
Minimal MapReduce Algorithms

Yufei Tao1,2 Wenqing Lin3 Xiaokui Xiao3

1Chinese University of Hong Kong, Hong Kong
2Korea Advanced Institute of Science and Technology, Korea

3Nanyang Technological University, Singapore

ABSTRACT

MapReduce has become a dominant parallel computing paradigm
for big data, i.e., colossal datasets at the scale of tera-bytes or
higher. Ideally, a MapReduce system should achieve a high
degree of load balancing among the participating machines, and
minimize the space usage, CPU and I/O time, and network transfer
at each machine. Although these principles have guided the
development of MapReduce algorithms, limited emphasis has been
placed on enforcing serious constraints on the aforementioned
metrics simultaneously. This paper presents the notion of
minimal algorithm, that is, an algorithm that guarantees the
best parallelization in multiple aspects at the same time, up
to a small constant factor. We show the existence of elegant
minimal algorithms for a set of fundamental database problems,
and demonstrate their excellent performance with extensive
experiments.

Categories and Subject Descriptors

F2.2 [Analysis of algorithms and problem complexity]:
Nonnumerical algorithms and problems

Keywords

Minimal algorithm, MapReduce, big data

1. INTRODUCTION
We are in an era of information explosion, where industry,

academia, and governments are accumulating data at an
unprecedentedly high speed. This brings forward the urgent need
of big data processing, namely, fast computation over colossal
datasets whose sizes can reach the order of tera-bytes or higher. In
recent years, the database community has responded to this grand
challenge by building massive parallel computing platforms which
use hundreds or even thousands of commodity machines. The
most notable platform, which has attracted a significant amount of
research attention, is MapReduce.

Since its invention [16], MapReduce has gone through years
of improvement into a mature paradigm (see Section 2 for a
review). At a high level, a MapReduce system involves a number
of share-nothing machines which communicate only by sending

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’13, June 22–27, 2013, New York, New York, USA.
Copyright 2013 ACM 978-1-4503-2037-5/13/06 ...$15.00.

messages over the network. A MapReduce algorithm instructs
these machines to perform a computational task collaboratively.
Initially, the input dataset is distributed across the machines,
typically in a non-replicate manner, i.e., each object on one
machine. The algorithm executes in rounds (sometimes also called
jobs in the literature), each having three phases: map, shuffle, and
reduce. The first two enable the machines to exchange data: in the
map phase, each machine prepares the information to be delivered
to other machines, while the shuffle phase takes care of the actual
data transfer. No network communication occurs in the reduce
phase, where each machine performs calculation from its local
storage. The current round finishes after the reduce phase. If the
computational task has not completed, another round starts.

Motivation. As with traditional parallel computing, a MapReduce
system aims at a high degree of load balancing, and the
minimization of space, CPU, I/O, and network costs at each
individual machine. Although these principles have guided the
design of MapReduce algorithms, the previous practices have
mostly been on a best-effort basis, paying relatively less attention
to enforcing serious constraints on different performance metrics.
This work aims to remedy the situation by studying algorithms that
promise outstanding efficiency in multiple aspects simultaneously.

Minimal MapReduce Algorithms. Denote by S the set of input
objects for the underlying problem. Let n, the problem cardinality,
be the number of objects in S, and t be the number of machines
used in the system. Define m = n/t, namely, m is the number
of objects per machine when S is evenly distributed across the
machines. Consider an algorithm for solving a problem on S.
We say that the algorithm is minimal if it has all of the following
properties.

• Minimum footprint: at all times, each machine uses only
O(m) space of storage.

• Bounded net-traffic: in each round, every machine sends
and receives at most O(m) words of information over the
network.

• Constant round: the algorithm must terminate after a
constant number of rounds.

• Optimal computation: every machine performs only
O(Tseq/t) amount of computation in total (i.e., summing
over all rounds), where Tseq is the time needed to solve the
same problem on a single sequential machine. Namely, the
algorithm should achieve a speedup of t by using tmachines
in parallel.

It is fairly intuitive why minimal algorithms are appealing. First,
minimum footprint ensures that, each machine keeps O(1/t) of the

o

ℓ = 5

10 8 15 20 2

window sum = 55
window max = 20

window(o)

Figure 1: Sliding aggregates

dataset S at any moment. This effectively prevents partition skew,
where some machines are forced to handle considerably more than
m objects, as is a major cause of inefficiency in MapReduce [36].

Second, bounded net-traffic guarantees that, the shuffle phase of
each round transfers at most O(m · t) = O(n) words of network
traffic overall. The duration of the phase equals roughly the time
for a machine to send and receive O(m) words, because the data
transfers to/from different machines are in parallel. Furthermore,
this property is also useful when one wants to make an algorithm
stateless for the purpose of fault tolerance, as discussed in
Section 2.1.

The third property constant round is not new, as it has been
the goal of many previous MapReduce algorithms. Importantly,
this and the previous properties imply that there can be only O(n)
words of network traffic during the entire algorithm. Finally,
optimal computation echoes the very original motivation of
MapReduce to accomplish a computational task t times faster than
leveraging only one machine.

Contributions. The core of this work comprises of neat minimal
algorithms for two problems:

Sorting. The input is a set S of n objects drawn from an ordered
domain. When the algorithm terminates, all the objects must
have been distributed across the t machines in a sorted fashion.
That is, we can order the machines from 1 to t such that all
objects in machine i precede those in machine j for all 1 ≤ i <
j ≤ t.

Sliding Aggregation. The input includes

– a set S of n objects from an ordered domain, where every
object o ∈ S is associated with a numeric weight

– an integer ℓ ≤ n

– and a distributive aggregate function AGG (e.g., sum, max,
min).

Denote by window(o) the set of ℓ largest objects in S not
exceeding o. The window aggregate of o is the result of
applying AGG to the weights of the objects in window(o). The
sliding aggregation problem is to report the window aggregate
of every object in S.
Figure 1 illustrates an example where ℓ = 5. Each black dot

represents an object in S. Some relevant weights are given on
top of the corresponding objects. For the object o as shown,
its window aggregate is 55 and 20 for AGG = sum and max,
respectively.

