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Fast Nearest Neighbor Search with Keywords
Yufei Tao Cheng Sheng

Abstract—Conventional spatial queries, such as range search and nearest neighbor retrieval, involve only conditions on objects’

geometric properties. Today, many modern applications call for novel forms of queries that aim to find objects satisfying both a spatial

predicate, and a predicate on their associated texts. For example, instead of considering all the restaurants, a nearest neighbor query

would instead ask for the restaurant that is the closest among those whose menus contain “steak, spaghetti, brandy” all at the same

time. Currently the best solution to such queries is based on the IR2-tree, which, as shown in this paper, has a few deficiencies that

seriously impact its efficiency. Motivated by this, we develop a new access method called the spatial inverted index that extends the

conventional inverted index to cope with multidimensional data, and comes with algorithms that can answer nearest neighbor queries

with keywords in real time. As verified by experiments, the proposed techniques outperform the IR2-tree in query response time

significantly, often by a factor of orders of magnitude.

Index Terms—Nearest Neighbor Search, Keyword Search, Spatial Index

✦

1 INTRODUCTION

A spatial database manages multidimensional objects
(such as points, rectangles, etc.), and provides fast access
to those objects based on different selection criteria.
The importance of spatial databases is reflected by the
convenience of modeling entities of reality in a geometric
manner. For example, locations of restaurants, hotels,
hospitals and so on are often represented as points in
a map, while larger extents such as parks, lakes, and
landscapes often as a combination of rectangles. Many
functionalities of a spatial database are useful in various
ways in specific contexts. For instance, in a geography
information system, range search can be deployed to find
all restaurants in a certain area, while nearest neighbor
retrieval can discover the restaurant closest to a given
address.

Today, the widespread use of search engines has
made it realistic to write spatial queries in a brandnew
way. Conventionally, queries focus on objects’ geometric
properties only, such as whether a point is in a rectangle,
or how close two points are from each other. We have
seen some modern applications that call for the ability
to select objects based on both of their geometric coordi-
nates and their associated texts. For example, it would
be fairly useful if a search engine can be used to find
the nearest restaurant that offers “steak, spaghetti, and
brandy” all at the same time. Note that this is not the
“globally” nearest restaurant (which would have been
returned by a traditional nearest neighbor query), but
the nearest restaurant among only those providing all
the demanded foods and drinks.
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There are easy ways to support queries that combine
spatial and text features. For example, for the above
query, we could first fetch all the restaurants whose
menus contain the set of keywords {steak, spaghetti,
brandy}, and then from the retrieved restaurants, find
the nearest one. Similarly, one could also do it reversely
by targeting first the spatial conditions – browse all the
restaurants in ascending order of their distances to the
query point until encountering one whose menu has all
the keywords. The major drawback of these straightfor-
ward approaches is that they will fail to provide real time
answers on difficult inputs. A typical example is that the
real nearest neighbor lies quite faraway from the query
point, while all the closer neighbors are missing at least
one of the query keywords.

Spatial queries with keywords have not been ex-
tensively explored. In the past years, the community
has sparked enthusiasm in studying keyword search in
relational databases. It is until recently that attention
was diverted to multidimensional data [12], [13], [21].
The best method to date for nearest neighbor search
with keywords is due to Felipe et al. [12]. They nicely
integrate two well-known concepts: R-tree [2], a popular
spatial index, and signature file [11], an effective method
for keyword-based document retrieval. By doing so they
develop a structure called the IR2-tree [12], which has the
strengths of both R-trees and signature files. Like R-trees,
the IR2-tree preserves objects’ spatial proximity, which is
the key to solving spatial queries efficiently. On the other
hand, like signature files, the IR2-tree is able to filter a
considerable portion of the objects that do not contain
all the query keywords, thus significantly reducing the
number of objects to be examined.

The IR2-tree, however, also inherits a drawback of
signature files: false hits. That is, a signature file, due
to its conservative nature, may still direct the search
to some objects, even though they do not have all the
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Fig. 1. (a) shows the locations of points and (b) gives their associated texts.

keywords. The penalty thus caused is the need to verify
an object whose satisfying a query or not cannot be
resolved using only its signature, but requires loading
its full text description, which is expensive due to the
resulting random accesses. It is noteworthy that the false
hit problem is not specific only to signature files, but also
exists in other methods for approximate set membership
tests with compact storage (see [7] and the references
therein). Therefore, the problem cannot be remedied
by simply replacing signature file with any of those
methods.

In this paper, we design a variant of inverted index
that is optimized for multidimensional points, and is
thus named the spatial inverted index (SI-index). This
access method successfully incorporates point coordi-
nates into a conventional inverted index with small
extra space, owing to a delicate compact storage scheme.
Meanwhile, an SI-index preserves the spatial locality of
data points, and comes with an R-tree built on every
inverted list at little space overhead. As a result, it
offers two competing ways for query processing. We
can (sequentially) merge multiple lists very much like
merging traditional inverted lists by ids. Alternatively,
we can also leverage the R-trees to browse the points of
all relevant lists in ascending order of their distances to
the query point. As demonstrated by experiments, the
SI-index significantly outperforms the IR2-tree in query
efficiency, often by a factor of orders of magnitude.

The rest of the paper is organized as follows. Sec-
tion 2 defines the problem studied in this paper formally.
Section 3 surveys the previous work related to ours.
Section 4 gives an analysis that reveals the drawbacks
of the IR-tree. Section 5 presents a distance browsing al-
gorithm for performing keyword-based nearest neighbor
search. Section 6 proposes the SI-idnex, and establishes
its theoretical properties. Section 7 evaluates our tech-
niques with extensive experiments. Section 8 concludes
the paper with a summary of our findings.

2 PROBLEM DEFINITIONS

Let P be a set of multidimensional points. As our
goal is to combine keyword search with the existing
location-finding services on facilities such as hospitals,
restaurants, hotels, etc., we will focus on dimensionality
2, but our technique can be extended to arbitrary dimen-
sionalites with no technical obstacle. We will assume that
the points in P have integer coordinates, such that each
coordinate ranges in [0, t], where t is a large integer. This
is not as restrictive as it may seem, because even if one
would like to insist on real-valued coordinates, the set of
different coordinates representable under a space limit is
still finite and enumerable; therefore, we could as well
convert everything to integers with proper scaling.

