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ABSTRACT

Given a dataset containing sensitive personal informatisiatis-
tical database answers aggregate queries in a mannerdsatyes
individual privacy. We consider the problem of construgtasta-
tistical database usingutput perturbationwhich protects privacy
by injecting a small noise into each query result. We showttia
state-of-the-art approach;differential privacy suffers from two
severe deficiencies: it (i) incurs prohibitive computatawerhead,
and (ii) can answer only a limited number of queries, afteicivh
the statistical database has to be shut down. To remedy tie pr
lem, we develop a new technique that enforeelfferent privacy
with economical cost. Our technique also incorporatgsery re-
laxation mechanism, which removes the restriction on the number
of permissible queries. The effectiveness and efficienayuofso-
lution are verified through experiments with real data.

1. INTRODUCTION

The evolution of information technology has enabled an mirga
zation (e.g., hospitals, retailers) to collect large vabsrof sensitive
personal data (e.g., medical records, transaction histatyich is
usually referred to amicrodata To facilitate research, these or-
ganizations often need to provide public access to theirodata,
which, however, may pose a risk to individual privacy. Foamx
ple, assume that the Census Bureau maintains an onlineadatab
for answering count queries on the microdatén Table 1, which
contains three column#\ge Zipcode andIncome(Nameis in-
cluded to facilitate row referencing). Consider an advusrseho
knows the age20 and zipcodel 5000 of Alice, and the fact that
Alice is involved inT'. To infer the income of Alice, the adversary
may issue the following two querigs andg:

SELECT COUNT(*) FROMT
VWHERE Age < [20, 20] AND Zipcode€ [15k, 15K]
AND Incomee [80Kk, +00)

qo:

SELECT COUNT(*) FROMT
WHERE Agec [20, 20] AND Zipcodec [15k, 15K]
AND Incomee (—oo, 80k)

/.
q0-
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Name|[Age[ Zipcode[Income
Alice | 20 | 15000 | 85k
Bob [ 25| 52000 | 32k
Cathy [ 33| 41000 | 25k
David [ 38| 23000 | 37k
Eva [ 44 26000 | 43k
Frank|[ 47 18000 | 65k
Georgg 53| 31000 | 28k
Helen| 61| 35000 [ 54k

Table 1: The microdata

The answers ofjy and g, are 1 and0, respectively. Once these
results are returned, the adversary can assert that Alivetsne
must be above 80k, a close guess of Alice’s real salary 85k.

The above problem motivatestatistical databaseswhich an-
swer counting queries without leaking individuals’ priyaén ef-
fective approach isutput perturbatiori2, 6, 11, 13], which works
by injecting a small random noise into each query result.
gueries that pinpoint sensitive information (e @ ,and q), their
answers are dominated by noise; hence, privacy is prese@ed
the other hand, the noise has little effect on queries thaeve
high-level statistics (e.g., find the number of people eaymore
than 30K), since they usually have large results.

Numerous output perturbation techniques are availabléén t
statistics literature (see [2] and the references ther&imse tech-
nigues, however, are not based on a rigorous definition végyi
[12]. To overcome this defect, Dinur and Nissim [11] develop
a principle callede-differential privacy(to be elaborated in Sec-
tion 2), and employs it to avoid queries that can reveal sgasi
information. Specifically, le€) be the set of previously answered
queries. Given a new query, the database determines whether
{q} U Q violatese-differential privacy. If yesg is rejected; oth-
erwise, the database reports a noisy result. As proved infis
approach guarantees that an adversary can recover angvaeinsi
formation with very low probability, even if s/he has auditthe
results of all the queries in history.

1.1 Motivation

Despite being the state of the artdifferential privacy has two
drawbacks that severely reduce its practical applicgbiliirst,
somewhat surprisingly, there is no existing solution foeaking
e-differential privacy. As detailed in the next section, thfficulty
stems from the computation of the so-called sensitivity which
is a crucial component in verifyingdifferential privacy. The best
efforts are due to Dinur et al. [13], who point out severalciple
cases wheré& sensitivity can be calculated. Similar attempts have
also been made in [5, 20, 24]. Unfortunately, the calcuhaticob-
lem in general is still open. In other words, currentigifferential
privacy is virtually inapplicable when arbitrary queries allowed.

The second defect of-differential privacy also exists in all
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the previous output perturbation solutions. Specificallgen the
database denies a query, it simply returns nothing. Thigrénc
rather negative user experience, because a legitimatenmed
have to spend a long time trying different queries beforérggean
answer. Even worses-differential privacy supports only a finite
number of queries [11]. In other words, after a period of tithe
statistical database will have to go offline, and all futuneries are
directly refused.

In fact, for a denied query, it is possible to return a useful
synthetic answerwhich is synthesized from the reported answers
of the past queries. To illustrate, assume that the databpseted
an answen; for queryq:

SELECT COUNT(*) FROMT
WHERE Age€ [20, 50] AND Incomee [40k, 70K]

qi:

and now receives a quety:

qi: SELECT COUNT(*) FROMT
WHERE Age€ [20, 51] AND Incomee [40k, 70K]

If g1 needs to be denied for privacy preservation, we may stillret
a1 to the user, along with the definition gf (so that the user knows
a1 is the result of query;; thatrelaxesher/his original query;;).
Since the predicates in andq; are similar, the answer; would
still be useful to the user. We refer to the procesgetxation

In general, relaxation may combine the results of multiple
queries. To illustrate, consider:

¢2:  SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [0, 39999]
gs: SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [40000, 99999
g5 SELECT COUNT(*) FROMT

VHERE Agee [30, 69] AND Incomee [0, 99999]

The exact result of; equals the sum of those @f andgs. Assume
that the database has returned a resu{t3) for g2 (¢3), but denies
q5. In this case, we may report a synthetic answe#- a3 for g5.
Note that the answer is approximate, becausandas are noisy.
Furthermore, returning the synthetic answer does not comige
any privacy guarantee. This is because both quesemndqs, as
well as their reported results, andags, are already public knowl-
edge. Anything derivedolelyfrom such knowledge is also public
knowledge.

It is worth pointing out that the meaning of query relaxation
our context is drastically different from its counterpartélational
databases [19, 27]. Specifically, in [19, 27], when an SQLrngue
returns an empty result, relaxation performs the smallestifica-
tion to the query predicates in order to retrieve at leasttapke.
The solutions in [19, 27] cannot be adapted to our circuntgtsin

1.2 Contributions

This paper proposes a novel output-perturbation solutased
on an in-depth study of the algorithmic aspects-diffferential pri-
vacy. First, we prove, for the first time, that exact compatabf
L, sensitivity is NP-hard. Recall thdt; sensitivity is required in
checkinge-differential privacy. Thus, the NP-hardness result rules
out the existence of any algorithm for verifyiredifferential pri-
vacy efficiently.

Fortunately, it is possible to efficiently calculate a 2-apgmate
upper bound of the.; sensitivity. This result leads to a fast ap-
proach that verifieg-differential privacy in a safe, conservative,
manner. Specifically, wheea-differential privacy does not hold,

our solution always correctly indicates so, thus guarangethat
privacy breach can never happen.

Another salient feature of the proposed technique is thiatdtr-
porates an effective query relaxation mechanism, to peouikful
answers to the denied queries. This remedies the commontdefe
of all the previous output-perturbation solutions (mem¢id in Sec-
tion 1.1), because now a user no longer needs to go through the
annoying process of modifying her/his query repetitivéhstead,
s/he immediately obtains a similar query suggested by ttabdae,
together with the query’s answer. We perform extensive expe
ments to evaluate our algorithms, and confirm their effectdss
and efficiency in practice.

The rest of the paper is organized as follows. Section 2wnevie
e-differential privacy and its related concepts. SectiontBlies
the computation ofl.; sensitivity, and presents our conservative
method for verifyinge-differential privacy. Section 4 elaborates
the details of query relaxation. Section 5 contains an éxystal
evaluation. Section 6 reviews the previous work relateduis.o
Finally, Section 7 concludes the paper with directions fgufe
work.

2. PRELIMINARIES

Let T be a microdata table, which contaidsattributesA;, ...,
A, with finite and discrete domains. We aim to support queries of
the form

SELECT COUNT(*) FROMT
VWHERE pred(A1) AND... AND pred(Aq)

such thapred(A;) has the format
A; = x0rA; € [zi,yil,

wherez; andy; are two values in the domain &f;*. We consider
count queries, because of theirimperative roles in variatis anal-
ysis tasks, including OLAP, association rule mining, decidree
learning, etc.

