaxation. Section 5 contains an experimental
evaluation. Section 6 reviews the previous work related to ours.
Finally, Section 7 concludes the paper with directions for future
work.

2. PRELIMINARIES
Let T be a microdata table, which containsd attributesA1, ...,

Ad with finite and discrete domains. We aim to support queries of
the form

SELECT COUNT(*) FROM T
WHERE pred(A1) AND ... AND pred(Ad)

such thatpred(Ai) has the format

Ai = ∗ or Ai ∈ [xi, yi],

wherexi andyi are two values in the domain ofAi
1. We consider

count queries, because of their imperative roles in variousdata anal-
ysis tasks, including OLAP, association rule mining, decision tree
learning, etc.

Given a queryq, we denote its real result onT asq(T ). To pro-
cess queries in a privacy preserving manner, we adopt the output-
perturbation methodology in [13] to design a statistical database
D. Specifically, given a queryq, D returns aperturbed answer
q(T ) + δ, whereδ is a random variable following aLaplacedistri-
bution, with a probability density function

f(δ) =
1

2λ
e−

|δ|
λ . (1)

λ is known as thenoise magnitudeof D, and is also the expectation
of |δ|. We denote the perturbed answer asq(D).

By injecting noise in the above manner,D ensures a strong type
of privacy protection,ε-differential privacy[13]. This notion of
privacy is formulated through the following definitions.

DEFINITION 1 (SIBLING TABLES). Two microdata tablesT1

andT2 aresiblings, if they have the same schema and cardinality,
and differ in only one tuple. �

EXAMPLE 1. Let T1 be the microdata tableT in Table 1. By
changing the income of Alice to another value (e.g., 30k), weobtain
an alternative tableT2. T1 andT2 are siblings. �

1If Ai is categorical, we assume that there exists onAi a total or-
dering, which lists the leaves ofAi’s taxonomy tree [17] from left
to right.



DEFINITION 2 (ε-DIFFERENTIAL PRIVACY [13]). Let Q =
{q1, ..., qm} be any subset of the queries that have been answered
by D, andR = {r1, ..., rm} be a set of arbitrary real numbers.D
ensuresε-differential privacy, if the following inequality holds for
anyR and any pair of sibling tablesT1 andT2:

Pr
[

∀i, qi(D) = ri | ∆1

]

≤ eε · Pr
[

∀i, qi(D) = ri | ∆2

]

,

where∆1 (∆2) denotes the event thatT1 (T2) is the microdata on
whichD is constructed. �

EXAMPLE 1 (CONTINUED). Suppose that a statistical
databaseD is built onT1. Consider an adversary who tries to infer
the income of Alice. LetQ be the set of queries issued by the
adversary, andSrslt the set of results returned byD. If D ensures
ε-differential privacy (ε � 1), the adversary gains little knowledge
about Alice’s income, after observingSrslt. To understand this, let
us assume thatD is constructed on another microdata table (e.g.,
T2), where Alice’s income is arbitrarily modified. By Definition 2,
D may still returnSrslt as the results for the queries inQ. In
particular,

Pr
[

D returnsSrslt | Alice’s income is NOT modified
]

≤ eε · Pr
[

D returnsSrslt | Alice’s income is modified
]

.

Notice that, whenε is small,eε ≈ 1 + ε, which is close to1. In
other words,Srslt provides the adversary with very little informa-
tion, regarding the income of Alice. In general, a smallerε leads to
tighter privacy protection. �

As will be shown in Theorem 1, to decide whetherD preserves
ε-differential privacy, it suffices to inspect (i) the noise magnitude
λ of D, and (ii) theL1 sensitivityof the queries answered byD.

DEFINITION 3 (L1 SENSITIVITY [13]). Given a setQ of
queries, itsL1 sensitivitySL1(Q) equals:

SL1(Q) = max
T1,T2

(

∑

q∈Q

∣

∣q(T1) − q(T2)
∣

∣

)

, (2)

whereT1 andT2 are any two sibling microdata tables. �

EXAMPLE 2. Consider the queriesq0 andq′0 in Section 1. Let
Q = {q0, q

′

0}. We will show thatSL1(Q) = 2.
Let T1 andT2 be any two sibling microdata tables, andQ =

{q0, q
′

0}. SinceT1 andT2 differ in one tuple, we have
∣

∣q0(T1) −
q0(T2)

∣

∣ ≤ 1 and
∣

∣q′0(T1) − q′0(T2)
∣

∣ ≤ 1, which leads to
∑

q∈Q

∣

∣q(T1) − q(T2)
∣

∣ ≤ 2. Hence,SL1(Q) ≤ 2.
Consider thatT1 equals Table 1, andT2 is a sibling ofT1, which

changes Alice’s income to 30k. We haveq0(T1) = 1, q0(T2) = 0,
q′0(T1) = 0, andq′0(T2) = 1. Therefore,SL1(Q) ≥ |1 − 0| +
|0 − 1| = 2. Thus,SL1(Q) = 2. �

THEOREM 1 ([13]). A statistical databaseD ensures ε-
differential privacy, if and only ifSL1(Q) ≤ ελ, whereλ is the
noise magnitude ofD, andQ is the set of queries that have been
answered byD 2.

Based on Theorem 1, Dwork et al. [13] propose a framework for
constructingD as follows. Before answering any query, we choose
appropriate values forλ and ε, which decide the query accuracy
and degree of privacy protection, respectively. Then, whenever a
2The concept ofL1 sensitivity and Theorem 1 can be adapted to
any queries (e.g., SUM, MAX, MIN) that map the microdata to
real numbers. See [13] for details.

queryq is issued toD, we inspect the setQ of queries thatD has
evaluated previously. IfSL1(Q∪{q}) > ελ, q is denied; otherwise,
q(D) is returned as the result forq. In this way,D always ensures
ε-differential privacy.

Essential to the above framework is that we must be able to de-
cide whetherSL1(Q ∪ {q}) > ελ for any queryq. This turns out
to be computationally difficult, as discussed in the next section.

3. THE HISTOGRAM APPROACH
In Section 3.1, we prove the NP-hardness of computingSL1(Q),

and then give a method for deriving a 2-approximate upper bound
of SL1(Q). Section 3.2 describes a histogram approach, which
enables a statistical database to process each query in an efficient
and privacy preserving manner. Finally, Section 3.3 pointsout a
limitation of output perturbation, which motivates the solutions in
Section 4.

3.1 Convergence of Queries
Let D be a statistical database, which has a noise magnitudeλ,

and has answered a setQ of queries. Given a new queryq, our
objective is to decide ifD still preservesε-differential privacy after
answeringq. By Theorem 1, it suffices to verify whetherSL1(Q ∪
{q}) ≤ ελ. The verification turns out to be NP-hard:

LEMMA 1. Deciding whetherSL1(Q) is larger than a thresh-
old is NP-hard.

PROOF. See the appendix.

Combining the lemma with Theorem 1 leads to:

COROLLARY 1. Verification of ε-differential privacy is NP-
hard.

We thus switch our attention to calculating an upper-bound of
SL1(Q ∪ {q}), which, as explained later, allows us to conserva-
tively determine whetherq can be answered. For this purpose, we
introduce the following concepts.

DEFINITION 4 (DATA SPACE / QUERY REGION). Given T ,
we define itsdata spaceΩ as ad-dimensional space, where the
i-th dimension(1 ≤ i ≤ d) is Ai. The region of a queryq is a
rectangler in Ω such that, for anyi ∈ [1, d],

• if q has a predicate “Ai ∈ [xi, yi]”, the projection ofr onAi

equals[xi, yi];

• otherwise (i.e.,q has a predicate “Ai =∗”), the projection of
r onAi covers all values inAi. �

Since eachAi (i ∈ [1, d]) has a finite and discrete domain,Ω
can be regarded as a set ofd-dimensional points. Accordingly, the
microdataT can also be viewed as a set of points.