The significance of sorting is obvious: a minimal algorithm for
this problem leads to minimal algorithms for several fundamental
database problems, including ranking, group-by, semi-join and
skyline, as we will discuss in this paper.

The importance of the second problem probably deserves a bit
more explanation. Sliding aggregates are crucial in studying time
series. For example, consider a time series that records the Nasdaq
index in history, with one value per minute. It makes good senses
to examine moving statistics, that is, statistics aggregated from

a sliding window. For example, a 6-month average/maximum

with respect to a day equals the average/maximum Nasdaq index
in a 6-month period ending on that very day. The 6-month
averages/maximums of all days can be obtained by solving a
sliding aggregation problem (note that an average can be calculated
by dividing a window sum by the period length ℓ).

Sorting and sliding aggregation can both be settled inO(n log n)
time on a sequential computer. There has been progress in
developing MapReduce algorithms for sorting. The state of the
art is TeraSort [50], which won the Jim Gray’s benchmark contest
in 2009. TeraSort comes close to being minimal when a crucial
parameter is set appropriately. As will be clear later, the algorithm
requires manual tuning of the parameter, an improper choice of
which can incur severe performance penalty. Sliding aggregation
has also been studied in MapReduce by Beyer et al. [6]. However,
as explained shortly, the algorithm is far from being minimal, and
is efficient only when the window length ℓ is short – the authors of
[6] commented that this problem is “notoriously difficult”.

Technical Overview. This work was initialized by an attempt to
justify theoretically why TeraSort often achieves excellent sorting
time with only 2 rounds. In the first round, the algorithm extracts
a random sample set Ssamp of the input S, and then picks t − 1
sampled objects as the boundary objects. Conceptually, these
boundary objects divide S into t segments. In the second round,
each of the tmachines acquires all the objects in a distinct segment,
and sorts them. The size of Ssamp is the key to efficiency. If Ssamp

is too small, the boundary objects may be insufficiently scattered,
which can cause partition skew in the second round. Conversely,
an over-sized Ssamp entails expensive sampling overhead. In the
standard implementation of TeraSort, the sample size is left as a
parameter, although it always seems to admit a good choice that
gives outstanding performance [50].

In this paper, we provide rigorous explanation for the above
phenomenon. Our theoretical analysis clarifies how to set the size
of Ssamp to guarantee the minimality of TeraSort. In the meantime,
we also remedy a conceptual drawback of TeraSort. As elaborated
later, strictly speaking, this algorithm does not fit in the MapReduce
framework, because it requires that (besides network messages)
the machines should be able to communicate by reading/writing
a common (distributed) file. Once this is disabled, the algorithm
requires one more round. We present an elegant fix so that the
algorithm still terminates in 2 rounds even by strictly adhering to
MapReduce. Our findings of TeraSort have immediate practical
significance, given the essential role of sorting in a large number of
MapReduce programs.

Regarding sliding aggregation, the difficulty lies in that ℓ is
not a constant, but can be any value up to n. Intuitively, when
ℓ ≫ m, window(o) is so large that the objects in window(o)
cannot be found on one machine under the minimum footprint

constraint. Instead, window(o) would potentially span many
machines, making it essential to coordinate the searching of
machines judiciously to avoid a disastrous cost blowup. In fact,
this pitfall has captured the existing algorithm of [6], whose main
idea is to ensure that every sliding window be sent to a machine
for aggregation (various windows may go to different machines).
This suffers from prohibitive communication and processing cost
when the window length ℓ is long. Our algorithm, on the other
hand, achieves minimality with a novel idea of perfectly balancing
the input objects across the machines while still maintaining their
sorted order.

Outline. Section 2 reviews the previous work related to ours.
Section 3 analyzes TeraSort and modifies it into a minimal

algorithm, which Section 4 deploys to solve a set of fundamental
problems minimally. Section 5 gives our minimal algorithm for
the sliding aggregation problem. Section 6 evaluates the practical
efficiency of the proposed techniques with extensive experiments.
Finally, Section 7 concludes the paper with a summary of findings.

2. PRELIMINARY AND RELATED WORK
In Section 2.1, we expand the MapReduce introduction in

Section 1 with more details to pave the way for our discussion.
Section 2.2 reviews the existing studies on MapReduce, while
Section 2.3 points out the relevance of minimal algorithms to the
previous work.

2.1 MapReduce
As explained earlier, a MapReduce algorithm proceeds in rounds,

where each round has three phases: map, shuffle, and reduce. As
all machines execute a program in the same way, next we focus on
one specific machine M.

Map. In this phase, M generates a list of key-value pairs (k, v)
from its local storage. While the key k is usually numeric, the
value v can contain arbitrary information. As clarified shortly, the
pair (k, v) will be transmitted to another machine in the shuffle
phase, such that the recipient machine is determined solely by k.

Shuffle. Let L be the list of key-value pairs that all the machines
produced in the map phase. The shuffle phase distributes L
across the machines adhering to the constraint that, pairs with
the same key must be delivered to the same machine. That is, if
(k, v1), (k, v2), ..., (k, vx) are the pairs in L having a common key
k, all of them will arrive at an identical machine.

Reduce. M incorporates the key-value pairs received from the
previous phase into its local storage. Then, it carries out whatever
processing as needed on its local data. After all machines have
completed the reduce phase, the current round terminates.

Discussion. It is clear from the above that, the machines
communicate only in the shuffle phase, whereas in the other phases
each machine executes the algorithm sequentially, focusing on
its own storage. Overall, parallel computing happens mainly in
reduce. The major role of map and shuffle is to swap data among
the machines, so that computation can take place on different
combinations of objects.

Simplified View for Our Algorithms. Let us number the t
machines of the MapReduce system arbitrarily from 1 to t. In the
map phase, all our algorithms will adopt the convention that M
generates a key-value pair (k, v) if and only if it wants to send v to

machine k. In other words, the key field is explicitly the id of the
recipient machine.