As with [12], each point p ∈ P is associated with a
set of words, which is denoted as Wp and termed the
document of p. For example, if p stands for a restaurant,
Wp can be its menu, or if p is a hotel, Wp can be the
description of its services and facilities, or if p is a
hospital, Wp can be the list of its out-patient specialities.
It is clear that Wp may potentially contain numerous
words.

Traditional nearest neighbor search returns the data
point closest to a query point. Following [12], we ex-
tend the problem to include predicates on objects’ texts.
Formally, in our context, a nearest neighbor (NN) query
specifies a point q and a set Wq of keywords (we refer
to Wq as the document of the query). It returns the point
in Pq that is the nearest to q, where Pq is defined as

Pq = {p ∈ P | Wq ⊆ Wp} (1)

In other words, Pq is the set of objects in P whose
documents contain all the keywords in Wq . In the case
where Pq is empty, the query returns nothing. The prob-
lem definition can be generalized to k nearest neighbor
(kNN) search, which finds the k points in Pq closest to
q; if Pq has less than k points, the entire Pq should be
returned.

For example, assume that P consists of 8 points whose
locations are as shown in Figure 1a (the black dots),
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and their documents are given in Figure 1b. Consider
a query point q at the white dot of Figure 1a with the
set of keywords Wq = {c, d}. Nearest neighbor search
finds p6, noticing that all points closer to q than p6 are
missing either the query keyword c or d. If k = 2 nearest
neighbors are wanted, p8 is also returned in addition.
The result is still {p6, p8} even if k increases to 3 or
higher, because only 2 objects have the keywords c and
d at the same time.

We consider that the dataset does not fit in memory,
and needs to be indexed by efficient access methods in
order to minimize the number of I/Os in answering a
query.

3 RELATED WORK

Section 3.1 reviews the information retrieval R-tree (IR2-
tree) [12], which is the state of the art for answering the
nearest neighbor queries defined in Section 2. Section 3.2
explains an alternative solution based on the inverted
index. Finally, Section 3.3 discusses other relevant work
in spatial keyword search.

3.1 The IR2-tree

As mentioned before, the IR2-tree [12] combines the R-
tree with signature files. Next, we will review what is a
signature file before explaining the details of IR2-trees.
Our discussion assumes the knowledge of R-trees and
the best-first algorithm [14] for NN search, both of which
are well-known techniques in spatial databases.

Signature file in general refers to a hashing-based
framework, whose instantiation in [12] is known as
superimposed coding (SC), which is shown to be more
effective than other instantiations [11]. It is designed
to perform membership tests: determine whether a query
word w exists in a set W of words. SC is conservative,
in the sense that if it says “no”, then w is definitely not
in W . If, on the other hand, SC returns “yes”, the true
answer can be either way, in which case the whole W
must be scanned to avoid a false hit.

In the context of [12], SC works in the same way as
the classic technique of bloom filter. In preprocessing, it
builds a bit signature of length l from W by hashing
each word in W to a string of l bits, and then taking the
disjunction of all bit strings. To illustrate, denote by h(w)
the bit string of a word w. First, all the l bits of h(w) are
initialized to 0. Then, SC repeats the following m times:
randomly choose a bit and set it to 1. Very importantly,
randomization must use w as its seed to ensure that
the same w always ends up with an identical h(w).
Furthermore, the m choices are mutually independent,
and may even happen to be the same bit. The concrete
values of l and m affect the space cost and false hit
probability, as will be discussed later.

Figure 2 gives an example to illustrate the above
process, assuming l = 5 and m = 2. For example, in the
bit string h(a) of a, the 3rd and 5th (counting from left)

hashed bit stringword

b

a

c

d

e

00101

01001

00011

00110

10010

Fig. 2. Example of bit string computation with l = 5 and

m = 2

bits are set to 1. As mentioned earlier, the bit signature
of a set W of words simply ORs the bit strings of all the
members of W . For instance, the signature of a set {a, b}
equals 01101, while that of {b, d} equals 01111.

Given a query keyword w, SC performs the member-
ship test in W by checking whether all the 1’s of h(w)
appear at the same positions in the signature ofW . If not,
it is guaranteed that w cannot belong to W . Otherwise,
the test cannot be resolved using only the signature, and
a scan of W follows. A false hit occurs if the scan reveals
that W actually does not contain w. For example, assume
that we want to test whether word c is a member of
set {a, b} using only the set’s signature 01101. Since the
4th bit of h(c) = 00011 is 1 but that of 01101 is 0, SC
immediately reports “no”. As another example, consider
the membership test of c in {b, d} whose signature is
01111. This time, SC returns “yes” because 01111 has 1’s
at all the bits where h(c) is set to 1; as a result, a full
scan of the set is required to verify that this is a false
hit.

The IR2-tree is an R-tree where each (leaf or nonleaf)
entry E is augmented with a signature that summarizes
the union of the texts of the objects in the subtree of E.
Figure 3 demonstrates an example based on the dataset
of Figure 1 and the hash values in Figure 2. The string
01111 in the leaf entry p2, for example, is the signature of
Wp2

= {b, d} (which is the document of p2; see Figure 1b).
The string 11111 in the nonleaf entry E3 is the signature
of Wp2

∪ Wp6
, namely, the set of all words describing

p2 and p6. Notice that, in general, the signature of a
nonleaf entry E can be conveniently obtained simply as
the disjunction of all the signatures in the child node of
E. A nonleaf signature may allow a query algorithm to
realize that a certain word cannot exist in the subtree.
For example, as the 2nd bit of h(b) is 1, we know that
no object in the subtrees of E4 and E6 can have word
b in its texts – notice that the signatures of E4 and E6

have 0 as their 2nd bits. In general, the signatures in an
IR2-tree may have different lengths at various levels.