DEFINITION 5 (POPULARITY / CONVERGENCE). Let Q be
a set of queries, andR be the set containing the regions of all
queries inQ. For any pointp in the spaceΩ, its popularityp(Q) in
Q is the number of regions inR that coverp.

Theconvergenceof Q, denoted asC(Q), is the largestp(Q) of
all pointsp ∈ Ω. �

EXAMPLE 3. For example, letQ consist of the queriesq1 and
q2 in Section 1.1. Figure 1 shows their regionsr1 andr2, namely,
R = {r1, r2}. Any point p in r1 ∩ r2 has a popularityp(Q) = 2
in Q. If p is covered only by eitherr1 or r2, its popularity is 1. All
points outsider1 andr2 have popularity 0. Thus,C(Q) = 2. �
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Figure 1: Popularity and convergence

Algorithm Process(q)
/* q is the query being answered */
1. ans = NULL
2. r = the query region ofq
3. Sbuk = the set of buckets in histogramH that intersectr
4. if all bucketsB ∈ Sbuk have counters smaller thanελ/2
5. ans = q(D); Q = Q ∪ {q}
6. for each bucketB ∈ Sbuk
7. B.c = B.c + 1
8. if B.c = ελ/2 and|H| < θ, thenSplit(B)

/* θ is the maximum number of buckets allowed */
9. returnans

Figure 2: Query processing algorithm

C(Q) can be used to derive a 2-approximate bound ofSL1(Q):

LEMMA 2. For any setQ of queries,SL1(Q) ≤ 2 · C(Q).

PROOF. LetT1 andT2 be two sibling microdata tables, such that
Σq∈Q

∣

∣q(T1) − q(T2)
∣

∣ = SL1(Q). By Definition 1, there should
exist only one tuplet1 (t2) in T1 (T2) that does not appear inT2

(T1). Let T3 andT4 be two tables such thatT3 = {t1} andT4 =
{t2}. We haveΣq∈Q

∣

∣q(T3) − q(T4)
∣

∣ = SL1(Q). For anyq ∈ Q,
q(T3) andq(T4) is either0 or 1. Therefore,

SL1(Q) = Σq∈Q

∣

∣q(T3) − q(T4)
∣

∣ ≤ Σq∈Qq(T3) + Σq∈Qq(T4).

implying that either Σq∈Qq(T3) or Σq∈Qq(T4) is at least
SL1(Q)/2. Without loss of generality, assumeΣq∈Qq(T3) ≥
SL1(Q)/2. Let p1 be the point inΩ whosei-th (1 ≤ i ≤ d) coor-
dinate ofp1 equalst1[Ai]. LetR be the set of regions of the queries
in Q. By Definition 5, at mostC(Q) regions inR coverp1. Hence,
t1 satisfies at mostC(Q) queries inQ, i.e.,Σq∈Qq(T3) ≤ C(Q).
Therefore,SL1(Q)/2 ≤ Σq∈Qq(T3) ≤ C(Q), which completes
the proof.

The lemma motivates a simple approach to ensureε-differential
privacy. We only need to maintain the popularityp(Q) for each
point p ∈ Ω. Whenever a new queryq is received, we inspect the
points inΩ covered by the region ofq. If all of them have popu-
larities at mostελ/2, q is answered; otherwise,q is denied. The
approach, unfortunately, is impractical, since it requires keeping
as many values as the points in the whole spaceΩ. To overcome
this drawback, in the next subsection, we employ an approximation
technique to monitorC(Q ∪ {q}) with small space.

3.2 A Histogram Approach
Let Q be the set of queries that have been answered byD, andR

be the set of regions of those queries. We maintain a histogram H,
which partitions the data spaceΩ into disjoint buckets with rect-
angular extents. Each bucketB ∈ H is associated with a counter
B.c, equal to the number of query regions inR intersectingB. The
largest numberθ of buckets inH is a system parameter, decided by
how much space can be allocated forH.

Apparently, any pointp in B is covered by at mostB.c queries
in Q, i.e., the popularityp(Q) of p in Q is at mostB.c. Therefore,
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Figure 3: Illustration of our histogram approach

if B.c ≤ ελ/2 for every bucketB ∈ H, we havep(Q) ≤ ελ/2 for
any pointp ∈ Ω. Hence, by Lemma 2,SL1(Q) ≤ ελ, indicating
thatD preservesε-differential privacy (Theorem 1).

Query Processing.The above observation leads to the algorithm
Processin Figure 2 for answering queries. Given a new queryq
with regionr, Processidentifies the setSbuk of buckets inH in-
tersectingr. If any bucket inSbuk has a counter at leastελ/2, the
answerans for q is NULL, i.e.,q is denied. Otherwise,Processre-
portsans = q(D) (recall thatq(D) has included a Laplace noice),
addsq to Q, and increases the counters of the buckets inSbuk.

When |H| < θ (i.e., there is still space to store more buckets),
counter increases may trigger bucket splits. Specifically,for any
bucketB ∈ Sbuk, in caseB.c = ελ/2, Processinvokes theSplit
sub-routine to decomposeB in into new buckets. The details of
Split will be elaborated shortly.

EXAMPLE 4. Suppose that the microdata tableT is Table 1,
and the maximum permissible popularityελ/2 is 3. Initially, H
has a single bucketB1, which covers the entire data space, and its
B1.c equals 0.

The first query to our statistical databaseD is the q1 in Sec-
tion 1.1), whose regionr1 is illustrated in Figure 3a.B1 is the only
bucket inH overlappingr1 (i.e., Sbuk = {B1} in the pseudocode
of Process). SinceB1.c = 0 ≤ ελ/2 = 3, it is safe to answerq1;
hence, we reportq1(D) to the user. Accordingly,Q becomes{q1},
andB1.c equals1. Figure 3b demonstrates the extent ofB1, and
its counterB1.c in the bracket.

The next two queries toD are theq2 andq3 mentioned in Sec-
tion 1.1, whose regionsr2 andr3 respectively are depicted in Fig-
ure 3c. Bothq2 andq3 are answerable, as can be verified in the
same way asq1. After returningq2(D) and q3(D), Q becomes
{q1, q2, q3}, and the counter ofB1 grows to3, reaching the split
thresholdελ/2. Thus,B1 is decomposed (by the sub-routineSplit)
into B2 andB3, whose extents are shown in Figure 3d. The details



Algorithm Split (B)
/* B is a bucket to be decomposed */
1. U = the set of regions of the queries inQ that partially intersectB
2. if U 6= ∅
3. removeB from H
4. r∩ = the intersection of all the regions inU
5. if r∩ = ∅
6. splitB into bucketsB′ andB′′ with the minimumB′.c + B′′.c

using the cutting lines passing the boundaries of the regions inU
7. else
8. repetitively splitB by the cutting lines passing the boundaries ofr∩

until a bucket has extentr∩
9. insert the new buckets intoH with counters set toB.c

Figure 4: Bucket split algorithm

of the decomposition will become clear later.B2.c = 2 because
B2 overlaps two queriesq1 andq2 in Q. Likewise,B3.c is also 2.

The fourth queryq4 toD is:

q4: SELECT COUNT(*) FROM T
WHERE Age= ∗ AND Income∈ [40000, 99999]

whose regionr4 is presented in Figure 3e. Among the two buckets
B2, B3 in H, only B3 intersectsr4 (i.e., Sbuk = {B3}). Since
B3.c = 2 < ελ/2, q4 is answerable;D returnsq4(D), and updates
Q to{q1, q2, q3, q4}. B3.c becomes 3, triggering a split. Decompo-
sition ofB3 leads to 4 bucketsB4, B5, B6, andB7, whose extents
and counters are illustrated in Figure 3f. Finally,H includes totally
five buckets.