Given a queryy, we denote its real result éh asq(T"). To pro-
cess queries in a privacy preserving manner, we adopt thpeibut
perturbation methodology in [13] to design a statisticahbase
D. Specifically, given a query, D returns aperturbed answer
q(T) + ¢, whered is a random variable following baplacedistri-
bution, with a probability density function

1) = g5e 5

A is known as th@oise magnitudef D, and is also the expectation
of |§]. We denote the perturbed answegé®).

By injecting noise in the above manngr,ensures a strong type
of privacy protection e-differential privacy[13]. This notion of
privacy is formulated through the following definitions.

@)

DEFINITION1 (SIBLING TABLES). Two microdata table®;
andT> aresiblings if they have the same schema and cardinality,
and differ in only one tuple. O

EXAMPLE 1. LetT) be the microdata tabl& in Table 1. By
changing the income of Alice to another value (e.g., 30k)oht@in
an alternative tabl@s. Ty andT: are siblings. O

Yf A;is categorical, we assume that there existsAgra total or-
dering, which lists the leaves of;’s taxonomy tree [17] from left
to right.



DEFINITION 2 (e-DIFFERENTIAL PRIVACY [13]). LetQ =

queryq is issued taD, we inspect the sef of queries thatD has

{q1,...,gm } be any subset of the queries that have been answeredevaluated previously. 151 (QU{q}) > €}, ¢ is denied; otherwise,

by D, andR = {ri, ..., } be a set of arbitrary real numberB.
ensures-differential privacy if the following inequality holds for
any R and any pair of sibling tableg, and7»:

Pr [Vi,qi(D) =r;| Al] <e- Pr[Vi,qi(D) =r; | Ag],

whereA; (Az) denotes the event thdi (73) is the microdata on
which D is constructed. O

ExamMPLE 1 (CONTINUED). Suppose that a statistical
databasé is built onT;. Consider an adversary who tries to infer
the income of Alice. Let) be the set of queries issued by the
adversary, and;s; the set of results returned [dy. If D ensures
e-differential privacy € < 1), the adversary gains little knowledge
about Alice’s income, after observings:. To understand this, let
us assume thab is constructed on another microdata table (e.qg.,
T>), where Alice’s income is arbitrarily modified. By Definitid,

D may still return S as the results for the queries @. In
particular,

Pr D returnsSesi | Alice’s income is NOT modifieft
< e - Pr[D returnsSs | Alice’s income is modified!

Notice that, where is small,e€ ~ 1 + ¢, which is close tal. In
other words,S;sit provides the adversary with very little informa-
tion, regarding the income of Alice. In general, a smailllyads to
tighter privacy protection. O

As will be shown in Theorem 1, to decide whetlempreserves
e-differential privacy, it suffices to inspect (i) the noisegnitude
A of D, and (ii) theL; sensitivityof the queries answered Y.

DEFINITION 3 (L1 SENSITIVITY [13]). Given a setQ of
queries, itsl; sensitivitySz1(Q) equals:

S11(Q) = max (Z |la(T1) — Q(Tg)!> ; @)
q€Q
whereT; andT> are any two sibling microdata tables. O

EXAMPLE 2. Consider the querieg andgg in Section 1. Let
Q = {qo, g5 }- We will show thatS.1(Q) = 2.

Let 71 andT» be any two sibling microdata tables, agd =
{qo,q4}. SinceT; andT> differ in one tuple, we hav@o (Th) —
q(T2)] < 1 and|g)(Th) — qo(T2)| < 1, which leads to
> cola(T) — q(T2)] < 2. Hence,S1.1(Q) < 2.

Consider thafl; equals Table 1, and, is a sibling ofT%, which
changes Alice’s income to 30k. We haygT1) = 1, qo(12) = 0,
q0(Th) = 0, andqy(T2) = 1. Therefore,S.1(Q) > |1 —0| +
|0 — 1| = 2. Thus,S11(Q) = 2. O

THEOREM1 ([13]). A statistical databaseD ensures e-
differential privacy, if and only ifS.1(Q) < e\, where) is the
noise magnitude db, and @ is the set of queries that have been
answered byD 2.

Based on Theorem 1, Dwork et al. [13] propose a framework for
constructingD as follows. Before answering any query, we choose
appropriate values fok and e, which decide the query accuracy
and degree of privacy protection, respectively. Then, wkiena

2The concept ofl; sensitivity and Theorem 1 can be adapted to
any queries (e.g., SUM, MAX, MIN) that map the microdata to
real numbers. See [13] for details.

q(D) is returned as the result fgr In this way,D always ensures
e-differential privacy.

Essential to the above framework is that we must be able to de-
cide whetherS.1(Q U {q}) > €A for any queryq. This turns out
to be computationally difficult, as discussed in the nextieac

3. THE HISTOGRAM APPROACH

In Section 3.1, we prove the NP-hardness of compu$ipg(Q),
and then give a method for deriving a 2-approximate uppentiou
of Sr1(Q). Section 3.2 describes a histogram approach, which
enables a statistical database to process each query ifi@entf
and privacy preserving manner. Finally, Section 3.3 poinisa
limitation of output perturbation, which motivates theigans in
Section 4.

3.1 Convergence of Queries

Let D be a statistical database, which has a noise magniXude
and has answered a sgtof queries. Given a new queky, our
objective is to decide iD still preserves-differential privacy after
answering;. By Theorem 1, it suffices to verify whethé,; (Q U
{q}) < eX. The verification turns out to be NP-hard:

LEmmA 1. Deciding whetherSz1(Q) is larger than a thresh-
old is NP-hard.

PROOF. See the appendix.[]

Combining the lemma with Theorem 1 leads to:

COROLLARY 1. Verification of e-differential privacy is NP-
hard.

We thus switch our attention to calculating an upper-bouhd o
Sr1(Q U {q}), which, as explained later, allows us to conserva-
tively determine whetheq can be answered. For this purpose, we
introduce the following concepts.

DEFINITION 4 (DATA SPACE/ QUERY REGION). Given T,
we define itsdata space2 as ad-dimensional space, where the
i-th dimension(1 < i < d) is A;. Theregionof a queryg is a
rectangler in Q2 such that, for any € [1, d],

e if ¢ has a predicateA; € [z;, y;]", the projection ofr on 4;
equalsz;, y:];

e otherwise (i.e.q has a predicateA; = «"), the projection of
r on A; covers all values ind;. O

Since each4; (i € [1,d]) has a finite and discrete domai@,
can be regarded as a setddtflimensional points. Accordingly, the
microdatal’ can also be viewed as a set of points.

DEFINITIONS5 (PoPULARITY / CONVERGENCH. Let @ be
a set of queries, an@® be the set containing the regions of all
queries inR. For any poinip in the spacé?, its popularity p(Q) in
Q is the number of regions iR that coverp.
The convergencef @, denoted a€’(Q), is the largesp(Q) of
all pointsp € Q. O

ExAamMPLE 3. For example, lef) consist of the querieg; and
g2 in Section 1.1. Figure 1 shows their regionsandry, namely,
R ={r1, r2}. Any pointp in r1 N r2 has a popularitp(Q) = 2
in Q. If pis covered only by either; or rs, its popularity is 1. All
points outside; andr, have popularity 0. Thus}(Q) =2. O
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Figure 1: Popularity and convergence

Algorithm Procesqq)
[* q is the query being answered */

1. ans = NULL
2. r =the query region of
3. Spuk = the set of buckets in histograt that intersect
4. if all bucketsB € Spuk have counters smaller than /2
5. ans=q(D); Q =QU{q}
6. for each buckeB € Spuk
7. B.c=B.c+1
8. if B.c = eA\/2 and|H| < 6, thenSplit(B)

[* 0 is the maximum number of buckets allowed */
9. returnans

Figure 2: Query processing algorithm

C(Q) can be used to derive a 2-approximate boundof(Q):

LEMMA 2. For any setQ of queries,Sr1(Q) < 2-C(Q).