On conventional R-trees, the best-first algorithm [14]
is a well-known solution to NN search. It is straightfor-
ward to adapt it to IR2-trees. Specifically, given a query
point q and a keyword set Wq , the adapted algorithm
accesses the entries of an IR2-tree in ascending order
of the distances of their MBRs to q (the MBR of a leaf
entry is just the point itself), pruning those entries whose
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Fig. 3. Example of an IR2-tree. (a) shows the MBRs of the underlying R-tree and (b) gives the signatures of the
entries.

signatures indicate the absence of at least one word ofWq

in their subtrees. Whenever a leaf entry, say of point p,
cannot be pruned, a random I/O is performed to retrieve
its text description Wp. If Wq is a subset of Wp, the
algorithm terminates with p as the answer; otherwise, it
continues until no more entry remains to be processed.
In Figure 3, assume that the query point q has a keyword
set Wq = {c, d}. It can be verified that the algorithm must
read all the nodes of the tree, and fetch the documents
of p2, p4, and p6 (in this order). The final answer is p6,
while p2 and p4 are false hits.

3.2 Solutions based on inverted indexes

Inverted indexes (I-index) have proved to be an effective
access method for keyword-based document retrieval. In
the spatial context, nothing prevents us from treating the
text description Wp of a point p as a document, and then,
building an I-index. Figure 4 illustrates the index for the
dataset of Figure 1. Each word in the vocabulary has an
inverted list, enumerating the ids of the points that have
the word in their documents.

Note that the list of each word maintains a sorted
order of point ids, which provides considerable con-
venience in query processing by allowing an efficient
merge step. For example, assume that we want to find
the points that have words c and d. This is essentially
to compute the intersection of the two words’ inverted
lists. As both lists are sorted in the same order, we can
do so by merging them, whose I/O and CPU times are
both linear to the total length of the lists.

Recall that, in NN processing with IR2-tree, a point
retrieved from the index must be verified (i.e., having
its text description loaded and checked). Verification is
also necessary with I-index, but for exactly the opposite
reason. For IR2-tree, verification is because we do not
have the detailed texts of a point, while for I-index, it
is because we do not have the coordinates. Specifically,
given an NN query q with keyword set Wq , the query
algorithm of I-index first retrieves (by merging) the set
Pq of all points that have all the keywords of Wq , and

word inverted list

a p! p"
b p# p$
c p% p& p'

p!

d p# p( p& p'
e p" p% p& p$

Fig. 4. Example of an inverted index

then, performs |Pq| random I/Os to get the coordinates
of each point in Pq in order to evaluate its distance to q.

According to the experiments of [12], when Wq has
only a single word, the performance of I-index is very
bad, which is expected because everything in the inverted
list of that word must be verified. Interestingly, as the
size of Wq increases, the performance gap between I-
index and IR2-tree keeps narrowing such that I-index
even starts to outperform IR2-tree at |Wq| = 4. This is not
as surprising as it may seem. As |Wq| grows large, not
many objects need to be verified because the number of
objects carrying all the query keywords drops rapidly.
On the other hand, at this point an advantage of I-
index starts to pay off. That is, scanning an inverted list
is relatively cheap because it involves only sequential
I/Os1, as opposed to the random nature of accessing the
nodes of an IR2-tree.

3.3 Other relevant work

Our treatment of nearest neighbor search falls in the
general topic of spatial keyword search, which has also
given rise to several alternative problems. A complete
survey of all those problems goes beyond the scope of
this paper. Below we mention several representatives,
but interested readers can refer to [4] for a nice survey.

1. Strictly speaking, this is not precisely true because merging may
need to jump across different lists; however, random I/Os will account
for only a small fraction of the total overhead as long as a proper pre-
fetching strategy is employed, e.g., reading 10 sequential pages at a
time.
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Cong et al. [10] considered a form of keyword-based
nearest neighbor queries that is similar to our formu-
lation, but differs in how objects’ texts play a role in
determining the query result. Specifically, aiming at an
IR flavor, the approach of [10] computes the relevance
between the documents of an object p and a query q.
This relevance score is then integrated with the Eu-
clidean distance between p and q to calculate an overall
similarity of p to q. The few objects with the highest
similarity are returned. In this way, an object may still
be in the query result, even though its document does
not contain all the query keywords. In our method,
same as [12], object texts are utilized in evaluating a
boolean predicate, i.e., if any query keyword is missing in
an object’s document, it must not be returned. Neither
approach subsumes the other, and both make sense in
different applications. As an application in our favor,
consider the scenario where we want to find a close
restaurant serving “steak, spaghetti and brandy”, and
do not accept any restaurant that do not serve any of
these three items. In this case, a restaurant’s document
either fully satisfies our requirement, or does not satisfy
at all. There is no “partial satisfaction”, as is the rationale
behind the approach of [10].

In geographic web search, each webpage is assigned a
geographic region that is pertinent to the webpage’s
contents. In web search, such regions are taken into
account so that higher rankings are given to the pages
in the same area as the location of the computer issuing
the query (as can be inferred from the computer’s IP
address) [8], [13], [21]. The underpinning problem that
needs to be solved is different from keyword-based
nearest neighbor search, but can be regarded as the
combination of keyword search and range queries.

Zhang et al. [20] dealt with the so-called m-closest key-
words problem. Specifically, let P be a set of points each of
which carries a single keyword. Given a set Wq of query
keywords (note: no query point q is needed), the goal is
to find m = |Wq| points from P such that (i) each point
has a distinct keyword in Wq , and (ii) the maximum
mutual distance of these points is minimized (among all
subsets of m points in P fulfilling the previous condi-
tion). In other words, the problem has a “collaborative”
nature in that the resulting m points should cover the
query keywords together. This is fundamentally different
from our work where there is no sense of collaboration
at all, and instead the quality of each individual point
with respect to a query can be quantified into a concrete
value. Cao et al. [6] proposed collective spatial keyword
querying, which is based on similar ideas, but aims at
optimizing different objective functions.

In [5], Cong et al. proposed the concept of prestige-
based spatial keyword search. The central idea is to evaluate
the similarity of an object p to a query by taking also
into account the objects in the neighborhood of p. Lu et
al. [17] recently combined the notion of keyword search
with reverse nearest neighbor queries.