It is worth mentioning that, sinceB7 has a counter 3= ελ/2, all
future queries whose regions intersectB7 will be denied. �

Bucket Decomposition. Figure 4 presents the details ofSplit,
which Processdeploys to decompose a bucketB whose counter
B.c equalsελ/2. Split begins by retrieving the setU of regions
in R that partially intersectB (recall thatR contains the regions
of the setQ of previously-answered queries). IfU = ∅, exactly
ελ/2 regions inR fully containB. In this case, splittingB does
not lower its counter, because all points inB have popularityελ/2
in Q. Hence,Splitsimply terminates, and keepsB in H.

Next we focus on the caseU 6= ∅. Split removesB from H,
computes the intersectionr∩ of the regions inU . Then, it divides
B using one or morecuts:

DEFINITION 6 (CUT). Let L be ad− 1 dimensional plane in
Ω that is perpendicular to an axis. Thecut of B by L results in
bucketsB′ andB′′, which are separated byL, and their union is
B. We say thatL is acutting line. �

In caser∩ = ∅, Splitattempts all the cutting lines that go through
a boundary of every region inU . Among those lines,Split decom-
posesB using the one that minimizes the sum of the counters of
the new buckets, i.e.,B′.c + B′′.c is the smallest. We aim to min-
imize B′.c + B′′.c, because a smallerB′.c (B′′.c) allows us to
answer more queries intersectingB′ (B′′), i.e., a lower value of
B′.c + B′′.c leads to a larger number of admissible queries.

EXAMPLE 4 (CONTINUED). Let us revisit the moment in Ex-
ample 4 when the counterB1.c reaches the split thresholdελ/2 =
3. At this point,Q = {Q1, Q2, Q3}, and their regionsr1, r2, r3

are shown in Figures 3a and 3c. To decomposeB1, Split identifies
U = {r1, r2, r3}, since all these regions intersectB1. Clearly,r∩
is empty (in fact, the intersection ofr2 andr3 is already empty).
Thus,Split tries to cutB1 using the vertical/horizontal lines that
contain the edges ofr1, ..., r3. It can be verified that, among all
those lines, the horizontal lineIncome= 40k is the best, achieving
the smallestB1.c + B2.c = 4. �

If r∩ 6= ∅, B is decomposed into multiple buckets, one of which
has the extent exactlyr∩. Split accomplishes this using only the
setScut of cutting lines that contain the boundaries ofr∩. Clearly,
Scut has2d lines. Split randomly picks one of them, and uses it to
decomposeB into B′, B′′. One ofB′, B′′ is disjoint withr∩, and
is retained inH directly. Suppose, without loss of generality, that
B′ is disjoint withr∩; then,B′′ must coverr∩, and is split further
using another cutting line fromScut. This process is repeated, until
the extent of a bucket isr∩. To understand why we decomposeB
in such a way, observe that any point inr∩ (B − r∩) is covered by
exactlyελ/2 (at mostελ/2−1) queries. In other words, all queries
that intersectr∩ should be denied, whereas any queries that cover
only the points inB − r∩ can be answered. Therefore, we separate
r∩ from the other points inB.

EXAMPLE 4 (CONTINUED). Consider the moment in Exam-
ple 4 when the counterB3.c equals 3. At this time,Q =
{Q1, Q2, Q3, Q4}, whose regionsr1, ..., r4 can be found in Fig-
ures 3a, 3c, 3e. To decomposeB3, Split finds U = {r1, r3, r4}.
Note thatr2 is not included since it is disjoint withB3. The in-
tersectionr∩ of all regions inU is the shaded area in Figure 3e.
Therefore,Scut has four cutting lines:Age= 30,Age= 50, Income
= 40k, andIncome= 70k, each of which contains an edge ofr∩,
respectively.B3 is decomposed intoB4, B5, B6, B7 by using the
linesAge= 30,Age= 50, Income= 70k in this order. �

Split can be implemented inO (ελ · log(ελ)) time. SincePro-
cess invokes Split at most (θ) times, it has a time complexity
O (θελ · log(ελ)), whereθ is the number of buckets.

3.3 Limitation of Output Perturbation
We close this section with a theoretical result on the maxi-

mum number of queries that can be answered without violating
ε-differential privacy. Given a queryq, we define itsvolumeas
the percentage of points inΩ that qualify its WHERE condition.
Specially, a query with predicate “Ai = ∗” on all Ai (i ∈ [1, d])
has a volume 1. Then:

LEMMA 3. Consider any solution that (i) guaranteesε-
differential privacy, and (ii) perturbs each query answer by a
Laplace noise having magnitudeλ. Let θ be the maximum num-
ber of queries that can be processed by such a solution. Then,

1. if each query has a fixed volumes (0 < s < 1),

θ <
ελ

2s(1 − s)
; (3)

2. if each query has a volume at leasts′ and at most1 − s′

(0 < s′ ≤ 1/2),

θ <
ελ

s′
. (4)

PROOF. Assume that the solution has answered a setQ of
queries. Due toε-differential privacy, by Theorem 1,SL1(Q) ≤
ελ. Let n = |Ω|, andpi (1 ≤ i ≤ n) be thei-th point inΩ. With-
out loss of generality, suppose that, among all points inΩ, p1 has
the largest popularity inQ. Then,

n · p1(Q) ≥ Σn
i=1pi(Q). (5)

Let Q1 be the set of queries inQ whose regions coverp1, and
Q2 = Q − Q1. Sop1(Q) = |Q1|.

Consider the following propositionZ: ∀i ∈ [2, n], p1(Q) −
pi(Q1) + pi(Q2) ≤ SL1(Q). Assume for the moment thatZ is



valid (we will proveZ shortly). In the following, we will first show
that, when each query inQ has a volumes, |Q| < ελ

2s(1−s)
holds.

Since each query inQ coversn · s points inΩ, we know

Σn
i=1pi(Q) = |Q| · n · s, (6)

which implies thatΣn
i=2pi(Q1) = |Q1| · (n · s − 1), and

Σn
i=2pi(Q2) = (|Q| − |Q1|) · n · s. Furthermore, Equations 5

and 6 lead top1(Q) ≥ |Q| · s. Then, by propositionZ, we have
Σn

i=2SL1(Q)

≥ Σn
i=2p1(Q) − Σn

i=2pi(Q1) + Σn
i=2pi(Q2)

= |Q1| · (n − 1) − |Q1| · (n · s − 1) + (|Q| − |Q1|) · n · s
= p1(Q) · n · (1 − 2s) + |Q| · n · s
≥ |Q| · s · n · (1 − 2s) + |Q| · n · s
= 2|Q| · (1 − s) · n · s.

This indicates(n − 1)SL1(Q) ≥ 2|Q| · n(1 − s)s, leading to

|Q| ≤ n − 1

n
· SL1(Q)

2(1 − s)s
<

ελ

2(1 − s)s
,

which establishes Equation 3.
Next, we will show that, when each query inQ has a volume in

[s′, 1− s′], Equation 4 holds. Letvol(q) denote the volume of any
queryq. By propositionZ, we knowΣn

i=2SL1(Q)

≥ Σn
i=2p1(Q) − Σn

i=2pi(Q1) + Σn
i=2pi(Q2)

= |Q1| · (n − 1) −
∑

q∈Q1

(n · vol(q) − 1) +
∑

q∈Q2

(n · vol(q))

= |Q1| · n −
∑

q∈Q1

(n · vol(q)) +
∑

q∈Q2

(n · vol(q))

= n ·
∑

q∈Q1

(1 − vol(q)) + n ·
∑

q∈Q2

vol(q)

≥ n ·
∑

q∈Q1

(

1 − (1 − s′)
)

+ n ·
∑

q∈Q2

s′

= n · |Q| · s′.