PROOF. LetT; andTx be two sibling microdata tables, such that
Sqeq|q(Tr) — q(T2)| = S11(Q). By Definition 1, there should
exist only one tuple; (¢2) in 71 (7%2) that does not appear if
(T1). LetT5 andT} be two tables such th&t = {¢1} and7, =
{t2}. We haveXscq|q(T3) — q(Tu)| = Sr1(Q). Foranyg € Q,
q(T3) andq(T4) is either0 or 1. Therefore,

S11(Q) = Zqe|a(T3) — q(Th)| < Seeqq(Ts) + Sqcq(Ty).

implying that either Xqcqq(T3) or X.ecqq(Ty) is at least
Sr1(Q)/2. Without loss of generality, assun¥®,cqq(7s) >
Sr1(Q)/2. Letp; be the point irk2 whosei-th (1 < ¢ < d) coor-
dinate ofp; equalsti[A;]. Let R be the set of regions of the queries
in Q. By Definition 5, at most'(Q) regions inR coverp;. Hence,

t1 satisfies at most'(Q) queries in@, i.e.,X,cqq(T3) < C(Q).
Therefore,S11(Q)/2 < Y4e0q(T3) < C(Q), which completes
the proof. O

The lemma motivates a simple approach to enstaiferential
privacy. We only need to maintain the populargyQ) for each
pointp € Q. Whenever a new queryis received, we inspect the
points in) covered by the region aof. If all of them have popu-
larities at mosk\/2, ¢ is answered; otherwise, is denied. The
approach, unfortunately, is impractical, since it reggiikeeping
as many values as the points in the whole sgacé&lo overcome
this drawback, in the next subsection, we employ an appratém
technique to monito€'(Q U {¢}) with small space.

3.2 A Histogram Approach

Let @ be the set of queries that have been answereld,land R
be the set of regions of those queries. We maintain a histogta
which partitions the data spaéeinto disjoint buckets with rect-
angular extents. Each buckBt € H is associated with a counter
B.c, equal to the number of query regionshrintersectingB. The
largest numbe# of buckets irH is a system parameter, decided by
how much space can be allocated fér

Apparently, any poinp in B is covered by at mosB.c queries
in Q, i.e., the popularityp(Q) of p in Q is at mostB.c. Therefore,

100k + 100k
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Figure 3: lllustration of our histogram approach

if B.c < e)\/2for every bucketB € H, we havep(Q) < e\/2 for
any pointp € Q. Hence, by Lemma 25.1(Q) < €A, indicating
that D preserves-differential privacy (Theorem 1).

Query Processing.The above observation leads to the algorithm
Processin Figure 2 for answering queries. Given a new query
with regionr, Processidentifies the sefSpuk of buckets inH in-
tersectingr. If any bucket inShu has a counter at leash /2, the
answerans for ¢ is NULL, i.e., ¢ is denied. Otherwisé?rocesge-
portsans = ¢(D) (recall thatg(D) has included a Laplace noice),
addsq to @, and increases the counters of the bucketSyin

When|H| < 6 (i.e., there is still space to store more buckets),
counter increases may trigger bucket splits. Specifictdlyany
bucketB € Shu, in caseB.c = e\/2, Processinvokes theSplit
sub-routine to decomposg in into new buckets. The details of
Splitwill be elaborated shortly.

EXAMPLE 4. Suppose that the microdata tafffeis Table 1,
and the maximum permissible popularity/2 is 3. Initially, H
has a single buckeB;, which covers the entire data space, and its
Bj.cequals 0.

The first query to our statistical databaBeis the ¢; in Sec-
tion 1.1), whose regiom, is illustrated in Figure 3aB; is the only
bucket inH overlappingr; (i.e., Swuc = {B1} in the pseudocode
of Proces$. SinceBi.c =0 < e)\/2 = 3, itis safe to answeq ;
hence, we repou; (D) to the user. Accordingly) becomesq; },
and B;.c equalsl. Figure 3b demonstrates the extent/#f, and
its counterB; .c in the bracket.

The next two queries t® are theg, andgs mentioned in Sec-
tion 1.1, whose regiong; andrs respectively are depicted in Fig-
ure 3c. Bothg: andgs are answerable, as can be verified in the
same way ag;. After returninggz (D) and gs3(D), @ becomes
{¢1, g2, g3}, and the counter oB; grows to3, reaching the split
thresholdeA /2. Thus,B; is decomposed (by the sub-routiBglif)
into B, and B3, whose extents are shown in Figure 3d. The details



Algorithm Split(B)
/* B is a bucket to be decomposed */

1. U =the set of regions of the queriesdnthat partially intersecB

2. fU#0D

3. removeB from ‘H

4. rn = the intersection of all the regions Ui

5. ifrn=0

6. split B into bucketsB’ and B”” with the minimumB’.c + B” .c
using the cutting lines passing the boundaries of the regin&y

7. else

8 repetitively splitB by the cutting lines passing the boundariesof

until a bucket has extent,
9. insert the new buckets infg with counters set t@3.c

Figure 4: Bucket split algorithm

of the decomposition will become clear latdB;.c = 2 because
B> overlaps two querieg; andg: in Q. Likewise, Bs.c is also 2.
The fourth queryy, to D is:

SELECT COUNT(*) FROMT
WHERE Age=* AND Incomec [40000, 99999]

q4:

whose regiom, is presented in Figure 3e. Among the two buckets
B3, Bs in H, only Bs intersectsry (i.e., Shux = {Bs}). Since
Bs.c =2 < €\/2, g4 is answerableD returnsgs (D), and updates
Qto{q1,q2,qs,qa}. Bs.cbecomes 3, triggering a split. Decompo-
sition of B3 leads to 4 bucket®,, Bs, Bg, andB7, whose extents
and counters are illustrated in Figure 3f. Finalyincludes totally
five buckets.

It is worth mentioning that, sincB~ has a counter 3= e\ /2, all
future queries whose regions intersé&ttwill be denied. O

Bucket Decomposition. Figure 4 presents the details 8plit,
which Processdeploys to decompose a buckBtwhose counter
B.c equalseA/2. Split begins by retrieving the séf of regions
in R that partially intersectB (recall thatR contains the regions
of the setQ of previously-answered queries). 0f = (), exactly
e\/2 regions inR fully contain B. In this case, splitting3 does
not lower its counter, because all pointsBrhave popularitye\ /2
in Q. Hence Splitsimply terminates, and kee@sin H.

Next we focus on the cadé # 0. Split removesB from H,
computes the intersectiom, of the regions irl/. Then, it divides
B using one or moreuts

DEFINITION6 (CuT). Let L be ad — 1 dimensional plane in
Q that is perpendicular to an axis. Tlatof B by L results in
bucketsB’ and B”, which are separated k¥, and their union is
B. We say that_ is acutting line O

In casern = 0, Splitattempts all the cutting lines that go through
a boundary of every region iti. Among those lines$plitdecom-
posesB using the one that minimizes the sum of the counters of
the new buckets, i.eB’.c + B” .c is the smallest. We aim to min-
imize B'.c + B” .c, because a smallés’.c (B".c) allows us to
answer more queries intersectii®j (B"), i.e., a lower value of
B’.c+ B".cleads to a larger number of admissible queries.

EXAMPLE 4 (CONTINUED). Letus revisitthe momentin Ex-
ample 4 when the countds; .c reaches the split threshotd /2 =
3. At this point,@Q = {Q1,Q2,Qs}, and their regions, 72, r3
are shown in Figures 3a and 3c. To decompBseSplitidentifies
U ={r1,r2,7r3}, since all these regions intersdgt. Clearly,rn
is empty (in fact, the intersection ef andr; is already empty).
Thus, Split tries to cutB; using the vertical/horizontal lines that
contain the edges ofi, ..., r3. It can be verified that, among all
those lines, the horizontal linecome= 40k is the best, achieving
the smallesB;.c + Ba.c = 4. O

If 7~ # (), B is decomposed into multiple buckets, one of which
has the extent exacthy. Split accomplishes this using only the
setScue Of cutting lines that contain the boundariesref. Clearly,

Scut has2d lines. Splitrandomly picks one of them, and uses it to
decomposeB into B’, B”. One of B’, B” is disjoint withr~, and

is retained inH directly. Suppose, without loss of generality, that
B’ is disjoint withrn; then, B” must coverrn, and is split further
using another cutting line frorficuw. This process is repeated, until
the extent of a bucket is,. To understand why we decompaBe

in such a way, observe that any pointrin (B — rn) is covered by
exactlyeA/2 (at moste) /2 — 1) queries. In other words, all queries
that intersect~ should be denied, whereas any queries that cover
only the points inB — r~ can be answered. Therefore, we separate
r~ from the other points iB.