Although keyword search has only started to receive
attention in spatial databases, it is already thoroughly
studied in relational databases, where the objective is
to enable a querying interface that is similar to that of
search engines, and can be easily used by naive users
without knowledge about SQL. Well known systems
with such mechanisms include DBXplorer [1], Discover
[15], Banks [3], and so on. Interested readers may refer
to [9] for additional references into that literature.

4 DRAWBACKS OF THE IR2-TREE

The IR2-tree is the first access method for answering
NN queries with keywords. As with many pioneering
solutions, the IR2-tree also has a few drawbacks that
affect its efficiency. The most serious one of all is that
the number of false hits can be really large when the
object of the final result is faraway from the query point,
or the result is simply empty. In these cases, the query
algorithm would need to load the documents of many
objects, incurring expensive overhead as each loading
necessitates a random access.

To explain the details, we need to first discuss some
properties of SC (the variant of signature file used in
the IR2-tree). Recall that, at first glance, SC has two
parameters: the length l of a signature, and the number
m of bits chosen to set to 1 in hashing a word. There
is, in fact, really just a single parameter l, because the
optimal m (which minimizes the probability of a false
hit) has been solved by Stiassny [18]:

mopt = l · ln(2)/g (2)

where g is the number of distinct words in the set W on
which the signature is being created. Even with such an
optimal choice of m, Faloutsos and Christodoulakis [11]
show that the false hit probability equals

Pfalse = (1/2)mopt . (3)

Put in a different way, given any word w that does not
belong to W , SC will still report “yes” with probability
Pfalse, and demand a full scan of W .

It is easy to see that Pfalse can be made smaller by
adopting a larger l (note that g is fixed as it is decided
by W ). In particular, asymptotically speaking, to make
sure Pfalse is at least a constant, l must be Ω(g), i.e., the
signature should have Ω(1) bit for every distinct word
of W . Indeed, for the IR2-tree, Felipe et al. [12] adopt a
value of l that is approximately equivalent to 4g in their
experiments (g here is the average number of distinct
words a data point has in its text description). It thus
follows that

Pfalse = (1/2)4 ln(2) = 0.15. (4)

The above result takes a heavy toll on the efficiency
of the IR2-tree. For simplicity, let us first assume that
the query keyword set Wq has only a single keyword
w (i.e., |Wq | = 1). Without loss of generality, let p be
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the object of the query result, and S be the set of data
points that are closer to the query point q than p. In
other words, none of the points in S has w in their
text documents (otherwise, p cannot have been the final
result). By Equation 4, roughly 15% of the points in S
cannot be pruned using their signatures, and thus, will
become false hits. This also means that the NN algorithm
is expected to perform at least 0.15|S| random I/Os.

So far we have considered |Wq| = 1, but the discussion
extends to arbitrary |Wq | in a straightforward manner. It
is easy to observe (based on Equation 4) that, in general,
the false hit probability satisfies

Pfalse ≥ 0.15|Wq|. (5)

When |Wq| > 1, there is another negative fact that adds
to the deficiency of the IR2-tree: for a greater |Wq|, the
expected size of S increases dramatically, because fewer
and fewer objects will contain all the query keywords.
The effect is so severe that the number of random
accesses, given by Pfalse|S|, may escalate as |Wq| grows
(even with the decrease of Pfalse). In fact, as long as
|Wq| > 1, S can easily be the entire dataset when the
user tries out an uncommon combination of keywords
that does not exist in any object. In this case, the number
of random I/Os would be so prohibitive that the IR2-tree
would not be able to give real time responses.

5 MERGING AND DISTANCE BROWSING

Since verification is the performance bottleneck, we
should try to avoid it. There is a simple way to do so
in an I-index: one only needs to store the coordinates
of each point together with each of its appearances in
the inverted lists. The presence of coordinates in the
inverted lists naturally motivates the creation of an R-
tree on each list indexing the points therein (a structure
reminiscent of the one in [21]). Next, we discuss how
to perform keyword-based nearest neighbor search with
such a combined structure.

The R-trees allow us to remedy an awkwardness in
the way NN queries are processed with an I-index.
Recall that, to answer a query, currently we have to
first get all the points carrying all the query words in
Wq by merging several lists (one for each word in Wq).
This appears to be unreasonable if the point, say p, of
the final result lies fairly close to the query point q. It
would be great if we could discover p very soon in all
the relevant lists so that the algorithm can terminate
right away. This would become a reality if we could
browse the lists synchronously by distances as opposed
to by ids. In particular, as long as we could access the
points of all lists in ascending order of their distances
to q (breaking ties by ids), such a p would be easily
discovered as its copies in all the lists would definitely
emerge consecutively in our access order. So all we have
to do is to keep counting how many copies of the same
point have popped up continuously, and terminate by
reporting the point once the count reaches |Wq|. At

any moment, it is enough to remember only one count,
because whenever a new point emerges, it is safe to
forget about the previous one.

As an example, assume that we want to perform NN
search whose query point q is as shown in Figure 1, and
whose Wq equals {c, d}. Hence, we will be using the
lists of words c and d in Figure 4. Instead of expanding
these lists by ids, the new access order is by distance to
q, namely, p2, p3, p6, p6, p5, p8, p8. The processing finishes
as soon as the second p6 comes out, without reading
the remaining points. Apparently, if k nearest neighbors
are wanted, termination happens after having reported
k points in the same fashion.

Distance browsing is easy with R-trees. In fact, the
best-first algorithm is exactly designed to output data
points in ascending order of their distances to q. How-
ever, we must coordinate the execution of best-first on
|Wq| R-trees to obtain a global access order. This can be
easily achieved by, for example, at each step taking a
“peek” at the next point to be returned from each tree,
and output the one that should come next globally. This
algorithm is expected to work well if the query keyword
set Wq is small. For sizable Wq , the large number of
random accesses it performs may overwhelm all the
gains over the sequential algorithm with merging.