This convention admits a conceptually simpler modeling. In
describing our algorithms, we will combine the map and shuffle
phases into one called map-shuffle. By saying succinctly that “in

the map-shuffle phase, M delivers v to machine k”, we mean that
M creates (k, v) in the map phase, which is then transmitted to
machine k in the shuffle phase. The equivalence also explains why
the simplification is only at the logical level, while physically all
our algorithms are still implemented in the standard MapReduce
paradigm.

Statelessness for Fault Tolerance. Some MapReduce
implementations (e.g., Hadoop) place the requirement that, at
the end of a round, each machine should send all the data in its
storage to a distributed file system (DFS), which in our context can

be understood as a “disk in the cloud” that guarantees consistent
storage (i.e., it never fails). The objective is to improve the
system’s robustness in the scenario where a machine collapses
during the algorithm’s execution. In such a case, the system can
replace this machine with another one, ask the new machine to load
the storage of the old machine at the end of the previous round,
and re-do the current round (where the machine failure occurred).
Such a system is called stateless because intuitively no machine is
responsible for remembering any state of the algorithm [58].

The four minimality conditions defined in Section 1 ensure
efficient enforcement of statelessness. In particular, minimum

footprint guarantees that, at each round, every machine sendsO(m)
words to the DFS, as is still consistent with bounded traffic.

2.2 Previous Research on MapReduce
The existing investigation on MapReduce can be coarsely

classified into two categories, which focus on improving the
internal working of the framework, and employing MapReduce to
solve concrete problems, respectively. In the sequel, we survey
each category separately.

Framework Implementation. Hadoop is perhaps the most
popular open-source implementation of MapReduce nowadays.
It was first described by Abouzeid et al. [1], and has been
improved significantly by the collective findings of many studies.
Specifically, Dittrich et al. [18] provided various user-defined
functions that can substantially reduce the running time of
MapReduce programs. Nykiel et al. [47], Elghandour and
Agoulnaga [19] achieved further performance gains by allowing
a subsequent round of an algorithm to re-use the outputs of
the previous rounds. Eltabakh et al. [20] and He et al. [27]
discussed the importance of keeping relevant data at the same
machine in order to reduce network traffic. Floratou et al.
[22] presented a column-based implementation and demonstrated
superior performance in certain environments. Shinnar et al. [53]
proposed to eliminate disk I/Os by fitting data in memory as much
as possible. Gufler et al. [26], Kolb et al. [33], and Kwon et al.
[36] designed methods to rectify skewness, i.e., imbalance in the
workload of different machines.

Progress has been made towards building an execution optimizer

that can automatically coordinate different components of the
system for the best overall efficiency. The approach of Herodotou
and Babu [28] is based on profiling the cost of a MapReduce
program. Jahani et al. [29] proposed a strategy that works by
analyzing the programming logic of MapReduce codes. Lim et
al. [40] focused on optimizing as a whole multiple MapReduce
programs that are interconnected by a variety of factors.

There has also been development of administration tools for
MapReduce systems. Lang and Patel [37] suggested strategies
for minimizing energy consumption. Morton et al. [46] devised
techniques for estimating the progress (in completion percentage)
of a MapReduce program. Khoussainova et al. [32] presented a
mechanism to facilitate the debugging of MapReduce programs.

MapReduce, which after all is a computing framework, lacks
many features of a database. One, in particular, is an expressive
language that allows users to describe queries supportable by
MapReduce. To fill this void, a number of languages have been
designed, together with the corresponding translators that convert
a query to a MapReduce program. Examples include SCOPE [9],
Pig [49], Dremel [43], HIVE [55], Jaql [6], Tenzing [10], and
SystemML [24].

Algorithms on MapReduce. Considerable work has been devoted
to processing joins on relational data. Blanas et al. [7] compared

the implementations of traditional join algorithms in MapReduce.
Afrati and Ullman [3] provided specialized algorithms for multiway
equi-joins. Lin et al. [41] tackled the same problem utilizing
column-based storage. Okcan and Riedewald [48] devised
algorithms for reporting the cartesian product of two tables. Zhang
et al. [62] discussed efficient processing of multiway theta-joins.

Regarding joins on non-relational data, Vernica et al. [59],
Metwally and Faloutsos [44] studied set-similarity join. Afrati et
al. [2] re-visited this problem and its variants under the constraint
that an algorithm must terminate in a single round. Lu et al. [42],
on the other hand, investigated k nearest neighbor join in Euclidean
space.

MapReduce has been proven useful for processing massive
graphs. Suri, Vassilvitskii [54], and Tsourakakis et al. [56]
considered triangle counting, Morales et al. [45] dealt with
b-matching, Bahmani et al. [5] focused on the discovery of densest

subgraphs, Karloff et al. [31] analyzed computing connected
components and spanning trees, while Lattanzi et al. [39] studied
maximal matching, vertex/edge cover, and minimum cut.

Data mining and statistical analysis are also popular topics
on MapReduce. Clustering was investigated by Das et al. [15],
Cordeiro et al. [13], and Ene et al. [21]. Classification and
regression were studied by Panda et al. [51]. Ghoting et al. [23]
developed an integrated toolkit to facilitate machine learning tasks.
Pansare et al. [52] and Laptev et al. [38] explained how to compute
aggregates over a gigantic file. Grover and Carey [25] focused on
extracting a set of samples satisfying a given predicate. Chen [11]
described techniques for supporting operations of data warehouses.

Among the other algorithmic studies on MapReduce,
Chierichetti et al. [12] attacked approximation versions of
the set cover problem. Wang et al. [60] described algorithms for
the simulation of real-world events. Bahmani et al. [4] proposed
methods for calculating personalized page ranks. Jestes et al. [30]
investigated the construction of wavelet histograms.

2.3 Relevance to Minimal Algorithms
Our study of minimal algorithms is orthogonal to the framework

implementation category as mentioned in Section 2.2. Even a
minimal algorithm can benefit from clever optimization at the
system level. On the other hand, a minimal algorithm may
considerably simplify optimization. For instance, as the minimal
requirements already guarantee excellent load balancing in storage,
computation, and communication, there would be little skewness to
deserve specialized optimization. As another example, the cost of
a minimal algorithm is by definition highly predictable, which is a
precious advantage appreciated by cost-based optimizers (e.g., [28,
40]).