EXAMPLE 4 (CONTINUED). Consider the moment in Exam-
ple 4 when the counteBs.c equals 3. At this time,Q
{Q1,Q2, Qs,Q4}, whose regionss, ..., 74 can be found in Fig-
ures 3a, 3c, 3e. To decomposg, SplitfindsU = {ri,rs,r4}.
Note thatrs is not included since it is disjoint witlBs. The in-
tersectionrn of all regions inU is the shaded area in Figure 3e.
Therefore,Scut has four cutting linesAge= 30, Age= 50, Income
= 40k, andincome= 70k, each of which contains an edgeref,
respectively.Bs is decomposed int@®., Bs, Bgs, B7 by using the
linesAge= 30,Age= 50, Income= 70k in this order. O

Split can be implemented i® (e - log(e\)) time. SincePro-
cessinvokes Split at most (¢) times, it has a time complexity
O (OeX - log(eN)), wheref is the number of buckets.

3.3 Limitation of Output Perturbation

We close this section with a theoretical result on the maxi-
mum number of queries that can be answered without violating
e-differential privacy. Given a query, we define itsvolumeas
the percentage of points @ that qualify its WHERE condition.
Specially, a query with predicated; = " on all A; (¢ € [1,d])
has a volume 1. Then:

LEMMA 3. Consider any solution that (i) guarantees
differential privacy, and (ii) perturbs each query answey a
Laplace noise having magnitude Let6 be the maximum num-
ber of queries that can be processed by such a solution. Then,

1. if each query has a fixed volura0 < s < 1),

P
o< 2s(1—s)’ ®)
2. if each query has a volume at leastand at mostl — s’
(0< s <1/2),
€A
o< (4

PROOF Assume that the solution has answered a (@ebf
queries. Due te-differential privacy, by Theorem 15.1(Q) <
eX. Letn = |Q], andp; (1 < i < n) be thei-th point inQ2. With-
out loss of generality, suppose that, among all pointQ,ip; has
the largest popularity i@. Then,

n-p1(Q) > Bi1pi(Q). (%)

Let Q1 be the set of queries i) whose regions covep;, and
Q2 = Q — Q1. Sop1(Q) = |Q1].

Consider the following propositioty: Vi € [2,n], p1(Q) —
pi(Q1) + pi(Q2) < Sr1(Q). Assume for the moment thaf is



valid (we will prove Z shortly). In the following, we wiII first show
that, when each query i) has a volume, |Q| < 23(1 -y holds.
Since each query i) coversn - s points in{2, we know

Siiapi(@) =1Q| - n s, (6)
which implies thatX}_,p;(Q1) = Q1| - (n - s — 1), and
S opi(Q2) = (IQ] — |Q1]) - n - s. Furthermore, Equations 5

and 6 lead t@:(Q) > |Q] - s. Then, by propositiorZ, we have
EZL:zSLl(Q)

> Tiop1(Q) — Bitopi(Q1) + Tisopi(Q2)
= @il (n=1) =@ -(n-s—1)+(Q - [@1]) -n-s
= (@ n-(1-25)+|Q|-n-s
> Q| s n-(1-28)+1Q|-n-s
= 2|Q|-(1—s)-n-s.
This indicategn — 1)S11(Q) > 2|Q| - n(1 — s)s, leading to
n—1 S5i(Q) A
Q= 2(1—s)s 2(1—s)s’

which establishes Equation 3.

Next, we will show that, when each querydhhas a volume in
[s',1 — s'], Equation 4 holds. Letol(q) denote the volume of any
querygq. By propositionZ, we knowX7_,S11(Q)

> Niopi(Q) — Xiopi(Qr) + Xieopi(Q2)

= [@i]-(n=1)= ) (n-vol(q) = 1)+ Y (n-vol(q))
qeEQ q€EQ2
= @i -n— > (n-vol(g))+ Y_ (n-vol(g
9€Q1 9€Q2

= n- Z (1 —wol(q)) +mn- Z vol(q)

qeQ qEQ2
> n- Z (1-(1=45))+n- Z s’

qc€Q1 q9€Q2
= n1Ql-s.

In other words(n — 1)S.1(Q) > |Q| - n - s’, which implies that
—1 5u(@) _ 2
S

8/

Q< —

validating Equation 4.
It remains to prove propositiod. Assume, on the contrary, that
there existg € [2, n] such that

p1(Q) — p;(Q1) +p;(Q2) > Sr1(Q). (7)

Let @3 be the set of queries i, whose regions contaijpy. Lett;
andts be the tuples corresponding pe andp;, respectively. Let
T (T2) be a microdata table including only (¢2). By Definition 1,
T andT> are siblings. Since any query @s covers bothp; and
pj, it holds that

Vq € Qs, q(T1) = q(12) = 1. ®)
As each query i), — Q3 coversp; but notp;, we know
Vg€ Q1 —Qs, ¢(Th) =1, ¢(T2) = 0. (9)
Furthermore,

Vg € Q2, ¢(Th) =0, q(T2) 2 0. (10)

Combining Equations 8, 9, and 10,¢¢|q(T1) — ¢(12)]

= Zgeqsla(Th) — q(T2)| + Zgeqi -@sla(Th) — q(T2)]
+Xqeqqla(Th) — q(T2)]

= 2geiq(Th) — Zqeq, a(12) + Bgeq,q(T2).
As Teeuq(Th) = p(Q) Zeeqiq(Tp) =
L4eq2q(T2) = p;(Q2), by Equations 7, 114elq(T3) —
quQl q(Tl) - EQEQI q(T2) + ququ(TQ)

= p1(Q) —p;(Q1) +p;(Q2).
By our hypothetic assumption earlier, the above is gredtan t

S11(Q). Thus, we have arrived a&,co|q(Th) — q(T)| >
S11(Q), which contradicts Definition 3. [

1y

p;i(Q1),
q(T»)]

Equation 4 leads to the following corollary.

COROLLARY 2. Letn be the total number of points . To
guaranteec-differential privacy, any solution, which perturbs each
query answer by a Laplace noise with a magnitudean process
at mostn - e\ queries with volumes i(0, 1).

PROOF For any query with a volume if0, 1), it should contain
at leastl point (and at most. — 1 points) inQ2. Therefore, the vol-
ume of each query lies ifi/n, 1 — 1/n]. By Equation 4, the total
number of allowable queries is at mest/(1/n), which proves the
corollary. [

Hence, any output-perturbation method leveraging Laplacse
can answer at mog®(n) queries (where, = |Q)), after which the
statistical database will simply stop functioning. In cast, the
total number of possible queries 6his ©(n?). The next section
presents a technique to remedy this drawback.

4. QUERY RELAXATION

The solution in Section 3 denies a query if answering it veda
e-differential privacy. As explained in Section 1.1, quemrndl
reduces the utility of the database. In the sequel, we rerttezly
problem with query relaxation.

Specifically, let¢* be a query that is rejected by the statistical
databaséD. Query relaxation returns (i) the definition of a query
q*’, and (ii) a synthetic answaer for ¢*’. In particular,¢*’ may
not necessarily be the samegs but in case they are nag;"’ is
similar to ¢*. Furthermorep is synthetic, because it derivation
differs from the normal process th&t uses to compute an answer
(recall that, if D accepts a query, then the answer is obtained by
adding a Laplace noise to the query’s real result). In paldicv
is synthesized by utilizing only theeportedanswers of the past
queries. Remember that those queries and their reportedcens
are already publicly available. Thugery relaxation is using only
the public knowledge to infer the result @f. This guarantees-
differential privacy because, as mentioned in Sectionvititever
derived solely from public information remains public kriedge.

4.1 Compound

To avoid ambiguity, we say thd? acceptsa query if D returns
aperturbed answeusing the method in Section 3 (i.e., processing
the query causes no privacy violation). Accepted queriesdas-
tinguished from the othedenied queriesfor which D produces
synthetic answersia relaxation. Given any sef of accepted
queries, itstotal answerequals the sum of the reported answers
of all queries inS.