A serious drawback of the R-tree approach is its space
cost. Notice that a point needs to be duplicated once
for every word in its text description, resulting in very
expensive space consumption. In the next section, we
will overcome the problem by designing a variant of
the inverted index that supports compressed coordinate
embedding.

6 SPATIAL INVERTED LIST

The spatial inverted list (SI-index) is essentially a com-
pressed version of an I-index with embedded coordi-
nates as described in Section 5. Query processing with an
SI-index can be done either by merging, or together with
R-trees in a distance browsing manner. Furthermore, the
compression eliminates the defect of a conventional I-
index such that an SI-index consumes much less space.

6.1 The compression scheme

Compression is already widely used to reduce the size of
an inverted index in the conventional context where each
inverted list contains only ids. In that case, an effective
approach is to record the gaps between consecutive ids,
as opposed to the precise ids. For example, given a set
S of integers {2, 3, 6, 8}, the gap-keeping approach will
store {2, 1, 3, 2} instead, where the i-th value (i ≥ 2)
is the difference between the i-th and (i − 1)-th values
in the original S. As the original S can be precisely
reconstructed, no information is lost. The only overhead
is that decompression incurs extra computation cost, but
such cost is negligible compared to the overhead of I/Os.
Note that gap-keeping will be much less beneficial if the
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Fig. 5. Converted values of the points in Figure 1a based

on Z-curve

integers of S are not in a sorted order. This is because the
space saving comes from the hope that gaps would be
much smaller (than the original values) and hence could
be represented with fewer bits. This would not be true
had S not been sorted.

Compressing an SI-index is less straightforward. The
difference here is that each element of a list, a.k.a. a
point p, is a triplet (idp, xp, yp), including both the id and
coordinates of p. As gap-keeping requires a sorted order,
it can be applied on only one attribute of the triplet. For
example, if we decide to sort the list by ids, gap-keeping
on ids may lead to good space saving, but its application
on the x- and y-coordinates would not have much effect.

To attack this problem, let us first leave out the ids and
focus on the coordinates. Even though each point has 2
coordinates, we can convert them into only one so that
gap-keeping can be applied effectively. The tool needed
is a space filling curve (SFC) such as Hilbert- or Z-curve.
SFC converts a multidimensional point to a 1D value
such that if two points are close in the original space,
their 1D values also tend to be similar. As dimensionality
has been brought to 1, gap-keeping works nicely after
sorting the (converted) 1D values.

For example, based on the Z-curve2, the resulting
values, called Z-values, of the points in Figure 1a are
demonstrated in Figure 5 in ascending order. With gap-
keeping, we will store these 8 points as the sequence
12, 3, 8, 1, 7, 9, 2, 7. Note that as the Z-values of all points
can be accurately restored, the exact coordinates can be
restored as well.

Let us put the ids back into consideration. Now that
we have successfully dealt with the two coordinates with
a 2D SFC, it would be natural to think about using a 3D
SFC to cope with ids too. As far as space reduction is
concerned, this 3D approach may not a bad solution. The
problem is that it will destroy the locality of the points
in their original space. Specifically, the converted values
would no longer preserve the spatial proximity of the
points, because ids in general have nothing to do with
coordinates.

If one thinks about the purposes of having an id,
it will be clear that it essentially provides a token for
us to retrieve (typically, from a hash table) the details
of an object, e.g., the text description and/or other
attribute values. Furthermore, in answering a query, the

2. By the Z-curve, a point (x, y) is converted to a 1D value by
interleaving the bits of x and y from left to right. For example, in
Figure 1a, the x coordinate of p4 is 2 = 010 and its y coordinate is
4 = 100. Hence, the converted 1D value of p4 equals 011000, where
the underlined bits come from 010 and the others from 100.

ids also provide the base for merging. Therefore, nothing
prevents us from using a pseudo-id internally. Specifically,
let us forget about the “real” ids, and instead, assign to
each point a pseudo-id that equals its sequence number
in the ordering of Z-values. For example, according to
Figure 5, p6 gets a pseudo-id 0, p2 gets a 1, and so on.
Obviously, these pseudo-ids can co-exist with the “real”
ids, which can still be kept along with objects’ details.

The benefit we get from pseudo-ids is that sorting
them gives the same ordering as sorting the Z-values
of the points. This means that gap-keeping will work
at the same time on both the pseudo-ids and Z-values.
As an example that gives the full picture, consider
the inverted list of word d in Figure 4 that contains
p2, p3, p6, p8, whose Z-values are 15, 52, 12, 23 respec-
tively, with pseudo-ids being 1, 6, 0, 2 respectively. Sort-
ing the Z-values automatically also puts the pseudo-ids
in ascending order. With gap-keeping, the Z-values are
recorded as 12, 3, 8, 29 and the pseudo-ids as 0, 1, 1, 4.
So we can precisely capture the 4 points with 4 pairs:
{(0, 12), (1, 3), (1, 8), (4, 29)}.
Since SFC applies to any dimensionality, it is straight-

forward to extend our compression scheme to any di-
mensional space. As a remark, we are aware that the
ideas of space filling curves and internal ids have also
been mentioned in [8] (but not for the purpose of com-
pression). In what follows, we will analyze the space of
the SI-index and discuss how to build a good R-tree on
each inverted list. None of these issues is addressed in
[8].

Theoretical analysis. Next we will argue from a theo-
retical perspective that our compression scheme has a
low space complexity. As the handling of each inverted
list is the same, it suffices to focus on only one of them,
denoted as L. Let us assume that the whole dataset has
n ≥ 1 points, and r of them appear in L. To make
our analysis general, we also take the dimensionality
d into account. Also, recall that each coordinate ranges
from 0 to t, where t is a large integer. Naively, each
pseudo-id can be represented with O(log n) bits, and
each coordinate with O(log t) bits. Therefore, without
any compression, we can represent the whole L in
O(r(log n+ d log t)) bits.

Now we start to discuss the space needed to compress
L with our solution. First of all, we give a useful fact on
gap-keeping in general:

LEMMA 1: Let v1, v2, ..., vr be r non-descending inte-
gers in the range from 1 to λ ≥ 1. Gap-keeping requires
at most O(r log(λ/r)) bits to encode all of them.