In other words,(n − 1)SL1(Q) ≥ |Q| · n · s′, which implies that

|Q| ≤ n − 1

n
· SL1(Q)

s′
<

ελ

s′
,

validating Equation 4.
It remains to prove propositionZ. Assume, on the contrary, that

there existsj ∈ [2, n] such that

p1(Q) − pj(Q1) + pj(Q2) > SL1(Q). (7)

Let Q3 be the set of queries inQ1 whose regions containpj . Let t1
andt2 be the tuples corresponding top1 andpj , respectively. Let
T1 (T2) be a microdata table including onlyt1 (t2). By Definition 1,
T1 andT2 are siblings. Since any query inQ3 covers bothp1 and
pj , it holds that

∀q ∈ Q3, q(T1) = q(T2) = 1. (8)

As each query inQ1 − Q3 coversp1 but notpj , we know

∀q ∈ Q1 − Q3, q(T1) = 1, q(T2) = 0. (9)

Furthermore,

∀q ∈ Q2, q(T1) = 0, q(T2) ≥ 0. (10)

Combining Equations 8, 9, and 10,Σq∈Q|q(T1) − q(T2)|
= Σq∈Q3

|q(T1) − q(T2)| + Σq∈Q1−Q3
|q(T1) − q(T2)|

+Σq∈Q2
|q(T1) − q(T2)|

= Σq∈Q1
q(T1) − Σq∈Q1

q(T2) + Σq∈Q2
q(T2). (11)

As Σq∈Q1
q(T1) = p1(Q), Σq∈Q1

q(T2) = pj(Q1),
Σq∈Q2

q(T2) = pj(Q2), by Equations 7, 11,Σq∈Q|q(T1)−q(T2)|
= Σq∈Q1

q(T1) − Σq∈Q1
q(T2) + Σq∈Q2

q(T2)

= p1(Q) − pj(Q1) + pj(Q2).

By our hypothetic assumption earlier, the above is greater than
SL1(Q). Thus, we have arrived atΣq∈Q|q(T1) − q(T2)| >
SL1(Q), which contradicts Definition 3.

Equation 4 leads to the following corollary.

COROLLARY 2. Let n be the total number of points inΩ. To
guaranteeε-differential privacy, any solution, which perturbs each
query answer by a Laplace noise with a magnitudeλ, can process
at mostn · ελ queries with volumes in(0, 1).

PROOF. For any query with a volume in(0, 1), it should contain
at least1 point (and at mostn− 1 points) inΩ. Therefore, the vol-
ume of each query lies in[1/n, 1 − 1/n]. By Equation 4, the total
number of allowable queries is at mostελ/(1/n), which proves the
corollary.

Hence, any output-perturbation method leveraging Laplacenoise
can answer at mostO(n) queries (wheren = |Ω|), after which the
statistical database will simply stop functioning. In contrast, the
total number of possible queries onΩ is Θ(n2). The next section
presents a technique to remedy this drawback.

4. QUERY RELAXATION
The solution in Section 3 denies a query if answering it violates

ε-differential privacy. As explained in Section 1.1, query denial
reduces the utility of the database. In the sequel, we remedythe
problem with query relaxation.

Specifically, letq∗ be a query that is rejected by the statistical
databaseD. Query relaxation returns (i) the definition of a query
q∗′, and (ii) a synthetic answerv for q∗′. In particular,q∗′ may
not necessarily be the same asq∗, but in case they are not,q∗′ is
similar to q∗. Furthermore,v is synthetic, because it derivation
differs from the normal process thatD uses to compute an answer
(recall that, ifD accepts a query, then the answer is obtained by
adding a Laplace noise to the query’s real result). In particular, v
is synthesized by utilizing only thereportedanswers of the past
queries. Remember that those queries and their reported answers
are already publicly available. Thus,query relaxation is using only
the public knowledge to infer the result ofq∗. This guaranteesε-
differential privacy because, as mentioned in Section 1.1,whatever
derived solely from public information remains public knowledge.

4.1 Compound
To avoid ambiguity, we say thatD acceptsa query ifD returns

a perturbed answerusing the method in Section 3 (i.e., processing
the query causes no privacy violation). Accepted queries are dis-
tinguished from the otherdenied queries, for which D produces
synthetic answersvia relaxation. Given any setS of accepted
queries, itstotal answerequals the sum of the reported answers
of all queries inS.

Let Q be the set of accepted queries in history, andq∗ a denied
query whose region isr∗. Relaxation looks for a subsetP+ of Q,
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Figure 5: Illustration of a compound

containing accepted queries whose regions can be put together to
form a rectangle similar tor∗. Then, we use the total answer ofP+

as the synthetic answer forq∗. However, some queries inP+ may
have overlapping regions in which case their intersectionsare over-
counted. Therefore, to increase accuracy, relaxation alsosearches
for another subsetP− of Q, involving queries whose regions cor-
respond to the intersection areas inP+. To cancel the effect of
over-counting, we subtract the total answer ofP− from that ofP+.
The pair of(P+, P−) constitutes acompound, which is formalized
below:

DEFINITION 7 (COMPOUND). Two disjoint setsP+ andP−

of queries constitute acompoundP , if:

1. For each pointp in the data spaceΩ, p(P+)− p(P−) equals
0 or 1, wherep(P+) andp(P−) are the popularities ofp in
P+ andP−, respectively.

2. All points p ∈ Ω satisfyingp(P+) − p(P−) = 1 form a
rectanglerdiff, which is thedifference regionof P . �

We refer to|P+ ∪ P−| as thesizeof P . As explained earlier, we
compute asynthetic answerof P by

∑

q∈P+

q(D) −
∑

q∈P−

q(D). (12)

whereq(D) is the reported answer of an accepted queryq. Intu-
itively, condition 1 of Definition 7 requires no over-counting at all
in the synthetic answer ofP . The difference regionrdiff, formulated
in condition 2, is exactly the region that the synthetic answer corre-
sponds to. Furthermore,rdiff is also the relaxed queryq∗′ returned
to the user. Hence, condition 2 demandsrdiff to be a rectangle.

EXAMPLE 5. Assume thatQ consists of four queriesqA, qB ,
..., qD , whose regionsrA, ..., rD are illustrated in Figure 5. Let
P+ = {qD} andP− = {qA, qB , qC}. Then,P = (P+, P−) is a
compound. Specifically, for any pointp outsiderD, its popularities
p(P+) andp(P−) in P+ andP− respectively are both 0. For any
point p insiderD but outside the grey area,p(P+) andp(P−) are
both 1. For any pointp in the grey area,p(P+) = 1 whereasp(P−)
= 0. Hence, condition 1 is fulfilled. Furthermore, condition2 is
also satisfied becausep(P+) − p(P+) = 1 only whenp is in the
shaded area, which is thus the difference region ofP . The synthetic
answer ofP equalsqD(D) − (qA(D) + qB(D) + qC(D)). �

Ideally, the difference regionrdiff of a compoundP should be
identical to the regionr∗ of the denied queryq∗. When this is not
true, we need a metric for quantifying the quality of a compound.
The next subsection addresses this issue.