Let @ be the set of accepted queries in history, ahé denied
query whose region ig8*. Relaxation looks for a subsét, of @,
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Figure 5: lllustration of a compound

D

containing accepted queries whose regions can be put &rgeeth
form a rectangle similar to*. Then, we use the total answerBf
as the synthetic answer fgf. However, some queries iRy may
have overlapping regions in which case their intersectmaver-
counted. Therefore, to increase accuracy, relaxationsgaaches
for another subseP_ of @, involving queries whose regions cor-
respond to the intersection areasih. To cancel the effect of
over-counting, we subtract the total answerof from that of P, .
The pair of( Py, P—) constitutes @ompoundwhich is formalized
below:

DEFINITION 7 (CoMPOUND). Two disjoint setsP; and P—
of queries constitute @mpoundP, if:

1. For each poinp in the data spac®, p(P) — p(P-) equals
0 or 1, wherep(P;) andp(P-) are the popularities g in
Py andP_, respectively.

2. All pointsp € Q satisfyingp(P1) — p(P-) = 1 form a
rectanglerqirr, which is thedifference regiorof P. O

We refer to| P, U P_| as thesizeof P. As explained earlier, we
compute asynthetic answeof P by

Y ad) - Y o).

qeEPy qeP_

12

wheregq(D) is the reported answer of an accepted qugeryntu-
itively, condition 1 of Definition 7 requires no over-coumgi at all
in the synthetic answer @?. The difference regionis, formulated
in condition 2, is exactly the region that the synthetic amisgorre-
sponds to. Furthermoregs is also the relaxed queky*’ returned
to the user. Hence, condition 2 demanmgsg to be a rectangle.

EXAMPLE 5. Assume that) consists of four queriega, gz,
...» @D, Whose regions 4, ..., rp are illustrated in Figure 5. Let
P, ={gp}andP- = {qa,qB,qc}. Then,P = (P;,P_)isa
compound. Specifically, for any poiptoutsider p, its popularities
p(Py) andp(P-) in Py and P_ respectively are both 0. For any
point p insiderp but outside the grey areg(P,) andp(P-) are
both 1. For any poinp in the grey aregy(Py) = 1 whereap(P-)
= 0. Hence, condition 1 is fulfilled. Furthermore, conditidris
also satisfied becaugg P ) — p(P+) = 1 only whenp is in the
shaded area, which is thus the difference regioR of he synthetic
answer ofP equalsgp (D) — (qa(D) + ¢s(D) + qc(D)). O

Ideally, the difference regiongir of a compoundP should be
identical to the regiom™ of the denied query*. When this is not
true, we need a metric for quantifying the quality of a commhu
The next subsection addresses this issue.

4.2 Relaxation Error

Let r be an axis-parallel rectangle in the spdze Denote its
projection on the-th dimension { < i < d) as[r.z;, r.y;]. Also,
useA;.max (A;.min) to represent the maximum (minimum) value
on thei-th axis. As mentioned earlier, given a denied quety
with regionr™, we want to find a compoun#& whose difference
regionrgig IS as similar ta-* as possible. To measure the similarity
betweenrgix andr™*, we introduce the following metric:

Algorithm Patch-checKP, q)

/* P is a compound and an accepted query */
1. rgi = the difference region oP

2. r =the region ofg*

3. ifrggNr=0

4 if the union ofrg andr is a rectangle

5. if the relaxation error drops after includingn P+
6. returnP.

7. else ifrgi coversr andrgis — r is a rectangle

8 if the relaxation error drops after includiggn P—
9. returnP_

10. return NULL

Figure 6: Checking whether a query is a patch
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Figure 7: lllustration of Patch-check

DEFINITION8 (RELAXATION ERROR). Let P be a com-
pound and;* a denied query with region*. Therelaxation error
E(P,q) equals

i (w | @i = raina| + |r*yi — Tdiﬁ-yi’> (13)
i=1

Ul

A;mazx — A;.min

where weightsvy, ..., w4 can be any positive values. O

Weightw; (¢ € [1,d]) is a constant reflecting the importance of
dimensionA;. A largew; means that4; is imperative, such that
even a small difference betweefi andrgi along this dimension
may cause heavy penalty. A smal] achieves the opposite effect.
For simplicity, in the sequel, we assumg = ... = wg = 1
because our solutions extend to arbitrary weights directly

Given a compound’, Equation 13 suggests an easy way to iden-
tify which query can be inserted i to reduce relaxation error. We
refer to such a query aspatch

DEFINITION9 (PaTcH). Let @ the set of accepted queries
andP = {P;, P_} be a compound. Consider a quere Q that
does not belong td® yet. We say that is a positive (negativg
patchif, after includingqg in Py (P-), (i) P remains a compound
and (i) E(P, ¢*) decreases. O

Figure 6 gives an algorithiRatch-checKor verifying whether a
query g is a patch for a compoun# = {P;, P_}. In case it is,
Patch-checlndicates whetheq should be added t8 or P_. If ¢
is not a patch, the algorithm returns NULL. Next, we illustrthe
algorithm using an example.

EXAMPLE 6. Assume that) containsqa, gz, gc whose re-
gionsra, ...,r¢c are shown in Figure 7a. Rectangfeis the region
of a denied query*. Consider a compountt = (P4, P_), where
Py = {ra} andP- = (. The difference regiongitt of Pisra.

To see whethegs is a patchPatch-checlstarts by noticing that
rg is disjoint withrgis (Line 3 of Figure 6). In this case, the algo-
rithm examines if the union ofgix andr g is a rectangle (Line 4).
The answer is negative, and therefdPatch-checketurns NULL.
The regionrc of g, on the other hand, is disjoint withi, and
meanwhile, can uniong into a rectangle. Henc®atch-checlex-
amines whether inclusion af- in Py reduces the relaxation error
(Line 5). For this purpose, it obtains the new (if ¢ is indeed
inserted inPy), which is the shaded area in Figure 7a. Clearly,
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Figure 8: Atrtificial queries reduce relaxation error

compared to the originaki, the shaded area is more similartg
implying lower relaxation error. Thereforge is a positive patch,
andPatch-checketurnsP,. (Line 6).

Consider another example, wherg, rg, rc, r* are demon-
strated in Figure 7br(y is the bold rectangle). Again, suppose
P = (P4, P-),whereP; = {ra} andP_ = (), and apparently,
thergir of P isr 4. Let us applyPatch-checko verify whethery g is
a patch. Sincep intersectsgir, Patch-checlexecutes Line 7, and
proceeds only if (iyqir encloses s and (ii) the difference between
rqif andrp is a rectangle. Here, although (i) is true, (ii) is not.
Hence, Patch-checKinishes with NULL. On the other hand¢
satisfies both (i) and (i), and thuBatch-checlproceeds to inspect
the relaxation error after adding- to P (Line 8). The shaded
area in Figure 7 shows the newi (if gc is in P_), which is a
better approximation of* than the originalgir. Hence,qc is a
negative patch, and the algorithm terminates vith(Line 9). O

4.3 Atrtificial Patches

So far we have assumed that a compoudhdontains only the
queries inQ that areexplicitlyissued by users in the past. This sec-
tion explores another possibility: we can also dynamicadigerate
a query, force the database to proceswitally(i.e., using the so-
lution in Section 3), and then, use its perturbed answer taiola
better synthetic answer for the denied qugty

To illustrate, consider Figure 8a, wheré is the region ofg™,
andrgi (the bold rectangle) is the difference region of the current
compoundP. Obviously,rgi is a poor approximation of*. Imag-
ine, however, that whadan accepted querys in @@ whose region
is r4. This query is a negative patch, because its inclusioR-in
shrinksrgir to the shaded area, which is significantly more simi-
lar tor*. In fact, even thouglg is not in@Q, we can instruct the
databaseD to process it (as an accepted quetight away, after
which g4 can be incorporated iy, and hence, becomes a candi-
date patch to be selected Bgtch-checKFigure 6).

In Figure 8a, the artificial querya aligns with the right edge of
r*. Sometimes, it is better to align with the left edger6f For
example, let us examine Figure 8b, wherg is the region of an
artificial querygg. Apparently,gg a positive patch, as its insertion
in P, expandsqitt to the shaded area, which has much lower re-
laxation error. Similarly, artificial queries may also beated on
the y-dimension, by aligning with the upper and lower eddes p
respectively.