Proof: Denote ui = vi−vi−1 for i ∈ [2, r], and u1 = v1.
Note that {u1, u2, ..., ur} is exactly the set of values gap-
keeping stores. Each ui (1 ≤ i ≤ r) occupies O(log ui)
bits. Hence, recording all of u1, u2, ..., ur requires at most

O(log u1 + log u2 + ...+ log ur) = O

(

log

(

r
∏

i=1

ui

))

(6)
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bits. A crucial observation is that

1 ≤ u1 + u2 + ...+ ur ≤ λ

as all of v1, v2, ..., vr are between 1 and λ. Therefore,
∏r

i=1 ui is at most (λ/r)r . It thus follows that Equation 6
is bounded by O(r log(λ/r)).

As a corollary, we get:

LEMMA 2: Our compression scheme stores L with
O(r(log(n/r) + log(td/r))) bits.

Proof: Our compression scheme essentially applies
gap-keeping to two sets of integers. The first set includes
all the pseudo-ids of the points in L, and the second
includes their Z-values. Every pseudo-id ranges from 0
to n− 1, while each Z-value from 0 to td − 1. Hence, by
Lemma 1, the space needed to store all r pseudo-ids is
O(r(log(n/r)), and the space needed to store r Z-values
is O(r(log(td/r)).

It turns out that the complexity in the above lemma
is already the lowest in the worst case, and no storage
scheme is able to do any better, as shown in the following
lemma. A similar result also holds for conventional
inverted list (without coordinates embedding) as men-
tioned in Chapter 15 of [19].

LEMMA 3: Any compression scheme must store L
with Ω(r(log(n/r) + log(td/r))) bits in the worst case.

Proof: The lower bound can be established with an
information-theoretic approach. First, storing n pseudo-
ids must take at least r log(n/r) bits in the worst case.
Remember that each pseudo-id can be any integer from
0 to n − 1, and thus, there are

(

n

r

)

different ways to
choose r different pseudo-ids. Whatever storage scheme
must at least be able to distinguish that many ways. It
thus follows that at least log

(

n
r

)

= Θ(r log(n/r)) bits are
necessary in the worst case. Second, similar reasoning
also applies to the Z-values. Since each Z-value ranges
from 0 to td − 1, any storage scheme thus needs at least

log
(

td

r

)

= Θ(r log(td/r)) bits to encode r Z-values in the
worst case. This gives our target result.

Blocking. The SI-index described up to now applies gap-
keeping to capture all points continuously in a row. In
decompressing, we must scan an inverted list from its
beginning even though the point of our interest lies deep
down the list (remember that a point cannot be restored
without all the gaps preceding it being accumulated).
This is not a problem for a query algorithm that performs
sequential scan on the list. But in some scenarios (e.g.,
when we would like to build an R-tree on the list, as in
the next subsection), it is very helpful to restore a point
anywhere in the list much faster than reading from the
beginning every time.

The above concern motivates the design of the blocked
SI-index, which differs only in that each list is cut into
blocks each of which holds Θ(B) points where B is a

parameter to be specified later. For example, given a list
of {p1, p2, p3, p4, p5, p6}, we would store it in 2 blocks
{p1, p2, p3} and {p4, p5, p6} if the block size is 3. Gap-
keeping is now enforced within each block separately.
For example, in block {p1, p2, p3}, we will store the exact
pseudo-id and Z-value of p1, the gaps of p2 (from p1)
in its pseudo-id and Z-value respectively, and similarly,
the gaps of p3 from p2. Apparently, blocking allows to
restore all the points in a block locally, as long as the
starting address of the block is available. It is no longer
necessary to always scan from the beginning.

Since we need to keep the exact values of Θ(r/B)
points, the space cost increases by an addictive factor
of Θ( r

B
(logn + d log t)). This, however, does not affect

the overall space complexity in Lemma 2 if we choose
B as a polynomial function of r, i.e., B = rc for any
positive c < 1. In our experiments, the size of B is
roughly

√
r, namely, the value of B can even vary

for different inverted lists (i.e., a block may occupy a
different number of disk pages). Finally, in a blocked SI-
index, each inverted list can also be sequentially accessed
from the beginning, as long as we put all its blocks at
consecutive pages.

6.2 Building R-trees

Remember that an SI-index is no more than a com-
pressed version of an ordinary inverted index with
coordinates embedded, and hence, can be queried in the
same way as described in Section 3.2, i.e., by merging
several inverted lists. In the sequel, we will explore the
option of indexing each inverted list with an R-tree. As
explained in Section 3.2, these trees allow us to process
a query by distance browsing, which is efficient when
the query keyword set Wq is small.

Our goal is to let each block of an inverted list be
directly a leaf node in the R-tree. This is in contrast to
the alternative approach of building an R-tree that shares
nothing with the inverted list, which wastes space by
duplicating each point in the inverted list. Furthermore,
our goal is to offer two search strategies simultaneously:
merging (Section 3.2) and distance browsing (Section 5).

As before, merging demands that points of all lists
should be ordered following the same principle. This
is not a problem because our design in the previous
subsection has laid down such a principle: ascending
order of Z-values. Moreover, this ordering has a cru-
cial property that conventional id-based ordering lacks:
preservation of spatial proximity. The property makes
it possible to build good R-trees without destroying
the Z-value ordering of any list. Specifically, we can
(carefully) group consecutive points of a list into MBRs,
and incorporate all MBRs into an R-tree. The proximity-
preserving nature of the Z-curve will ensure that the
MBRs are reasonably small when the dimensionality is
low. For example, assume that an inverted list includes
all the points in Figure 5, sorted in the order shown. To
build an R-tree, we may cut the list into 4 blocks {p6, p2},
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{p8, p4}, {p7, p1}, and {p3, p5}. Treating each block as a
leaf node results in an R-tree identical to the one in
Figure 3a. Linking all blocks from left to right preserves
the ascending order of the points’ Z-values.