This work belongs to the algorithms on MapReduce category.
However, besides dealing with different problems, we also differ
from the existing studies in that we emphasize on an algorithm’s
minimality. Remember that the difficulty of designing a minimal
algorithm lies in excelling in all the four aspects (see Section 1)
at the same time. Often times, it is easy to do well in only
certain aspects (e.g., constant rounds), while losing out in the rest.
Parallel algorithms on classic platforms are typically compared
under multiple metrics. We believe that MapReduce should not
be an exception.

From a theoretical perspective, minimal algorithms are
reminiscent of algorithms under the bulk synchronous parallel

(BSP)model [57] and coarse-grained multicomputer (CGM) model

[17]. Both models are well-studied branches of theoretical parallel
computing. Our algorithmic treatment, however, is system oriented,
i.e., easy to implement, while offering excellent performance in

practice. In contrast, theoretical solutions in BSP/CGM are often
rather involved, and usually carry large hidden constants in their
complexities, not to mention that they are yet to be migrated to
MapReduce. It is worth mentioning that there has been work on
extending the MapReduce framework to enhance its power so as to
solve difficult problems efficiently. We refer the interested readers
to the recent work of [34].

3. SORTING
In the sorting problem, the input is a set S of n objects from an

ordered domain. For simplicity, we assume that objects are real
values because our discussion easily generalizes to other ordered
domains. Denote by M1, ...,Mt the machines in the MapReduce
system. Initially, S is distributed across these machines, each
storing O(m) objects where m = n/t. At the end of sorting, all
objects inMi must precede those inMj for any 1 ≤ i < j ≤ t.

3.1 TeraSort
Parameterized by ρ ∈ (0, 1], TeraSort [50] runs as follows:

Round 1. Map-shuffle(ρ)

Every Mi (1 ≤ i ≤ t) samples each object from its local
storage with probability ρ independently. It sends all the
sampled objects toM1.

Reduce (only onM1)

1. Let Ssamp be the set of samples received by M1, and s =
|Ssamp |.

2. Sort Ssamp , and pick b1, ..., bt−1 where bi is the i⌈s/t⌉-th
smallest object in Ssamp , for 1 ≤ i ≤ t − 1. Each bi is a
boundary object.

Round 2. Map-shuffle (assumption: b1, ..., bt−1 have been sent to
all machines)

Every Mi sends the objects in (bj−1, bj] from its local
storage to Mj , for each 1 ≤ j ≤ t, where b0 = −∞ and
bt = ∞ are dummy boundary objects.

Reduce:

EveryMi sorts the objects received in the previous phase.

For convenience, the above description sometimes asks a
machine M to send data to itself. Needless to say, such data
“transfer” occurs internally in M, with no network transmission.
Also note the assumption at the map-shuffle phase of Round 2,
which we call the broadcast assumption, and will deal with later
in Section 3.3.

In [50], ρ was left as an open parameter. Next, we analyze the
setting of this value to make TeraSort a minimal algorithm.

3.2 Choice of ρ
Define Si = S ∩(bi−1, bi], for 1 ≤ i ≤ t. In Round 2, all the

objects in Si are gathered by Mi, which sorts them in the reduce
phase. For TeraSort to be minimal, it must hold:

P1. s = O(m).
P2. |Si| = O(m) for all 1 ≤ i ≤ t.

Specifically, P1 is because M1 receives O(s) objects over the
network in the map-shuffle phase of Round 1, which has to be
O(m) to satisfy bounded net-traffic (see Section 1). P2 is because

Mi must receive and storeO(|Si|) words in Round 2, which needs
to be O(m) to qualify bounded net-traffic and minimum footprint.

We now establish an important fact about TeraSort:

THEOREM 1. When m ≥ t ln(nt), P1 and P2 hold

simultaneously with probability at least 1 − O(1
n
) by setting ρ =

1
m

ln(nt).

PROOF. We will consider t ≥ 9 because otherwise m = Ω(n),
in which case P1 and P2 hold trivially. Our proof is based on the
Chernoff bound1 and an interesting bucketing argument.

First, it is easy to see that E[s] = mρt = t ln(nt). A simple
application of Chernoff bound results in:

Pr[s ≥ 1.6 · t ln(nt)] ≤ exp(−0.12 · t ln(nt)) ≤ 1/n

where the last inequality used the fact that t ≥ 9. The above implies
that P1 can fail with probability at most 1/n. Next, we analyze P2

under the event s < 1.6t ln(nt) = O(m).
Imagine that S has been sorted in ascending order. We divide the

sorted list into ⌊t/8⌋ sub-lists as evenly as possible, and call each
sub-list a bucket. Each bucket has between 8n/t = 8m and 16m
objects. We observe that P2 holds if every bucket covers at least

one boundary object. To understand why, notice that under this
condition, no bucket can fall between two consecutive boundary
objects (counting also the dummy ones)2. Hence, every Si, 1 ≤
i ≤ t, can contain objects in at most 2 buckets, i.e., |Si| ≤ 32m =
O(m).

A bucket β definitely includes a boundary object if β covers
more than 1.6 ln(nt) > s/t samples (i.e., objects from Ssamp),
as a boundary object is taken every ⌈s/t⌉ consecutive samples. Let
|β| ≥ 8m be the number of objects in β. Define random variable
xj , 1 ≤ j ≤ |β|, to be 1 if the j-th object in β is sampled, and 0
otherwise. Define:

X =

|β|
∑

j=1

xj = |β ∩Ssamp |.

Clearly, E[X] ≥ 8mρ = 8 ln(nt). We have:

Pr[X ≤ 1.6 ln(nt)] = Pr[X ≤ (1− 4/5)8 ln(nt)]

≤ Pr[X ≤ (1− 4/5)E[X]]

(by Chernoff) ≤ exp

(

−16

25

E[X]

3

)

≤ exp

(

−16

25
· 8 ln(nt)

3

)

≤ exp(− ln(nt))

≤ 1/(nt).