In general, given a compound with difference region qitr, we
prepare amrtificial patch-setSaqi as follows. FirstSaqi is initiated
with 2d artificial queries, each of which aligns with a boundary
of rairr (details clarified shortly). Then, we involatch-checko
eliminate those queries ifai that are not patches (i.e., they do
not reduce the relaxation error). Some remaining querieslma
denied byD due toe-differential privacy (i.e., if they intersect a
bucket in the histograrfit with countere/2; see Section 3), and
are also removed frorfiari. The resultingSar is the final artificial
patch-set.

It remains to explain how to obtain the initiad queries inSar.

Algorithm Relax(q*, &)

I* ¢* is a denied query, an¢lthe maximum compound size */

1. g =the queryinQ minimizing E(P, ¢*), whereP = {q}, P_ = 0,
andP = {Py,P_}

2. ans =the reported answer qf
3. while the size of? is smaller tharg
4, M = the set of queries i®Y that are patches faP
[* using Patch-checkn Figure 6 */
5 M = M U Sani I* See Section 4.3 about derivirgy */
6 if M = 0 then goto Line 14
7. else
8. g = the patch inM whose insertion ifP minimizesE (P, q)
9 if ¢ ¢ Q thenz = Proces$g)
10. elser = the reported answer qf
11. if ¢ is a positive patch
12. Py =P, U{¢};ans=ans+v
13. elseP_ = P_U{¢'};ans =ans —v

14. returnans and the difference region a?
Figure 9: The relaxation algorithm

Specifically, thg2i — 1)-th (1 < ¢ < d) query has a region whose
projection on dimensior; is:

[raifr.z 5, rairy;]  if 5 # i
[rai.zi, v .2s) if j =dandr*.x; > rdi.x;
[r*.@i, rafr.xs)  otherwise

Similarly, the region of th@:-th query has the following projection
onA;:

[rait.xj, rai.y;] 05 F# i
(Tdif‘f-yi7 T*-yi] if j =1 andr*.yi > Tdiff.Yi
(r*.yi,rair.y;)  otherwise

4.4 Probabilistic Accuracy

Recall that, given a compoun#, we return a synthetic answer
v calculated by Equation 12, and a relaxed qugty The value
v is actually an unbiased estimate the real regtli¢T'), but has a
variance proportional to the size &%

LEMMA 4. Equation 12 has the expected vaidé(T), and its
variance is2)\? - | Py U P_|, where) is the noise magnitude @.

PrROOF For any query; in Py or P_, letd, be the noise thab
injects intog(D). Denotev as the value of Equation 12.

v = Y4er,q(D) —X4er_q(D)

Sgep, (9(T) +dq) — Yger_ (a(T) + dq)
= EqEP+Q(T) - quPf‘I(T) + z:querq - quPf 5q-

By Equation 1, the mean and variance&df p, 0, — Xqepr_4d, are
0and2)?-| P, UP_|, respectively. Hence, has an expected value
Yeer, q(T) — Xqep_q(T), and varianc@\’ - |P; U P_|. Next,
we will show thatSeep, q(T) — Sqcp_q(T) = ¢*'(T).

Consider the-th (1 < ¢ < |T|) tuplet; in T'. Letp; be the point
representation of; in 2, andG = {p; | 1 <4 < |T|}. Thus,

Yeer, q(T) = Epeap(Py), andEsep_q(T) = Epeap(P-).

Let rqir be the difference region @, which is also the region*’
of ¢*’. By Definition 7, for any poinp € Q, p(Py) — p(P-) =1
if p € rair; otherwisep(Py) — p(P-) = 0. Hence YXyep, q(T) —
Yeep q(T) = Epec(p(P+) - p(P,))

YpeGnrasn (p(P+) - p(P*)) + Xpec—ran (p(P+) - p(P,))
= Ypeanranl + Lpea—rg0 =
= Sweer({a™}) = (D).

which completes the proof.[]

EPEGI'WT*’ 1
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Figure 10: lllustration of Relax

Since the variance of the synthetic answer grows with the siz
of P, we allow the user to specify an upper-boupdn the size
of a compound, i.e., there can be at mgsjueries inPy U P_.
The value of¢ controls the tradeoff between relaxation error and
query accuracy: a largérleads to compounds consisting of more
queries, which lowers relaxation error but increases thisenm
the query results; on the other hand, a smdllensures less noisy
query answers, but may incur higher relaxation error.

4.5 Relaxation Algorithm

Based on the previous analysis, Figure 9 formally presdms t
query relaxation algorithrRelax Given a denied query*, Relax
starts with a simple compoungét whoseP- is empty, and itsP;
contains the query i@ (the set of accepted queries) most similar
to ¢*. Then,Relaxproceeds in rounds, each of which adds a query
to P to minimize the relaxation error. Such a query is chosen from
both @ and the artificial patch seét.i computed as in Section 4.3.
More rounds are carried out until either the sizerohas reached
the upper bound, or no more patch can be found.

EXAMPLE 7. Assume thaD has accepted the s@tof queries
q1, g2, g3, qu before, whose regions,, ..., 74 are illustrated in
Figure 10a. At this point, the histograhd has the buckets in Fig-
ure 10b, and the largest permissible bucket coustg¢e equals 3
(for ensuringe-differential privacy). Now,D receives a new query
g5 whose regionrs is shown in Figure 10cD deniesgs, because
rs intersects a buckdB; , whose counter 3 equads /2. Then,D
invokesRelaxto derive a synthetic answer. Assume the maximum
compound sizg to be 3.

Among all the queries id), g2 is the most similar t@s; hence,
Relaxinitializes P, = {¢2} and P = (. Clearly, the difference
regionrgi Of P isrs, i.e., the shaded area in Figure 10a.

The algorithm enters the first roundRelaxbuilds a setM of
patches ofP. For this purpose, it employRatch-checKFigure 6)
to examine every query i@ that is not inP yet. The examination
reveals thays is a positive patch; hencd/ = {¢3}. Then,Relax
computes the artificial patch-s8% in the way described in Sec-
tion 4.3, and adds all queries Sf to M. It can be verified that
here Sai = 0, thus causing no change M. As g3 is the only
element inM, it is inserted inPy (remember thags is a positive
patch), which thus becomds., g3 }. This changes the difference
regionrgi to be the shaded area in Figure 10c.

Parameter Values
noise magnitude\ 2000
histogram size thresholdl | 107, 103, 10%, 105, 10°
€ 0.1,0.2,0.3,0.4,0.5
query volumes 1%, 2%, 4%, 8%, 16%
compound size threshold 1,2,3,4,5

Table 2: Parameters and examined values

In the second roundRelaxcreates a se¥ of patches in the same
manner. This time, no query fro is added ta\/. The artificial
patch-setSani, on the other hand, has a negative pajghwhose
regionrg is given in Figure 10d. Thusy/ includes onlygs, which
is placed inP_. As a result, the difference regionix shrinks to
the shaded area of Figure 10d. At this tinf&, = {¢2,4s} and
P_ = {qg}.

Now that the size ofP has reached the upper bougd= 3,
Split finishes, and returns the synthetic answerPgfand the fi-
nal rgir. After this, ¢g¢ needs to included i) (which is now
Q = {q1,92,93,q4,q6}) because, as explained in Section 4.3,
an artificial query is processed normally using the solutioBec-
tion 3. O

Each round oRelaxexamines the queries {d once, which takes
O(0e)) time becausé) contains at mosfe\/2 queries, wherd
is the number of buckets in the dynamic histogram. Sincesther
at most{ rounds,Relaxruns inO(£0e)) time.

5. EXPERIMENTS

This section experimentally evaluates the effectivendsthe
proposed solutions. We use a real dataset CENSUS (obtainabl
from http://www.ipums.orgwith one million tuples, each storing
the information of an American. It has four attributége Educa-
tion, Occupation andincome whose domain sizes af®, 14, 23,
and100, respectively. We aim at guaranteeindifferential privacy
with a noise magnitudd = 2000. This choice of\ ensures that
the expected absolute error of each query answer is a snhadl va
2000 (as explained in Section 2), which accounts for anB% of
the cardinality of CENSUS.