Creating an R-tree from a space filling curve has been
considered by Kamel and Faloutsos [16]. Different from
their work, we will look at the problem in a more
rigorous manner, and attempt to obtain the optimal
solution. Formally, the underlying problem is as follows.
There is an inverted list L with, say, r points p1, p2, ...,
pr, sorted in ascending order of Z-values. We want to
divide L into a number of disjoint blocks such that (i)
the number of points in each block is between B and
2B − 1, where B is the block size, and (ii) the points of
a block must be consecutive in the original ordering of
L. The goal is to make the resulting MBRs of the blocks
as small as possible.

How “small” an MBR is can be quantified in a number
of ways. For example, we can take its area, perimeter, or
a function of both. Our solution, presented below, can
be applied to any quantifying metric, but our discussion
will use area as an example. The cost of a dividing
scheme of L is thus defined as the sum of the areas
of all MBRs. For notational convenience, given any
1 ≤ i ≤ j ≤ r, we will use C[i, j] to denote the cost
of the optimal division of the subsequence pi, pi+1, ...,
pj . The aim of the above problem is thus to find C[1, r].
We also denote by A[i, j] the area of the MBR enclosing
pi, pi+1, ..., pj .

Now we will discuss the properties of C[i, j]. There
are j − i+ 1 points from pi to pj . So C[i, j] is undefined
if j − i + 1 < B, because we will never create a block
with less than B points. Furthermore, in the case where
j − i+ 1 ∈ [B, 2B− 1], C[i, j] can be immediately solved
as the area of the MBR enclosing all the j − i+1 points.
Hence, next we will focus on the case j − i+ 1 ≥ 2B.

Notice that when we try to divide the set of points
{pi, pi+1, ..., pj}, there are at most B − 1 ways to decide
which points should be in the same block together with
the first point pi. Specifically, a block of size B must
include, besides pi, also pi+1, pi+2, all the way to pi+B−1.
If the block size goes to B+1, then the additional point
will have to be pi+B ; similarly, to get a block size of
B + 2, we must also put in pi+B+1 and so on, until the
block size reaches the maximum 2B − 1. Regardless of
the block size, the remaining points (that are not together
with p1) constitute a smaller set on which the division
problem needs to be solved recursively. The total number
of choices may be less than B − 1 because care must be
taken to make sure that the number of those remaining
points is at least B. In any case, C[i, j] equals the lowest
cost of all the permissible choices, or formally:

C[i, j] =
min{i+2B−2,j+1−B}

min
k=i+B−1

(A[i, k] + C[k + 1, j]) (7)

The equation indicates the existence of solutions based
on dynamic programming. One can easily design an

algorithm that runs in O(Br2) time: it suffices to derive
C[i, j] in ascending order of the value of j − i, namely,
starting with those with j − i = 2B, followed by those
with j−i = 2B+1, and so on until finishing at j−i = r−1.
We can significantly improve the computation time to
O(Br), by the observation that j can be fixed to r
throughout the computation in order to obtain C[1, r]
eventually.

We have finished explaining how to build the leaf
nodes of an R-tree on an inverted list. As each leaf is a
block, all the leaves can be stored in a blocked SI-index
as described in Section 6.1. Building the nonleaf levels is
trivial, because they are invisible to the merging-based
query algorithms, and hence, do not need to preserve
any common ordering. We are free to apply any of the
existing R-tree construction algorithms. It is noteworthy
that the nonleaf levels add only a small amount to the
overall space overhead because, in an R-tree, the number
of nonleaf nodes is by far lower than that of leaf nodes.

7 EXPERIMENTS

In the sequel, we will experimentally evaluate the prac-
tical efficiency of our solutions to NN search with key-
words, and compare them against the existing methods.

Competitors. The proposed SI-index comes with two
query algorithms based on merging and distance brows-
ing respectively. We will refer to the former as SI-m and
the other as SI-b. Our evaluation also covers the state-
of-the-art IR2-tree; in particular, our IR2-tree implemen-
tation is the fast variant developed in [12], which uses
longer signatures for higher levels of tree. Furthermore,
we also include the method, named index file R-tree (IFR)
henceforth, which, as discussed in Section 5, indexes
each inverted list (with coordinates embedded) using an
R-tree, and applies distance browsing for query process-
ing. IFR can be regarded as an uncompressed version of
SI-b.

Data. Our experiments are based on both synthetic and
real data. The dimensionality is always 2, with each axis
consisting of integers from 0 to 16383. The synthetic
category has two datasets: Uniform and Skew, which
differ in the distribution of data points, and in whether
there is a correlation between the spatial distribution and
objects’ text documents. Specifically, each dataset has 1
million points. Their locations are uniformly distributed
in Uniform, whereas in Skew, they follow the Zipf distri-
bution3. For both datasets, the vocabulary has 200words,
and each word appears in the text documents of 50k
points. The difference is that the association of words
with points is completely random in Uniform, while in
Skew, there is a pattern of “word-locality”: points that
are spatially close have almost identical text documents.

3. We create each point independently by generating each of its
coordinates (again, independently) according to Zipf.
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number of points vocabulary size average number of objects per word average number of words per object
Uniform 1 million 200 50k 10

Skew 1 million 200 50k 10

Census 20847 292255 33 461

TABLE 1

Dataset statistics

SI-m SI-b IFR   
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Fig. 6. Query time vs. the number of keywords |Wq|: (a) dataset Uniform, (b) Skew, (c) Census. The number k of
neighbors retrieved is 10.

Our real dataset, referred to as Census below, is a
combination of a spatial dataset published by the U.S.
Census Bureau4, and the web pages from Wikipedia5.
The spatial dataset contains 20847 points, each of which
represents a county subdivision. We use the name of
the subdivision to search for its page at Wikipedia, and
collect the words there as the text description of the
corresponding data point. All the points, as well as their
text documents, constitute the dataset Census. The main
statistics of all of our datasets are summarized in Table 1.