We say that β fails if it covers no boundary object. The above
derivation shows that β fails with probability at most 1/(nt). As
there are at most t/8 buckets, the probability that at least one bucket
fails is at most 1/(8n). Hence, P2 can be violated with probability
at most 1/(8n) under the event s < 1.6t ln(nt), i.e., at most 9/8n
overall.

Therefore, P1 and P2 hold at the same time with probability at
least 1− 17/(8n).
1LetX1, ..., Xn be independent Bernoulli variables withPr[Xi =
1] = pi, for 1 ≤ i ≤ n. Set X =

∑n

i=1 Xi and µ = E[X] =
∑n

i=1 pi. The Chernoff bound states (i) for any 0 < α < 1,
Pr[X ≥ (1+α)µ] ≤ exp(−α2µ/3) whilePr[X ≤ (1−α)µ] ≤
exp(−α2µ/3), and (ii) Pr[X ≥ 6µ] ≤ 2−6µ .
2If there was one, the bucket would not be able to cover any
boundary object.

Discussion. For large n, the success probability 1 − O(1/n)
in Theorem 1 is so high that the failure probability O(1/n) is
negligible, i.e., P1 and P2 are almost never violated.

The condition aboutm in Theorem 1 is tight within a logarithmic
factor because m ≥ t is an implicit condition for TeraSort to work,
noticing that both the reduce phase of Round 1 and the map-shuffle
phase of Round 2 require a machine to store t−1 boundary objects.

In reality, typically m ≫ t, namely, the memory size of a
machine is significantly greater than the number of machines. More
specifically,m is at the order of at least 106 (this is using only a few
mega bytes per machine), while t is at the order of 104 or lower.
Therefore, m ≥ t ln(nt) is a (very) reasonable assumption, which
explains why TeraSort has excellent efficiency in practice.

Minimality. We now establish the minimality of TeraSort,
temporarily ignoring how to fulfill the broadcast assumption.
Properties P1 and P2 indicate that each machine needs to store
only O(m) objects at any time, consistent with minimum footprint.
Regarding the network cost, a machine M in each round sends
only objects that were already on M when the algorithm started.
Hence, M sends O(m) network data per round. Furthermore,M1

receives only O(m) objects by P1. Therefore, bounded-bandwidth

is fulfilled. Constant round is obviously satisfied. Finally, the
computation time of each machineMi (1 ≤ i ≤ t) is dominated by
the cost of sorting Si in Round 2, i.e., O(m logm) = O(n

t
log n)

by P2. As this is 1/t of the O(n log n) time of a sequential
algorithm, optimal computation is also achieved.

3.3 Removing the Broadcast Assumption
Before Round 2 of TeraSort, M1 needs to broadcast the

boundary objects b1, ..., bt−1 to the other machines. We have to be
careful because a naive solution would askM1 to sendO(t) words
to every other machine, and hence, incur O(t2) network traffic
overall. This not only requires one more round, but also violates
bounded net-traffic if t exceeds

√
m by a non-constant factor.

In [50], this issue was circumvented by assuming that all the
machines can access a distributed file system. In this scenario,M1

can simply write the boundary objects to a file on that system, after
which each Mi, 2 ≤ i ≤ t, gets them from the file. In other words,
a brute-force file accessing step is inserted between the two rounds.
This is allowed by the current Hadoop implementation (on which
TeraSort was based [50]).

Technically, however, the above approach destroys the elegance
of TeraSort because it requires that, besides sending key-value
pairs to each other, the machines should also communicate
via a distributed file. This implies that the machines are
not share-nothing because they are essentially sharing the file.
Furthermore, as far as this paper is concerned, the artifact is
inconsistent with the definition of minimal algorithms. As sorting
lingers in all the problems to be discussed later, we are motivated
to remove the artifact to keep our analytical framework clean.

We now provide an elegant remedy, which allows TeraSort to
still terminate in 2 rounds, and retain its minimality. The idea is to
give all machines a copy of Ssamp . Specifically, we modify Round
1 of TeraSort as:

Round 1. Map-shuffle(ρ)
After sampling as in TeraSort, each Mi sends its sampled
objects to all machines (not just toM1).

Reduce

Same as TeraSort but performed on all machines (not just on
M1).

Round 2 still proceeds as before. The correctness follows
from the fact that, in the reduce phase, every machine picks
boundary objects in exactly the same way from an identical Ssamp .
Therefore, all machines will obtain the same boundary objects, thus
eliminating the need of broadcasting. Henceforth, we will call the
modified algorithm pure TeraSort.

At first glance, the new map-shuffle phase of Round 1 may seem
to require a machine M to send out considerable data, because
every sample necessitates O(t) words of network traffic (i.e.,O(1)
to every other machine). However, as every object is sampled with
probability ρ = 1

m
ln(nt), the number of words sent byM is only

O(m · t ·ρ) = O(t ln(nt)) in expectation. The lemma below gives
a much stronger fact:

LEMMA 1. With probability at least 1− 1
n

, every machine sends

O(t ln(nt)) words over the network in Round 1 of pure TeraSort.

PROOF. Consider an arbitrary machineM. Let random variable
X be the number of objects sampled from M. Hence, E[X] =
mρ = ln(nt). A straightforward application of Chernoff bound
gives:

Pr[X ≥ 6 ln(nt)] ≤ 2−6 ln(nt) ≤ 1/(nt).

Hence, M sends more than O(t ln(nt)) words in Round 1 with
probability at most 1/(nt). By union bound, the probability that
this is true for all t machines is at least 1− 1/n.

Combining the above lemma with Theorem 1 and the minimality
analysis in Section 3.2, we can see that pure TeraSort is a minimal
algorithm with probability at least 1−O(1/n) whenm ≥ t ln(nt).

We close this section by pointing out that, the fix of TeraSort

is of mainly theoretical concerns. Its purpose is to convince the
reader that the broadcast assumption is not a technical “loose end”
in achieving minimality. In practice, TeraSort has nearly the same
performance as our pure version, at least on Hadoop where (as
mentioned before) the brute-force approach of TeraSort is well
supported.