4.2 Relaxation Error
Let r be an axis-parallel rectangle in the spaceΩ. Denote its

projection on thei-th dimension (1 ≤ i ≤ d) as[r.xi, r.yi]. Also,
useAi.max (Ai.min) to represent the maximum (minimum) value
on thei-th axis. As mentioned earlier, given a denied queryq∗

with regionr∗, we want to find a compoundP whose difference
regionrdiff is as similar tor∗ as possible. To measure the similarity
betweenrdiff andr∗, we introduce the following metric:

Algorithm Patch-check(P , q)
/* P is a compound andq an accepted query */
1. rdiff = the difference region ofP
2. r = the region ofq∗

3. if rdiff ∩ r = ∅
4. if the union ofrdiff andr is a rectangle
5. if the relaxation error drops after includingq in P+

6. returnP+

7. else ifrdiff coversr andrdiff − r is a rectangle
8. if the relaxation error drops after includingq in P−

9. returnP−

10. return NULL

Figure 6: Checking whether a query is a patch
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Figure 7: Illustration of Patch-check

DEFINITION 8 (RELAXATION ERROR). Let P be a com-
pound andq∗ a denied query with regionr∗. Therelaxation error
E(P, q) equals

1

d

d
∑

i=1

(

wi ·
∣

∣r∗.xi − rdiff.xi

∣

∣ +
∣

∣r∗.yi − rdiff.yi

∣

∣

Ai.max − Ai.min

)

(13)

where weightsw1, ...,wd can be any positive values. �

Weight wi (i ∈ [1, d]) is a constant reflecting the importance of
dimensionAi. A largewi means thatAi is imperative, such that
even a small difference betweenr∗ andrdiff along this dimension
may cause heavy penalty. A smallwi achieves the opposite effect.
For simplicity, in the sequel, we assumew1 = ... = wd = 1
because our solutions extend to arbitrary weights directly.

Given a compoundP , Equation 13 suggests an easy way to iden-
tify which query can be inserted inP to reduce relaxation error. We
refer to such a query as apatch:

DEFINITION 9 (PATCH). Let Q the set of accepted queries
andP = {P+, P−} be a compound. Consider a queryq ∈ Q that
does not belong toP yet. We say thatq is a positive(negative)
patch if, after includingq in P+ (P−), (i) P remains a compound
and (ii)E(P, q∗) decreases. �

Figure 6 gives an algorithmPatch-checkfor verifying whether a
queryq is a patch for a compoundP = {P+, P−}. In case it is,
Patch-checkindicates whetherq should be added toP+ or P−. If q
is not a patch, the algorithm returns NULL. Next, we illustrate the
algorithm using an example.

EXAMPLE 6. Assume thatQ containsqA, qB , qC whose re-
gionsrA, ...,rC are shown in Figure 7a. Rectangler∗ is the region
of a denied queryq∗. Consider a compoundP = (P+, P−), where
P+ = {rA} andP− = ∅. The difference regionrdiff of P is rA.

To see whetherqB is a patch,Patch-checkstarts by noticing that
rB is disjoint withrdiff (Line 3 of Figure 6). In this case, the algo-
rithm examines if the union ofrdiff andrB is a rectangle (Line 4).
The answer is negative, and therefore,Patch-checkreturns NULL.
The regionrC of qC , on the other hand, is disjoint withrdiff, and
meanwhile, can unionrdiff into a rectangle. Hence,Patch-checkex-
amines whether inclusion ofqC in P+ reduces the relaxation error
(Line 5). For this purpose, it obtains the newrdiff (if rC is indeed
inserted inP+), which is the shaded area in Figure 7a. Clearly,
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Figure 8: Artificial queries reduce relaxation error

compared to the originalrdiff, the shaded area is more similar tor∗,
implying lower relaxation error. Therefore,qC is a positive patch,
andPatch-checkreturnsP+ (Line 6).

Consider another example, whererA, rB, rC , r∗ are demon-
strated in Figure 7b (rA is the bold rectangle). Again, suppose
P = (P+, P−), whereP+ = {rA} andP− = ∅, and apparently,
therdiff of P is rA. Let us applyPatch-checkto verify whetherqB is
a patch. SincerB intersectsrdiff, Patch-checkexecutes Line 7, and
proceeds only if (i)rdiff enclosesrB and (ii) the difference between
rdiff and rB is a rectangle. Here, although (i) is true, (ii) is not.
Hence,Patch-checkfinishes with NULL. On the other hand,rC

satisfies both (i) and (ii), and thus,Patch-checkproceeds to inspect
the relaxation error after addingqC to P− (Line 8). The shaded
area in Figure 7 shows the newrdiff (if qC is in P−), which is a
better approximation ofr∗ than the originalrdiff. Hence,qC is a
negative patch, and the algorithm terminates withP− (Line 9). �

4.3 Artificial Patches
So far we have assumed that a compoundP contains only the

queries inQ that areexplicitly issued by users in the past. This sec-
tion explores another possibility: we can also dynamicallygenerate
a query, force the database to process itnormally(i.e., using the so-
lution in Section 3), and then, use its perturbed answer to obtain a
better synthetic answer for the denied queryq∗.

To illustrate, consider Figure 8a, wherer∗ is the region ofq∗,
andrdiff (the bold rectangle) is the difference region of the current
compoundP . Obviously,rdiff is a poor approximation ofr∗. Imag-
ine, however, that wehadan accepted queryqA in Q whose region
is rA. This query is a negative patch, because its inclusion inP−

shrinksrdiff to the shaded area, which is significantly more simi-
lar to r∗. In fact, even thoughqA is not inQ, we can instruct the
databaseD to process it (as an accepted query)right away, after
which qA can be incorporated inQ, and hence, becomes a candi-
date patch to be selected byPatch-check(Figure 6).

In Figure 8a, the artificial queryqA aligns with the right edge of
r∗. Sometimes, it is better to align with the left edge ofr∗. For
example, let us examine Figure 8b, whererB is the region of an
artificial queryqB . Apparently,qB a positive patch, as its insertion
in P+ expandsrdiff to the shaded area, which has much lower re-
laxation error. Similarly, artificial queries may also be created on
the y-dimension, by aligning with the upper and lower edges of r∗,
respectively.

In general, given a compoundP with difference regionrdiff, we
prepare anartificial patch-setSarti as follows. First,Sarti is initiated
with 2d artificial queries, each of which aligns with a boundary
of rdiff (details clarified shortly). Then, we invokePatch-checkto
eliminate those queries inSarti that are not patches (i.e., they do
not reduce the relaxation error). Some remaining queries may be
denied byD due toε-differential privacy (i.e., if they intersect a
bucket in the histogramH with counterελ/2; see Section 3), and
are also removed fromSarti . The resultingSarti is the final artificial
patch-set.

It remains to explain how to obtain the initial2d queries inSarti .

Algorithm Relax(q∗, ξ)
/* q∗ is a denied query, andξ the maximum compound size */
1. q = the query inQ minimizing E(P, q∗), whereP+ = {q}, P− = ∅,

andP = {P+, P−}
2. ans = the reported answer ofq
3. while the size ofP is smaller thanξ
4. M = the set of queries inQ that are patches forP

/* using Patch-checkin Figure 6 */
5. M = M ∪ Sarti /* See Section 4.3 about derivingSarti */
6. if M = ∅ then goto Line 14
7. else
8. q = the patch inM whose insertion inP minimizesE(P, q)
9. if q /∈ Q thenx = Process(q)
10. elsex = the reported answer ofq
11. if q is a positive patch
12. P+ = P+ ∪ {q′}; ans = ans + v
13. elseP− = P− ∪ {q′}; ans = ans − v
14. returnans and the difference region ofP

Figure 9: The relaxation algorithm

Specifically, the(2i− 1)-th (1 ≤ i ≤ d) query has a region whose
projection on dimensionAj is:







[rdiff.xj , rdiff.yj ] if j 6= i
[rdiff.xi, r

∗.xi) if j = i andr∗.xi > rdiff.xi

[r∗.xi, rdiff.xi) otherwise

Similarly, the region of the2i-th query has the following projection
onAj :







[rdiff.xj , rdiff.yj ] if j 6= i
(rdiff.yi, r

∗.yi] if j = i andr∗.yi > rdiff.yi

(r∗.yi, rdiff.yi] otherwise

4.4 Probabilistic Accuracy
Recall that, given a compoundP , we return a synthetic answer

v calculated by Equation 12, and a relaxed queryq∗′. The value
v is actually an unbiased estimate the real resultq∗′(T ), but has a
variance proportional to the size ofP :

LEMMA 4. Equation 12 has the expected valueq∗′(T ), and its
variance is2λ2 · |P+ ∪ P−|, whereλ is the noise magnitude ofD.