Each query has the fornselect count(*) from CENSUS where
Ay € [x1,y1]and Az € [z2,y2]. Here,A; and A, are two random
attributes of CENSUS. Intervdk;, y;] falls in the domain of4;

(1 <4 <2),anditslengthy; —z; equals,/s-(A;.maz— A;.min),
whereA; . mazx (A;.min) is the maximum (minimum) value in the
domain of A;, ands the query volume (defined in Section 3.3).
The center; of [z, y;] follows one of the following distributions,
which reflect the patterns of users’ queries in practice [7]:

e Data: z; = t[A;], wheret is a tuple randomly selected from
CENSUS.

e Uniform: z; is a random value in the domain df;.

A (Data- or Uniform-) workload contains 20k queries with an iden-
tical s obeying the same distribution.

Table 2 summarizes the parameters examined in our experi-
ments. Unless otherwise stated, each parameter is sed@faslt
value (bold in the table) in each experiment. All the experits
are accomplished on a computer with a 3 GHz Pentium IV CPU
and one gigabytes memory.

Processing Capacity without Relaxation. The first set of ex-
periments studies the number of queries that can be answgred
our Histogramapproach (Section 3) without query relaxation. For
comparison, we implement the only existing solution [13jttan-
sures-differential privacy in handling count queries. This daa,
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the upper bounds. The capacity increases linearly witfihis is
expected, because the capacity is proportional to the ¢ili2 on
C(Q), which, in turn, is linear ta. On the other hand, a greater

In the experiment of Figure 11a, we submit the queriesDa: S re_sults in a smaller capacity, since handling queries veitgdr
workload to the underlying statistical database, and nreathe reglo_ns causes fagter growth(d(Q). .
number of processed queries, as a function of the numberisubm Quality of Relaxation. The effectiveness of query relaxation (Sec-
ted. The figure demonstrates the resultsDigjoint, Histogram ~ tion 4) is determined by: (i) the relaxation error (calcathtby
adopting various numbe# of buckets, and the theoretical upper Equation 13) and (ii) the size of the final compound. The farme
bounds given by Lemma 3. Figure 11b illustrates the restlts o indicates the amount of modification to the original quepredi-

referred to a®Pisjoint, processes an incoming query, if and only if
its region does not overlap any of the queries answeredqursiyi

a similar experiment with &niformrworkload. For eacld, the cates, whereas the latter determines the variance of aetimém-
curve ofHistograminitially increases because, during this period, SWer (see Lemma 4). ] .
the bucket counters are smaller than the limif2, thus permit- By varying{ from 1 to 5, Figure 13a (13b) illustrates the aver-
ting additional queries to be processed. The curve evéptuahs age relaxation errors (compound sizes) of the queries tratdd
horizontal, when the counters have reached the limit. relaxation inData- and Uniform-workloads, respectively. The av-
We use the ternprocessing capacityo refer to the total num-  €rage error is very small, indicating that a compound regied to
ber of queries in a workload that are answered by the database d€rive @ synthetic answer is almost identical to the origieery
Observe that the capacity fistogramgrows along withd. This region. The error decreaseséescalates, since allowing a larger

is because a histogram with more buckets provides a betier es compound raises the chance of finding a good compound (whose
mate ofC(Q), and hence, reduces the chance of denying a query région incurs little relaxation error). The average compbsize is
that could have been processed (if the ©a)) was maintained). fairly low, implying a small variance in the reported ansse¥ote

Nevertheless, we witness no obvious gain by raigibgyond10°, that a compound size can be well belgnbecause the relaxation
implying thatd = 10° already offers adequate precision for max- algorithm may terminate before the size reacfies

imizing the processing capacity. Whénis fixed, Histogramis In Figure 14a (14b), we plot the average relaxation errom(co
able to answer more queries itJaiform-workload than in Data- pound size) as a function ef when this parameter distributes from
workload. This is due to the fact that, uniform queries hassl 0.1 to 0.5. Both factors decreasecaecomes larger. To under-
overlap in their regions, which leads to a lowg(Q), and hence, stand this, recall that a greatesllows the database to process more
fewer query denials. queries (see Figure 12a), rendering a largecsesable by relax-

For uniform queries and = 10°, the processing capacity of ~ ation, and thus, enhancing relaxation quality. Figuresarigh15b
Histogramapproaches the upper bound, which confirms the effec- demonstrate the relaxation error and compound sizejssaried

tiveness of the proposed bucket maintenance algorithmceSin between 1% and 16%. The two factors increase wjthrhich can
upper bound assumes an “ideal” query distribution, it isogable again be explained by the relationship between the relaxapial-
for the actual capacity to be lower, especially given a “baigtri- ity and the database’s processing capacity (c.f. Figurg. 12ball

bution such a®ata. Notice thaHistogramhas significantly higher ~ cases, the relaxation error and compound size remain atioiery
capacity tharDisjoint. Since this is true in all the subsequent ex- levels, confirming the usefulness of our synthetic answers.
periments, we omibisjoint in the following diagrams. Computation Overhead. In the next set of experiments, we eval-
Next, we investigate the effects ofinds on the processing ca-  uate the average processing time required by our technigag-i
pacity ofHistogram Figure 12a (12b) plots the actual capacity asa swering queries. Figures 16a and 16b plot the computatien ov
function of e (s) for workloads of both distributions, together with  head as a function aefands, respectively. The overhead escalates
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0.5 =5t Uit all 6 buckets to process each workload, and hence, the computatio

04l Data 5 ¥ " Skew —5— 3 overhead for both workloads is similar.
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o 14 6. RELATED WORK

o1 05 Output perturbation is first studied by the statistics comityu

'[ (see [2] for a survey). In particular, Denning [10] deviseaethod

0‘1 ) 4 8 16 0 1 ) 4 8 16 that proposes to answer queries on a random sample set of the
s (%) s (%) underlying data; Fellegi and Phillips [15] devises a metitoat

rounds each query result to the nearest multiple of a prexetkfi
number, while Achugbue and Chin [1] and Dalenius [9] inwgsti2
variations of this method. As pointed out in [12], howevée &x-
isting approaches in the statistics literature mainly adslthe util-

(a) Average relaxation error (b) Average compound size
Figure 15: Relaxation quality vs.s

computation time (ms) computation time (ms)

2> "Uniform —&— %0 Uniform —&— ity of perturbed query results, without providing solid gaatees
20 Data —5— h 25[ Data —5— on privacy preservation, which severely limits their picability.

15 20 In [11], Dinur and Nissim provide the first formal study on the
10 15 t amount of noise needed by any output perturbation scheme-to e
52 10 sure privacy in count queries. They show that, if an unlichitem-

5 ber of queries are allowed, the noise in each query answerlmus

Y linear to the dataset cardinality, otherwise, an adversary may be
oL 02 053 04 05 ! 2 s Zt/o) 8 16 able to restore the entire dataset precisely from the gesnits. As
(a) Vs.e (b) Vs. s an unfortunate implication, when the dataset is sizableryjan-
computation time (ms) computation time (ms) swers will have to be erroneous tq avoid privacy disclosDreork

25 Uniform —A— 100 = iform —&— \ et al. [14] further prove that, even if the statistical daisdvemploys

20 Data —&— Data —&— arbitrary noise in answerin@.269 fraction of the queries, and re-

154 turns relatively accurate answers for the rest, an adwecsar still

reconstruct most tuples in the dataset.

10 To circumvent the problem, Blum et al. [6] propose a solution
5 that permits onlyo(n) count queries, but provides more accurate
0 1 answers. This solution is subsumed by the differential gogv

1 2 3 4 5 1 100 100 10 a1 mechanism [13], which allows a larger number of queries &nd o
3 6 fers a higher degree of privacy protection. McSherry andvaal
(c) Vs.€ (d) vs.0 [21] extend differential privacy for arbitrary queries, iehNissim

Figure 16: Computation time

with the increase of (decrease of), due to the following reasons.
First, a largek leads to a greater processing capacity, as shown in
Figure 12a. In turn, a high processing capacity renders the-m
tenance of the dynamic histogram less efficient, becaude @ac
ecution of Split requires a scan through all previously answered
queries (see Line 1 in Figure 2). Consequently, the comipatat
time increases witle. On the other hand, a largerresults in a
smaller processing capacity (see Figure 12b), and henamayex |
computation cost.

et al. [23] improve the techniques in [13] by taking into ascbthe
smooth sensitivitgf the queries.