4. BASIC MINIMAL ALGORITHMS IN

DATABASES
A minimal sorting algorithm also gives rise to minimal

algorithms for other database problems. We demonstrate so for
ranking, group-by, semi-join, and 2D skyline in this section. For all
these problems, our objective is to terminate in one more round

after sorting, in which a machine entails only O(t) words of
network traffic where t is the number of machines.

As before, each of the machines M1, ...,Mt is permitted O(m)
space of storage where m = n/t, and n is the problem cardinality.
In the rest of the paper, we will concentrate on m ≥ t ln(nt), i.e.,
the condition under which TeraSort is minimal (see Theorem 1).

4.1 Ranking and Skyline

Prefix Sum. Let S be a set of n objects from an ordered domain,
such that each object o ∈ S carries a real-valued weight w(o).
Define prefix (o, S), the prefix sum of o, to be the total weight of
the objects o′ ∈ S such that o′ < o. The prefix sum problem

is to report the prefix sums of all objects in S. The problem can
be settled in O(n log n) time on a sequential machine. Next, we
present an efficient MapReduce algorithm.

First, sort S with TeraSort. Let Si be the set of objects on
machine Mi after sorting, for 1 ≤ i ≤ t. We solve the prefix
sum problem in another round:

Map-shuffle (on eachMi, 1 ≤ i ≤ t)

Mi sends Wi =
∑

o∈Si
w(o) toMi+1, ...,Mt.

Reduce (on eachMi):

1. Vi =
∑

j≤i−1 Wj .

2. Obtain prefix (o, Si) for o ∈ Si by solving the prefix sum
problem on Si locally.

3. prefix (o, S) = Vi + prefix (o, Si) for each o ∈ Si.

In the above map-shuffle phase, every machine sends and
receives exactly t − 1 values in total: precisely, Mi (1 ≤ i ≤ t)
sends t − i and receives i − 1 values. This satisfies bounded

net-traffic because t ≤ m. Furthermore, the reduce phase takes
O(m) = O(n/t) time, by leveraging the sorted order of Si.
Omitting the other trivial details, we conclude that our prefix sum
algorithm is minimal.

Prefix Min. The prefix min problem is almost the same as
prefix sum, except that prefix (o, S) is defined as the prefix min

of o, which is the minimum weight of the objects o′ ∈ S
such that o′ < o. This problem can also be settled by the
above algorithm minimally with three simple changes: redefine
(i) Wi = mino∈Si

w(o) in the map-shuffle phase, (ii-iii) Vi =
minj≤i−1 Wj at Line 1 of the reduce phase, and prefix (o, S) =
min{Vi, prefix (o, Si)} at Line 3.

Ranking. Let S be a set of objects from an ordered domain. The
ranking problem reports the rank of each object o ∈ S, which
equals |{o′ ∈ S | o′ ≤ o}|; in other words, the smallest object
has rank 1, the second smallest rank 2, etc. This can be solved as
a special prefix sum problem where all objects have weight 1 (i.e.,
prefix count).

Skyline. Let xp (yp) be the x- (y-) coordinate of a 2D point p. A
point p dominates another p′ if xp ≤ xp′ and yp ≤ yp′ . For a set
P of n 2D points, the skyline is the set of points p ∈ P such that p
is not dominated by any other point in P . The skyline problem [8]
is to report the skyline of P , and admits a sequential algorithm of
O(n log n) time [35].

The problem is essentially prefix min in disguise. Specifically,
let S = {xp | p ∈ P} where xp carries a “weight” yp. Define
the prefix min of xp as the minimum “weight” of the values in S
preceding3 xp. It is rudimentary to show that p is in the skyline
of P , if and only if the prefix min of xp is strictly greater than yp.
Therefore, our prefix min algorithm also settles the skyline problem
minimally.

4.2 Group By
Let S be a set of n objects, where each object o ∈ S carries a key

k(o) and a weight w(o), both of which are real values. A group G
is a maximal set of objects with the same key. The aggregate of G
is the result of applying a distributive4 aggregate function AGG to
the weights of the objects in G. The group-by problem is to report
the aggregates of all groups. It is easy to do so in O(n log n) time
on a sequential machine. Next, we discuss MapReduce, assuming
for simplicity AGG = sum because it is straightforward to generalize
the discussion to other AGG.

3Precisely, given points p and p′, xp precedes xp′ if (i) xp < xp′

or (ii) xp = xp′ but yp < yp′ .
4An aggregate function AGG is distributive on a set S if AGG(S)
can be obtained in constant time from AGG(S1) and AGG(S2),
where S1 and S2 form a partition of S, i.e., S1 ∪ S2 = S and
S1 ∩S2 = ∅.

The main issue is to handle large groups that do not fit in one
machine. Our algorithm starts by sorting the objects by keys,
breaking ties by ids. Consider an arbitrary machineM after sorting.
If a groupG is now completely inM, its aggregate can be obtained
locally in M. Motivated by this, let kmin(M) and kmax (M) be
the smallest and largest keys on M currently. Clearly, groups of
keys k where kmin (M) < k < kmax (M) are entirely stored in
M, which can obtain their aggregates during sorting, and remove
them from further consideration.

Each machineM has at most 2 groups remaining, i.e., with keys
kmin (M) and kmax (M), respectively. Hence, there are at most 2t
such groups on all machines. To handle them, we ask each machine
to send at most 4 values toM1 (i.e., to just a single machine). The
following elaborates how:

Map-shuffle (on eachMi, 1 ≤ i ≤ t):

1. Obtain the total weightWmin(Mi) of group kmin(Mi), i.e.,
by considering only objects inMi.

2. Send pair (kmin(Mi),Wmin(Mi)) toM1.

3. If kmin (Mi) 6= kmax (Mi), send pair (kmax (Mi),
Wmax (Mi)) to M1, where the definition of kmax (Mi) is
similar to kmin (Mi).