PROOF. For any queryq in P+ or P−, let δq be the noise thatD
injects intoq(D). Denotev as the value of Equation 12.

v = Σq∈P+
q(D) − Σq∈P−q(D)

= Σq∈P+

(

q(T ) + δq

)

− Σq∈P−

(

q(T ) + δq

)

= Σq∈P+
q(T ) − Σq∈P−q(T ) + Σq∈P+

δq − Σq∈P−δq.

By Equation 1, the mean and variance ofΣq∈P+
δq −Σq∈P−δq are

0 and2λ2 · |P+∪P−|, respectively. Hence,v has an expected value
Σq∈P+

q(T ) − Σq∈P−q(T ), and variance2λ2 · |P+ ∪ P−|. Next,
we will show thatΣq∈P+

q(T ) − Σq∈P−q(T ) = q∗′(T ).
Consider thei-th (1 ≤ i ≤ |T |) tupleti in T . Letpi be the point

representation ofti in Ω, andG = {pi | 1 ≤ i ≤ |T |}. Thus,

Σq∈P+
q(T ) = Σp∈Gp(P+), andΣq∈P−q(T ) = Σp∈Gp(P−).

Let rdiff be the difference region ofP , which is also the regionr∗′

of q∗′. By Definition 7, for any pointp ∈ Ω, p(P+) − p(P−) = 1
if p ∈ rdiff; otherwisep(P+) − p(P−) = 0. Hence,Σq∈P+

q(T )−
Σq∈P−q(T ) = Σp∈G

(

p(P+) − p(P−)
)

= Σp∈G∩rdiff

(

p(P+) − p(P−)
)

+ Σp∈G−rdiff

(

p(P+) − p(P−)
)

= Σp∈G∩rdiff1 + Σp∈G−rdiff0 = Σp∈G∩r∗′1

= Σp∈Gp({q∗′}) = q∗
′
(T ).

which completes the proof.
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Figure 10: Illustration of Relax

Since the variance of the synthetic answer grows with the size
of P , we allow the user to specify an upper-boundξ on the size
of a compound, i.e., there can be at mostξ queries inP+ ∪ P−.
The value ofξ controls the tradeoff between relaxation error and
query accuracy: a largerξ leads to compounds consisting of more
queries, which lowers relaxation error but increases the noise in
the query results; on the other hand, a smallerξ ensures less noisy
query answers, but may incur higher relaxation error.

4.5 Relaxation Algorithm
Based on the previous analysis, Figure 9 formally presents the

query relaxation algorithmRelax. Given a denied queryq∗, Relax
starts with a simple compoundP whoseP− is empty, and itsP+

contains the query inQ (the set of accepted queries) most similar
to q∗. Then,Relaxproceeds in rounds, each of which adds a query
to P to minimize the relaxation error. Such a query is chosen from
bothQ and the artificial patch setSarti computed as in Section 4.3.
More rounds are carried out until either the size ofP has reached
the upper boundξ, or no more patch can be found.

EXAMPLE 7. Assume thatD has accepted the setQ of queries
q1, q2, q3, q4 before, whose regionsr1, ..., r4 are illustrated in
Figure 10a. At this point, the histogramH has the buckets in Fig-
ure 10b, and the largest permissible bucket counterελ/2 equals 3
(for ensuringε-differential privacy). Now,D receives a new query
q5 whose regionr5 is shown in Figure 10c.D deniesq5, because
r5 intersects a bucketB7 , whose counter 3 equalsελ/2. Then,D
invokesRelaxto derive a synthetic answer. Assume the maximum
compound sizeξ to be 3.

Among all the queries inQ, q2 is the most similar toq5; hence,
RelaxinitializesP+ = {q2} andP− = ∅. Clearly, the difference
regionrdiff of P is r2, i.e., the shaded area in Figure 10a.

The algorithm enters the first round.Relaxbuilds a setM of
patches ofP . For this purpose, it employsPatch-check(Figure 6)
to examine every query inQ that is not inP yet. The examination
reveals thatq3 is a positive patch; hence,M = {q3}. Then,Relax
computes the artificial patch-setSarti in the way described in Sec-
tion 4.3, and adds all queries ofSarti to M . It can be verified that
hereSarti = ∅, thus causing no change inM . As q3 is the only
element inM , it is inserted inP+ (remember thatq3 is a positive
patch), which thus becomes{q2, q3}. This changes the difference
regionrdiff to be the shaded area in Figure 10c.

Parameter Values
noise magnitudeλ 2000

histogram size thresholdθ 102, 103, 104, 105, 106

ε 0.1, 0.2, 0.3, 0.4, 0.5
query volumes 1%, 2%, 4%, 8%, 16%

compound size thresholdξ 1, 2, 3, 4, 5

Table 2: Parameters and examined values

In the second round,Relaxcreates a setM of patches in the same
manner. This time, no query fromQ is added toM . The artificial
patch-setSarti , on the other hand, has a negative patchq6, whose
regionr6 is given in Figure 10d. Thus,M includes onlyq6, which
is placed inP−. As a result, the difference regionrdiff shrinks to
the shaded area of Figure 10d. At this time,P+ = {q2, q3} and
P− = {q6}.

Now that the size ofP has reached the upper boundξ = 3,
Split finishes, and returns the synthetic answer ofP , and the fi-
nal rdiff. After this, q6 needs to included inQ (which is now
Q = {q1, q2, q3, q4, q6}) because, as explained in Section 4.3,
an artificial query is processed normally using the solutionin Sec-
tion 3. �

Each round ofRelaxexamines the queries inQ once, which takes
O(θελ) time becauseQ contains at mostθελ/2 queries, whereθ
is the number of buckets in the dynamic histogram. Since there are
at mostξ rounds,Relaxruns inO(ξθελ) time.

5. EXPERIMENTS
This section experimentally evaluates the effectiveness of the

proposed solutions. We use a real dataset CENSUS (obtainable
from http://www.ipums.org) with one million tuples, each storing
the information of an American. It has four attributes:Age, Educa-
tion, Occupation, andIncome, whose domain sizes are79, 14, 23,
and100, respectively. We aim at guaranteeingε-differential privacy
with a noise magnitudeλ = 2000. This choice ofλ ensures that
the expected absolute error of each query answer is a small value
2000 (as explained in Section 2), which accounts for only0.2% of
the cardinality of CENSUS.

Each query has the form:select count(*) from CENSUS where
A1 ∈ [x1, y1] andA2 ∈ [x2, y2]. Here,A1 andA2 are two random
attributes of CENSUS. Interval[xi, yi] falls in the domain ofAi

(1 ≤ i ≤ 2), and its lengthyi−xi equals
√

s·(Ai.max−Ai.min),
whereAi.max (Ai.min) is the maximum (minimum) value in the
domain ofAi, ands the query volume (defined in Section 3.3).
The centerzi of [xi, yi] follows one of the following distributions,
which reflect the patterns of users’ queries in practice [7]:

• Data: zi = t[Ai], wheret is a tuple randomly selected from
CENSUS.

• Uniform: zi is a random value in the domain ofAi.

A (Data- or Uniform-) workload contains 20k queries with an iden-
tical s obeying the same distribution.

Table 2 summarizes the parameters examined in our experi-
ments. Unless otherwise stated, each parameter is set to itsdefault
value (bold in the table) in each experiment. All the experiments
are accomplished on a computer with a 3 GHz Pentium IV CPU
and one gigabytes memory.

Processing Capacity without Relaxation. The first set of ex-
periments studies the number of queries that can be answeredby
our Histogramapproach (Section 3) without query relaxation. For
comparison, we implement the only existing solution [13] that en-
suresε-differential privacy in handling count queries. This solution,
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referred to asDisjoint, processes an incoming query, if and only if
its region does not overlap any of the queries answered previously.