Parameters. The page size is always 4096 bytes. All the
SI-indexes have a block size of 200 (see Section 6.1 for the
meaning of a block). The parameters of IR2-tree are set
in exactly the same way as in [12]. Specifically, the tree
on Uniform has 3 levels, whose signatures (from leaves
to the root) have respectively 48, 768, and 840 bits each.
The corresponding lengths for Skew are 48, 856, and 864.
The tree on Census has 2 levels, whose lengths are 2000
and 47608, respectively.

Queries. As in [12], we consider NN search with the
AND semantic. There are two query parameters: (i) the
number k of neighbors requested, and (ii) the number
|Wq| of keywords. Each workload has 100 queries that
have the same parameters, and are generated indepen-
dently as follows. First, the query location is uniformly
distributed in the data space. Second, the set Wq of

4. http://www.census.gov/geo/www/gazetteer/places2k.html, and follow
the link “County Subdivisions”.
5. http://en.wikipedia.org.

keywords is a random subset (with the designated size
|Wq|) of the text description of a point randomly sampled
from the underlying dataset. We will measure the query
cost as the total I/O time (in our system, on average,
every sequential page access takes about 1 milli-second,
and a random access is around 10 times slower).

Results on query efficiency. Let us start with the query
performance with respect to the number of keywords
|Wq|. For this purpose, we will fix the parameter k
to 10, i.e., each query retrieves 10 neighbors. For each
competing method, we will report its average query
time in processing a workload. The results are shown in
Figure 6, where (a), (b), (c) are about datasets Uniform,
Skew, and Census, respectively. In each case, we present
the I/O time of IR2-tree separately in a table, because
it is significantly more expensive than the other solu-
tions. The experiment on Uniform inspects |Wq| up to 4,
because almost all queries with greater |Wq| return no
result at all.

The fastest method is either SI-m or SI-b in all cases.
In particular, SI-m is especially efficient on Census where
each inverted list is relatively small (this is hinted from
the column “the number objects per word” in Table 1),
and hence, index-based search is not as effective as
simple scans. The behavior of the two algorithms on
Uniform very well confirms the intuition that distance
browsing is more suitable when |Wq| is small, but is
outperformed by merging when Wq is sizable. On Skew,
SI-b is significantly better than SI-m due to the “word-
locality” pattern. As for IFR, its behavior in general
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Fig. 8. Query time vs. the number of k of neighbors returned: (a) dataset Uniform, (b) Skew, (c) Census. The number

|Wq| of query keywords is 3.

number of false hits

|Wq| 
1 2 3 4 5 6

 
 

1

10

100

1000

10000

100000

1000000
Uniform

Census

Skew

  

Fig. 7. Number of false hits of IR2-tree

follows that of SI-b because they differ only in whether
compression is performed. The superiority of SI-b stems
from its larger node capacity.

IR2-tree, on the other hand, fails to give real time
answers, and is often slower than our solutions by a
factor of orders of magnitude, particularly on Uniform
and Census where word-locality does not exist. As ana-
lyzed in Section 3.1, the deficiency of IR2-tree is mainly
caused by the need to verify a vast number of false
hits. To illustrate this, Figure 7 plots the average false
hit number per query (in the experiments of Figure 6)
as a function of |Wq|. We see an exponential escalation
of the number on Uniform and Census, which explains
the drastic explosion of the query cost on those datasets.
Interesting is that the number of false hits fluctuates6 a
little on Skew, which explains the fluctuation in the cost
of IR2-tree in Figure 6b.

Next, we move on to study the other query parameter

6. Such fluctuation is not a surprise because, as discussed in Sec-
tion 3.1, the number of false hits is determined by two factors that
may cancel each other: (i) how many data points are closer than the
k-th NN reported, and (ii) the false hit probability. While the former
factor increases with the growth of |Wq|, the latter actually decreases.

k (the number of neighbors returned). The experiments
for this purpose are based on queries with |Wq| = 3.
As before, the average query time of each method in
handling a workload is reported. Figures 8a, 8b, 8c give
the results on Uniform, Skew, and Census, respectively.
Once again, the costs of IR2-tree are separated into tables.
In these experiments, the best approach is still either SI-m
or SI-b. As expected, the cost of SI-m is not affected by k,
while those of the other solutions all increase monoton-
ically. The relative superiority of alternative methods, in
general, is similar to that exhibited in Figure 6. Perhaps
worth pointing out is that, for all distributions, distance
browsing appears to be the most efficient approach when
k is small.

Results on space consumption. We will complete our
experiments by reporting the space cost of each method
on each dataset. While four methods are examined in
the experiments on query time, there are only three as
far as space is concerned. Remember that SI-m and SI-b
actually deploy the same SI-index and hence, have the
same space cost. In the following, we will refer to them
collectively as SI-index.

Figure 9 gives the space consumption of IR2-tree, SI-
index, and IFR on datasets Uniform, Skew, and Census
respectively. As expected, IFR incurs prohibitively large
space cost, because it needs to duplicate the coordi-
nates of a data point p as many times as the number
of distinct words in the text description of p. As for
the other methods, IR2-tree appears to be slightly more
space efficient, although such an advantage does not
justify its expensive query time, as shown in the earlier
experiments.

Summary. The SI-index, accompanied by the proposed
query algorithms, has presented itself as an excellent
tradeoff between space and query efficiency. Compared
to IFR, it consumes significantly less space, and yet,
answers queries much faster. Compared to IR2-tree, its
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Fig. 9. Comparison of space consumption

superiority is overwhelming since its query time is typ-
ically lower by a factor of orders of magnitude.

8 CONCLUSIONS

We have seen plenty of applications calling for a search
engine that is able to efficiently support novel forms
of spatial queries that are integrated with keyword
search. The existing solutions to such queries either incur
prohibitive space consumption or are unable to give
real time answers. In this paper, we have remedied
the situation by developing an access method called
the spatial inverted index (SI-index). Not only that the
SI-index is fairly space economical, but also it has the
ability to perform keyword-augmented nearest neighbor
search in time that is at the order of dozens of milli-
seconds. Furthermore, as the SI-index is based on the
conventional technology of inverted index, it is readily
incorporable in a commercial search engine that applies
massive parallelism, implying its immediate industrial
merits.
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