Reduce (only onM1):

Let (k1, w1), ..., (kx, wx) be the pairs received in the
previous phase where x is some value between t and 2t. For
each group whose key k is in one of the x pairs, output its
final aggregate

∑

j|kj=k
wj .

The minimality of our group-by algorithm is easy to verify. It
suffices to point out that the reduce phase of the last round takes
O(t log t) = O(n

t
log n) time (since t ≤ m = n/t).

Categorical Keys. We have assumed that the key k(o) of an object
is numeric. This is in fact unnecessary because the key ordering
does not affect the correctness of group by. Hence, even if k(o)
is categorical, we can simply sort the keys alphabetically by their
binary representations.

Term Frequency. MapReduce is often introduced with the term

frequency problem. The input is a document D, which can be
regarded as a multi-set of strings. The goal is to report, for
every distinct string s ∈ D, the number of occurrences of s in
D. In their pioneering work, Dean and Ghemawat [16] gave an
algorithm which works by sending all occurrences of a string to an
identical machine. The algorithm is not minimal in the scenario
where a string has an exceedingly high frequency. Note, on the
other hand, that the term frequency problem is merely a group-by
problem with every distinct string representing a group. Hence, our
group-by algorithm provides a minimal alternative to counting term
frequencies.

4.3 Semi-Join
Let R and T be two sets of objects from the same domain. Each

object o in R or T carries a key k(o). The semi-join problem is
to report all the objects o ∈ R that have a match o′ ∈ T , i.e.,
k(o) = k(o′). The problem can be solved in O(n log n) time
sequentially, where n is the total number of objects in R ∪ T .

In MapReduce, we approach the problem in a way analogous to
how group-by was tackled. The difference is that, now objects with
the same key do not “collapse” into an aggregate; instead, we must

output all of them if their (common) key has a match in T . For this
reason, we will need to transfer more network data than group by,
as will be clear shortly, but still O(t) words per machine.

Define S = R ∪ T . We sort the objects of the mixed set S
by their keys across the t machines. Consider any machine M
after sorting. Let kmin(T,M) and kmax (T,M) be the smallest
and largest keys respectively, among the T -objects stored on M
(a T -object is an object from T). The semi-join problem can be
settled with an extra round:

Map-shuffle (on eachMi, 1 ≤ i ≤ t):

Send kmin(T,Mi) and kmax (T,Mi) to all machines.

Reduce (on eachMi):

1. Kborder = the set of keys received from the last round.

2. K(Mi) = the set of keys of the T -objects stored inMi.

3. For every R-object o stored in Mi, output it if k(o) ∈
K(Mi) ∪Kborder .

Every machine sends and receives 2t keys in the map-shuffle
phase. The reduce phase can be implemented in O(m+ t log t) =
O(n

t
log n) time, using the fact that the R-objects on Mi are

already sorted. The overall semi-join algorithm is minimal.

5. SLIDING AGGREGATION
This section is devoted to the sliding aggregation problem.

Recall that the input is: (i) a set S of n objects from an ordered
domain, (ii) an integer ℓ ≤ n, and (iii) a distributive aggregate
function AGG. We will focus on AGG = sum because extension to
other AGG is straightforward. Each object o ∈ S is associated
with a real-valued weight w(o). The window of o, denoted as
window(o), is the set of ℓ largest objects not exceeding o (see
Figure 1). The window sum of o equals

win-sum(o) =
∑

o′∈window(o)

w(o′)

The objective is to report win-sum(o) for all o ∈ S.

5.1 Sorting with Perfect Balance
Let us first tackle a variant of sorting which we call the perfect

sorting problem. The input is a set S of n objects from an ordered
domain. We want to distribute them among the t MapReduce
machines M1, ...,Mt such that Mi, 1 ≤ i ≤ t − 1, stores
exactly ⌈m⌉ objects, and Mt stores all the remaining objects,
where m = n/t. In the meantime, the sorted order must be
maintained, i.e., all objects on Mi precede those on Mj , for any
1 ≤ i < j ≤ t. We will assume that m is an integer; if not, simply
pad at most t− 1 dummy objects to make n a multiple of t.

The problem is in fact nothing but a small extension to ranking.
Our algorithm first invokes the ranking algorithm in Section 4.1 to
obtain the rank of each o ∈ S, denoted as r(o). Then, we finish in
one more round:

Map-shuffle (on eachMi, 1 ≤ i ≤ t):

For each object o currently on Mi, send it to Mj where
j = ⌈r(o)/m⌉.

Reduce: No action is needed.

The above algorithm is clearly minimal.

5.2 Sliding Aggregate Computation
We now return to the sliding aggregation problem, assuming that

S has been perfectly sorted acrossM1, ...,Mt as described earlier.
The objective is to settle the problem in just one more round. Once
again, we assume that n is a multiple of t; if not, pad at most t− 1
dummy objects with zero weights.

By virtue of the perfect balancing, the objects on machine i form
a rank range [(i−1)m+1, im], for 1 ≤ i ≤ t. Consider an object
o with window(o) = [r(o)−ℓ+1, r(o)], i.e., the range of ranks of
the objects in window(o). Clearly, window(o) intersects the rank
ranges of machines from α to β, where α = ⌈(r(o)−ℓ+1)/m⌉ to
β = ⌈r(o)/m⌉. If α = β, win-sum(o) can be calculated locally
by Mβ , so next we focus on α < β. Note that when α < β − 1,
window(o) spans the rank ranges of machines α+ 1, ..., β − 1.

Let Wi be the total weight of all the objects on Mi, 1 ≤ i ≤ t.
We will ensure that every machine knows W1, ...,Wt. Then, to
calculate win-sum(o) at Mβ , the only information Mβ does not

have locally is the objects on Mα enclosed in window(o). We
say that those objects are remotely relevant to Mβ . Objects from
machines α+1, ..., β−1 are not needed because their contributions
to win-sum(o) have been summarized byWα+1, ..., Wβ−1.

The lemma below points out a crucial fact.

LEMMA 2. Every object is remotely relevant to at most 2

machines.

PROOF. Consider a machine Mi for some i ∈ [1, t]. If a
machine Mj stores at least an object remotely relevant toMi, we
say thatMj is pertinent toMi.