In the experiment of Figure 11a, we submit the queries in aData-
workload to the underlying statistical database, and measure the
number of processed queries, as a function of the number submit-
ted. The figure demonstrates the results ofDisjoint, Histogram
adopting various numbersθ of buckets, and the theoretical upper
bounds given by Lemma 3. Figure 11b illustrates the results of
a similar experiment with aUniform-workload. For eachθ, the
curve ofHistograminitially increases because, during this period,
the bucket counters are smaller than the limitελ/2, thus permit-
ting additional queries to be processed. The curve eventually turns
horizontal, when the counters have reached the limit.

We use the termprocessing capacityto refer to the total num-
ber of queries in a workload that are answered by the database.
Observe that the capacity ofHistogramgrows along withθ. This
is because a histogram with more buckets provides a better esti-
mate ofC(Q), and hence, reduces the chance of denying a query
that could have been processed (if the realC(Q) was maintained).
Nevertheless, we witness no obvious gain by raisingθ beyond105,
implying thatθ = 105 already offers adequate precision for max-
imizing the processing capacity. Whenθ is fixed, Histogram is
able to answer more queries in aUniform-workload than in aData-
workload. This is due to the fact that, uniform queries have less
overlap in their regions, which leads to a lowerC(Q), and hence,
fewer query denials.

For uniform queries andθ = 105, the processing capacity of
Histogramapproaches the upper bound, which confirms the effec-
tiveness of the proposed bucket maintenance algorithm. Since an
upper bound assumes an “ideal” query distribution, it is reasonable
for the actual capacity to be lower, especially given a “bad”distri-
bution such asData. Notice thatHistogramhas significantly higher
capacity thanDisjoint. Since this is true in all the subsequent ex-
periments, we omitDisjoint in the following diagrams.

Next, we investigate the effects ofε ands on the processing ca-
pacity ofHistogram. Figure 12a (12b) plots the actual capacity as a
function ofε (s) for workloads of both distributions, together with
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the upper bounds. The capacity increases linearly withε. This is
expected, because the capacity is proportional to the limitελ/2 on
C(Q), which, in turn, is linear toε. On the other hand, a greater
s results in a smaller capacity, since handling queries with larger
regions causes faster growth ofC(Q).

Quality of Relaxation. The effectiveness of query relaxation (Sec-
tion 4) is determined by: (i) the relaxation error (calculated by
Equation 13) and (ii) the size of the final compound. The former
indicates the amount of modification to the original query’spredi-
cates, whereas the latter determines the variance of a synthetic an-
swer (see Lemma 4).

By varying ξ from 1 to 5, Figure 13a (13b) illustrates the aver-
age relaxation errors (compound sizes) of the queries that demand
relaxation inData- andUniform-workloads, respectively. The av-
erage error is very small, indicating that a compound regionused to
derive a synthetic answer is almost identical to the original query
region. The error decreases asξ escalates, since allowing a larger
compound raises the chance of finding a good compound (whose
region incurs little relaxation error). The average compound size is
fairly low, implying a small variance in the reported answers. Note
that a compound size can be well belowξ, because the relaxation
algorithm may terminate before the size reachesξ.

In Figure 14a (14b), we plot the average relaxation error (com-
pound size) as a function ofε, when this parameter distributes from
0.1 to 0.5. Both factors decrease asε becomes larger. To under-
stand this, recall that a greaterε allows the database to process more
queries (see Figure 12a), rendering a larger setQ usable by relax-
ation, and thus, enhancing relaxation quality. Figures 15aand 15b
demonstrate the relaxation error and compound size, ass is varied
between 1% and 16%. The two factors increase withs, which can
again be explained by the relationship between the relaxation qual-
ity and the database’s processing capacity (c.f. Figure 12b). In all
cases, the relaxation error and compound size remain at verylow
levels, confirming the usefulness of our synthetic answers.

Computation Overhead. In the next set of experiments, we eval-
uate the average processing time required by our technique in an-
swering queries. Figures 16a and 16b plot the computation over-
head as a function ofε ands, respectively. The overhead escalates
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with the increase ofε (decrease ofs), due to the following reasons.
First, a largerε leads to a greater processing capacity, as shown in
Figure 12a. In turn, a high processing capacity renders the main-
tenance of the dynamic histogram less efficient, because each ex-
ecution ofSplit requires a scan through all previously answered
queries (see Line 1 in Figure 2). Consequently, the computation
time increases withε. On the other hand, a largers results in a
smaller processing capacity (see Figure 12b), and hence, a lower
computation cost.

Figure 16c demonstrates the computation overhead as a func-
tion of ξ. The overhead increases withξ, since a greaterξ enables
our technique to utilize larger compounds (for query relaxation),
which, however, require more time to construct. In Figure 16d, we
plot the processing overhead, varyingθ from 102 to 106. The over-
head escalates with the increase ofθ. This is because, a larger
θ allows more buckets in the dynamic histogram, which entails
higher processing cost, since our technique needs to inspect all
histogram buckets to decide whether a query is answerable. In-
terestingly, whenθ = 106, the query overhead ofData-workload
is much lower than that ofUniform-workload. To understand this,
observe that the number of histogram buckets increases, only when
the statistical database processes an answerable query (see Fig-
ure 2). SinceData-workload permits a smaller processing capac-
ity thanUniform-workload, few histogram buckets are created for
Data-workload, and thus, the computation overhead is lower. This
phenomenon does not occur whenθ ≤ 105, because the maxi-
mum numbers of histogram buckets entailed by each workloadsis
larger than105, i.e., givenθ ≤ 105, our technique have to utilize

all θ buckets to process each workload, and hence, the computation
overhead for both workloads is similar.

6. RELATED WORK
Output perturbation is first studied by the statistics community

(see [2] for a survey). In particular, Denning [10] devises amethod
that proposes to answer queries on a random sample set of the
underlying data; Fellegi and Phillips [15] devises a methodthat
rounds each query result to the nearest multiple of a pre-defined
number, while Achugbue and Chin [1] and Dalenius [9] investigate
variations of this method. As pointed out in [12], however, the ex-
isting approaches in the statistics literature mainly address the util-
ity of perturbed query results, without providing solid guarantees
on privacy preservation, which severely limits their practicability.

In [11], Dinur and Nissim provide the first formal study on the
amount of noise needed by any output perturbation scheme to en-
sure privacy in count queries. They show that, if an unlimited num-
ber of queries are allowed, the noise in each query answer must be
linear to the dataset cardinalityn; otherwise, an adversary may be
able to restore the entire dataset precisely from the query results. As
an unfortunate implication, when the dataset is sizable, query an-
swers will have to be erroneous to avoid privacy disclosure.Dwork
et al. [14] further prove that, even if the statistical database employs
arbitrary noise in answering0.269 fraction of the queries, and re-
turns relatively accurate answers for the rest, an adversary can still
reconstruct most tuples in the dataset.

To circumvent the problem, Blum et al. [6] propose a solution
that permits onlyo(n) count queries, but provides more accurate
answers. This solution is subsumed by the differential privacy
mechanism [13], which allows a larger number of queries and of-
fers a higher degree of privacy protection. McSherry and Talwar
[21] extend differential privacy for arbitrary queries, while Nissim
et al. [23] improve the techniques in [13] by taking into account the
smooth sensitivityof the queries.

Besides output perturbation,query restrictionand input per-
turbation are also popular techniques for implementing statistical
databases. Specifically, query restriction [8, 18, 22] works by deny-
ing queries that may lead to privacy breach, and returning exact an-
swer for the other queries. Compared to output perturbation, this
technique offers more useful query results, but weaker privacy pro-
tection. In particular, none of the existing query restriction tech-
nique can achieveε-differential privacy.