Besides output perturbatiomjuery restrictionand input per-
turbation are also popular techniques for implementing statistical
databases. Specifically, query restriction [8, 18, 22] wdnk deny-
ing queries that may lead to privacy breach, and returniagten-
swer for the other queries. Compared to output perturbathia
technique offers more useful query results, but weakeapyiypro-
tection. In particular, none of the existing query restoicttech-
nique can achieve-differential privacy.

When input perturbation is adopted, the statistical datalfiast
sanitizes the microdata witleneralizatior[25, 26] orrandom per-

Figure 16¢ demonstrates the computation overhead as a func-yrpation[3, 4], and then processes queries using the sanitized data.

tion of £&. The overhead increases wghsince a greatef enables
our technique to utilize larger compounds (for query refiaxg,
which, however, require more time to construct. In Figurd, e
plot the processing overhead, varyififrom 102 to 10°. The over-
head escalates with the increasefof This is because, a larger
0 allows more buckets in the dynamic histogram, which entails
higher processing cost, since our technique needs to inglec
histogram buckets to decide whether a query is answeralble. |
terestingly, wher® = 10°, the query overhead data-workload

is much lower than that dfniform-workload. To understand this,
observe that the number of histogram buckets increasgswirn
the statistical database processes an answerable queryitse
ure 2). SinceData-workload permits a smaller processing capac-
ity than Uniform-workload, few histogram buckets are created for
Data-workload, and thus, the computation overhead is lowers Thi
phenomenon does not occur whén< 10°, because the maxi-
mum numbers of histogram buckets entailed by each worklzads
larger than10®, i.e., givend < 10°, our technique have to utilize

The major advantage of input perturbation is that it is ablan-

swer any number of queries. Nevertheless, the benefit ig atotst
of sacrificing query accuracy. Dwork et al. [13] prove that,drac-
tical datasets, random perturbation necessarily incugetaerror
than output perturbation, in achieviregdifferential privacy. They
also show that generalization cannot be used to enrstiféerential

privacy at all.

7. CONCLUSIONS

Althoughe-differential privacy has been established as an impor-
tant paradigm for statistical databases, it remains unelbather
the paradigm can be efficiently applied when the incomingito
queries have arbitrary predicates. This paper providessipeéstic
answer, by proving that evaluatingdifferential privacy is NP-
hard. Fortunately, as the second step, we show that it istpess
to efficiently enforce this paradigm in a conservative man@eir
results lead to a histogram approach, which enables thegso



of a majority of queries that qualify-differential privacy. Further-
more, given a query that violates the paradigm, our relardgch-
nique still provides a useful answer, as opposed to simptlyidg
the query completely as in previous solutions.

Our work also opens several avenues for future researcst, iir
this paper we concentrate on statistical databases thaeansunt
queries. It is interesting to investigate whether our $oh# can
be adapted to support other aggregate queries (e.g., SUM, MI
MAX) as well. Second, the proposed solutions assume that the
are no updates in the microdata. We plan to study extensams f
the scenarios where only insertions are possible (i.egrappnly),
and both insertions and deletions are allowed. Finally,;oethod
is designed for relational tables. It is a challenging peabko de-
vise output perturbation techniques for other types of auata
such as social networks, locations of moving objects, grietc.
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Appendix: Proof of Lemma 1

We will prove the lemma by a reduction from tmeaximum 2-
satisfiability (MAX-2-SAT) problem. Specifically, let’ be a2-
CNF formula withm clauses om variablesv; (1 < i < n).
Given a positive integek, MAX-2-SAT asks whether there is an
assignment of boolean valuesdq such that at least clauses in
F evaluate tdrue. This problem is NP-complete [16]. In the se-
quel, if a clause igrue, we say that it isatisfied

Recall that all sibling tables conform to the same schema. We
consider that the schema hasttributesA, ..., A,, all of which
have a domairf0, 1,2, 3}. Given a2-CNF formulaF’, we create
a setQ of 6m count queries as follows. Let be thej-th (1 <
j < m) clause inF’, and assume thaj involves thea-th ands-th
variablesv, andvg. Defineb, = 0 if the negation ok, appears
in ¢;, andb, = 1 otherwise. Also definég according tovg in the
same manner. We add € the following 6 queries:



¢;1:  SELECT COUNT(*) FROMT
WHERE A, = bo AND A = by
;20 SELECT COUNT(*) FROMT
WHERE A, = bo ANDAg =1 — by
;31 SELECT COUNT(*) FROMT
WHERE A, = 1 — by AND A = by
¢ja: SELECT COUNT(*) FROMT
WHERE A, = 2 + bo AND Ag = 2 + by
;5. SELECT COUNT(*) FROMT
WHERE A, = 24 by AND Ag =3 — by
gj6: SELECT COUNT(*) FROMT

WHERE A, = 3 — by AND Ag =2 + by

Itis important to note that any tuple can satiafymostone of these
queries. Repeating the above for allclauses inF yields totally
6m queries. The rest of the proof will establish:

PropPOSITION 1. Sz1(Q) > 2k if and only if there is an as-
signment of boolean valuest9 (1 < ¢ < n) that satisfies at least
k clauses inF'.

The “only-if” direction.
Cly «eny
We build a pair of sibling microdata tablds and7T: as follows.
T, has a single tuple;, such that forany < i < n, t;[4;] =1
if v; = true, and¢1[A;] = 0 otherwise. Similarly,l%» also has a
single tuplet, such thats[A;] = 2 + t1[A].

Consider clause; (1 < j < k) in F, and the six querieg;,
..., gje in Q created fronx;. Letwv, anduvg be the two variables
in ¢;. Suppose that, = true andvg = false (the proof for the
other cases is similar). Accordingly;[A.] = 1 and¢;[Ag] = 0.
Sincec; evaluates tdrue, eitherv,, or —vg appears ire;, implying
thatb, = 1 or bg = 0. Hence,t; satisfiesoneof g;1, gj2, g;3
but violates all ofg;4, g;5, gj6. Similarly, it can be verified that
to satisfies one ofj;4, g;5, gj¢ but violates all ofg;1, gj2, gj3. It
means that

Without loss of generality, assume that

6
D an (1) — an(Te)| = 2.
=1
Therefore
Sti(Q) = > |a(Ty) — q(T2)]
q€Q
6
> ZZ |gj1(T1) — qu(T2)]
j=11=1
= 2k.

The “if” direction. As Sr1(Q) > 2k, there exists a pair of sib-
lings T3 andT} such thab " _, |¢(T3) —q(Ti)| = S11(Q) > 2k.
Recall thatT; and T} differ in only one tuple. Denote b¥s (t4)
the tuple inT% (T7) that does not appear i, (74). Let T3 (Ty) be
a microdata table wheng (¢4) is the only tuple. We have

> a(Ts) = q(T)| = |a(T3) — ¢(T1)] > 2k.
q€Q qeQ

(14)

Apparently, for any query;, ¢(73) and ¢(74) equal either zero
or one. By Equation 14, it must be that eithet, _, q(75) >

¢k In F aretrue under a certain boolean-value assignment.

kor ) coa(Ts) > k. Without loss of generality, assume
> 4eq4(T5) > k. Then,

k<Y aTs) =)

M@

|q0(T3)| (15)
q€Q j=11=1
We assign boolean values#9(1 < ¢ < n) as follows:
_ true, if t3[A;] = 1orts[A;] =3
vi = { false otherwise (16)

We will show that the above assignment satisfies at leatiuses
of F. For anyj € [1,m], at most one ofy;1 (13), gj2(13), ...,
g;6(T3) is one, and the others must be 0. LEebe the set of inte-
gers in[1,m], such that for any € J, 37, |q;1(T5)| = 1. By
Equation 15).J| > k holds.

For anyj € J, consider theg-th clausec; in F. Again, assume
va andug to be the variables in;. As>) | g (Ts)| = 1, ts
satisfies one of;1, ..., gjs. Without loss of generality, assume that
ts satisfiesg;s (the proof for the other cases is similar), namely,
ts[Aa] = 2 4 b andts[Ag] = 3 — bg. The values ob, and
bg can independently be either 0 or 1. Regardless of their salue
¢; always evaluates true. For example, suppoge, = 0 and
bg = 1. Asb, = 0, we knowts[A,] = 2, and by Equation 16,
has been set tfalse Furthermorep, = 0 also suggests thatv,
is in ¢;, which hence evaluates taue.

As in the above reasoningwas chosen to be any integer.h
we have identified at leasf| > k clauses which evaluate tnie.