When input perturbation is adopted, the statistical database first
sanitizes the microdata withgeneralization[25, 26] orrandom per-
turbation[3, 4], and then processes queries using the sanitized data.
The major advantage of input perturbation is that it is able to an-
swer any number of queries. Nevertheless, the benefit is at the cost
of sacrificing query accuracy. Dwork et al. [13] prove that, for prac-
tical datasets, random perturbation necessarily incurs larger error
than output perturbation, in achievingε-differential privacy. They
also show that generalization cannot be used to ensureε-differential
privacy at all.

7. CONCLUSIONS
Althoughε-differential privacy has been established as an impor-

tant paradigm for statistical databases, it remains unclear whether
the paradigm can be efficiently applied when the incoming (count)
queries have arbitrary predicates. This paper provides a pessimistic
answer, by proving that evaluatingε-differential privacy is NP-
hard. Fortunately, as the second step, we show that it is possible
to efficiently enforce this paradigm in a conservative manner. Our
results lead to a histogram approach, which enables the processing



of a majority of queries that qualifyε-differential privacy. Further-
more, given a query that violates the paradigm, our relaxation tech-
nique still provides a useful answer, as opposed to simply denying
the query completely as in previous solutions.

Our work also opens several avenues for future research. First, in
this paper we concentrate on statistical databases that answer count
queries. It is interesting to investigate whether our solutions can
be adapted to support other aggregate queries (e.g., SUM, MIN,
MAX) as well. Second, the proposed solutions assume that there
are no updates in the microdata. We plan to study extensions for
the scenarios where only insertions are possible (i.e., append-only),
and both insertions and deletions are allowed. Finally, ourmethod
is designed for relational tables. It is a challenging problem to de-
vise output perturbation techniques for other types of microdata
such as social networks, locations of moving objects, strings, etc.
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Appendix: Proof of Lemma 1
We will prove the lemma by a reduction from themaximum 2-
satisfiability (MAX-2-SAT) problem. Specifically, letF be a2-
CNF formula withm clauses onn variablesvi (1 ≤ i ≤ n).
Given a positive integerk, MAX-2-SAT asks whether there is an
assignment of boolean values tovi, such that at leastk clauses in
F evaluate totrue. This problem is NP-complete [16]. In the se-
quel, if a clause istrue, we say that it issatisfied.

Recall that all sibling tables conform to the same schema. We
consider that the schema hasn attributesA1, ..., An, all of which
have a domain{0, 1, 2, 3}. Given a2-CNF formulaF , we create
a setQ of 6m count queries as follows. Letcj be thej-th (1 ≤
j ≤ m) clause inF , and assume thatcj involves theα-th andβ-th
variablesvα andvβ . Definebα = 0 if the negation ofvα appears
in cj , andbα = 1 otherwise. Also definebβ according tovβ in the
same manner. We add toQ the following 6 queries:



qj1: SELECT COUNT(*) FROM T
WHERE Aα = bα AND Aβ = bβ

qj2: SELECT COUNT(*) FROM T
WHERE Aα = bα AND Aβ = 1 − bβ

qj3: SELECT COUNT(*) FROM T
WHERE Aα = 1 − bα AND Aβ = bβ

qj4: SELECT COUNT(*) FROM T
WHERE Aα = 2 + bα AND Aβ = 2 + bβ

qj5: SELECT COUNT(*) FROM T
WHERE Aα = 2 + bα AND Aβ = 3 − bβ

qj6: SELECT COUNT(*) FROM T
WHERE Aα = 3 − bα AND Aβ = 2 + bβ

It is important to note that any tuple can satisfyat mostone of these
queries. Repeating the above for allm clauses inF yields totally
6m queries. The rest of the proof will establish:

PROPOSITION 1. SL1(Q) ≥ 2k if and only if there is an as-
signment of boolean values tovi (1 ≤ i ≤ n) that satisfies at least
k clauses inF .

The “only-if” direction. Without loss of generality, assume that
c1, ..., ck in F aretrue under a certain boolean-value assignment.
We build a pair of sibling microdata tablesT1 andT2 as follows.
T1 has a single tuplet1, such that for any1 ≤ i ≤ n, t1[Ai] = 1
if vi = true, andt1[Ai] = 0 otherwise. Similarly,T2 also has a
single tuplet2 such thatt2[Ai] = 2 + t1[Ai].

Consider clausecj (1 ≤ j ≤ k) in F , and the six queriesqj1,
..., qj6 in Q created fromcj . Let vα andvβ be the two variables
in cj . Suppose thatvα = true andvβ = false (the proof for the
other cases is similar). Accordingly,t1[Aα] = 1 andt1[Aβ] = 0.
Sincecj evaluates totrue, eithervα or¬vβ appears incj , implying
that bα = 1 or bβ = 0. Hence,t1 satisfiesoneof qj1, qj2, qj3

but violates all ofqj4, qj5, qj6. Similarly, it can be verified that
t2 satisfies one ofqj4, qj5, qj6 but violates all ofqj1, qj2, qj3. It
means that

6
∑

l=1

∣

∣qjl(T1) − qjl(T2)
∣

∣ = 2.

Therefore

SL1(Q) ≥
∑

q∈Q

∣

∣q(T1) − q(T2)
∣

∣

≥
k
∑

j=1

6
∑

l=1

∣

∣qjl(T1) − qjl(T2)
∣

∣

= 2k.

The “if” direction. As SL1(Q) ≥ 2k, there exists a pair of sib-
lingsT ′

3 andT ′

4 such that
∑

q∈Q

∣

∣q(T ′

3)−q(T ′

4)
∣

∣ = SL1(Q) ≥ 2k.
Recall thatT ′

3 andT ′

4 differ in only one tuple. Denote byt3 (t4)
the tuple inT ′

3 (T ′

4) that does not appear inT ′

4 (T ′

3). LetT3 (T4) be
a microdata table wheret3 (t4) is the only tuple. We have

∑

q∈Q

∣

∣q(T3) − q(T4)
∣

∣ =
∑

q∈Q

∣

∣q(T ′

3) − q(T ′

4)
∣

∣ ≥ 2k. (14)

Apparently, for any queryq, q(T3) and q(T4) equal either zero
or one. By Equation 14, it must be that either

∑

q∈Q q(T3) ≥

k or
∑

q∈Q
q(T4) ≥ k. Without loss of generality, assume

∑

q∈Q
q(T3) ≥ k. Then,

k ≤
∑

q∈Q

q(T3) =
k
∑

j=1

6
∑

l=1

∣

∣qjl(T3)
∣

∣. (15)

We assign boolean values tovi (1 ≤ i ≤ n) as follows:

vi =

{

true, if t3[Ai] = 1 or t3[Ai] = 3
false, otherwise

(16)

We will show that the above assignment satisfies at leastk clauses
of F . For anyj ∈ [1, m], at most one ofqj1(T3), qj2(T3), ...,
qj6(T3) is one, and the others must be 0. LetJ be the set of inte-
gers in[1, m], such that for anyj ∈ J ,

∑6
l=1

∣

∣qjl(T3)
∣

∣ = 1. By
Equation 15,|J | ≥ k holds.

For anyj ∈ J , consider thej-th clausecj in F . Again, assume
vα andvβ to be the variables incj . As

∑6
l=1

∣

∣qjl(T3)
∣

∣ = 1, t3
satisfies one ofqj1, ...,qj6. Without loss of generality, assume that
t3 satisfiesqj5 (the proof for the other cases is similar), namely,
t3[Aα] = 2 + bα and t3[Aβ] = 3 − bβ . The values ofbα and
bβ can independently be either 0 or 1. Regardless of their values,
cj always evaluates totrue. For example, supposebα = 0 and
bβ = 1. As bα = 0, we knowt3[Aα] = 2, and by Equation 16,vα

has been set tofalse. Furthermore,bα = 0 also suggests that¬vα

is in cj , which hence evaluates totrue.
As in the above reasoningj was chosen to be any integer inJ ,

we have identified at least|J | ≥ k clauses which evaluate totrue.