Recall that the left endpoint of window(o) lies in machine α =
⌈(r(o) − ℓ + 1)/m⌉. When r(o) ∈ [(i − 1)m + 1, im], i.e., the
rank range of Mi, it holds that

⌈

(i− 1)m+ 1− ℓ+ 1

m

⌉

≤ α ≤
⌈

im− ℓ+ 1

m

⌉

⇒

(i− 1)−
⌊

ℓ− 1

m

⌋

≤ α ≤ i−
⌊

ℓ− 1

m

⌋

(1)

where the last step used the fact that ⌈x − y⌉ = x − ⌊y⌋ for any
integer x and real value y.

There are two useful observations. First,integer α has only two
choices satisfying (1), namely, at most 2 machines are pertinent to
Mi. Second, as i grows by 1, the two permissible values of α both
increase by 1. This means that each machine can be pertinent to at
most 2 machines, thus completing the proof.

COROLLARY 1. Objects in Mi, 1 ≤ i ≤ t, can be remotely

relevant only to

– machine i+ 1, if ℓ ≤ m

– machines i+⌊(ℓ−1)/m⌋ and i+1+⌊(ℓ−1)/m⌋, otherwise.

In the above, if a machine id exceeds m, ignore it.

PROOF. Directly from (1).

We are now ready to explain how to solve the sliding aggregation
problem in one round:

Map-shuffle (on eachMi, 1 ≤ i ≤ t):

1. SendWi to all machines.

2. Send all the objects in Mi to one or two machines as
instructed by Corollary 1.

Reduce (on eachMi):

For each object o already inMi after perfect sorting:

1. α = ⌈(r(o)− ℓ+ 1)/m⌉

2. w1 = the total weight of the objects in Mα that fall in
window(o) (if α < i, such objects were received in the last
phase).

3. w2 =
∑i−1

j=α+1 Wj .

4. If α = i, set w3 = 0; otherwise, w3 is the total weight of the
objects inMi that fall in window(o).

5. win-sum(o) = w1 + w2 + w3.

We now analyze the algorithm’s minimality. It is clear that
every machine sends and receives O(t + m) = O(m) words
of data over the network in the map-shuffle phase. Hence, each
machine requires only O(m) storage. It remains to prove that the
reduce phase terminates in O(n

t
log n) time. We create a range

sum structure5 respectively on: (i) the local objects in Mi, (ii) the
objects received from (at most) two machines in the map-reduce
phase, and (iii) the set {W1, ...,Wt}. These structures can be built
in O(m logm) time, and allow us to compute w1, w2, w3 in Lines
2-4 using O(logm) time. It follows that the reduce phase takes
O(m logm) = O(n

t
logm) time.

6. EXPERIMENTS
This section experimentally evaluates our algorithms on an

in-house cluster with one master and 56 slave nodes, each of which
has four Intel Xeon 2.4GHz CPUs and 24GB RAM.We implement
all algorithms on Hadoop (version 1.0), and allocate 4GB of RAM
to the Java Virtual Machine on each node (i.e., each node can use
up to 4GB of memory for a Hadoop task). Table 1 lists the Hadoop
parameters in our experiments.

Parameter Name Value

fs.block.size 128MB
io.sort.mb 512MB

io.sort.record.percentage 0.1
io.sort.spill.percentage 0.9

io.sort.factor 300
dfs.replication 3

Table 1: Parameters of Hadoop

We deploy two real datasets named LIDAR6 and PageView7,
respectively. 514GB in size, LIDAR contains 7.35 billion records,
each of which is a 3D point representing a location in North
Carolina. We use LIDAR for experiments on sorting, skyline,
group by, and semi-join. PageView is 332GB in size and contains
11.8 billion tuples. Each tuple corresponds to a page on Wikipedia,
and records the number of times the page was viewed in a certain
hour during Jan-Sep 2012. We impose a total order on all the tuples
by their timestamps, and use the data for experiments on sliding
aggregation. In addition, we also generate synthetic datasets to

5Let S be a set of n real values, each associated with a numeric
weight. Given an interval I , a range sum query returns the total
weight of the values in S ∩ I . A simple augmented binary tree [14]
uses O(n) space, answers a query in O(log n) time, and can be
built in O(n log n) time.
6Http://www.ncfloodmaps.com.
7Http://dumps.wikimedia.org/other/pagecounts-raw.

HSPure TeraSort

0

2000

4000

6000

8000

10000

100 200 300 400 500

dataset size (GB)

total processing time (sec)

0

20

40

60

80

100

100 200 300 400 500

dataset size (GB)

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 2: Pure TeraSort vs. HS on LIDAR.

HSPure TeraSort

0

5000

10000

15000

20000

100 200 300 400 500

dataset size (GB)

total processing time (sec)

0

40

80

120

160

100 200 300 400 500

dataset size (GB)

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 3: Pure TeraSort vs. HS on modified LIDAR

0

1000

2000

3000

6-1 1 61 62 63

sample set size (× t ln(nt))

total processing time (sec)

0

5

10

15

20

6-1 1 61 62 63

sample set size (× t ln(nt))

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 4: Effects of sample size on pure TeraSort

investigate the effect of data distribution on the performance of
different algorithms. In each experiment, we run an algorithm 5
times and report the average reading.

6.1 Sorting
The first set of experiments compares pure TeraSort (proposed

in Section 3.3) with Hadoop’s default sorting algorithm, referred to
as HS henceforth.

Given a dataset of k blocks long in the Hadoop Distributed File
System (HDFS), HS first asks the master node to gather the first
⌈105/k⌉ records of each block into a set S – call them the pilot

records. Next, the master identifies tslave − 1 boundary points
b1, b2, . . . , btslave−1, where bi is the i⌈105/tslave⌉-th smallest
record in S, and tslave is the number of slave nodes. The mater
then launches a one-round algorithm where all records in (bi−1, bi]
are sent to the i-th (i ∈ [1, tslave]) slave for sorting, where b0 = 0
and bt = ∞ are dummies. Clearly, the efficiency of HS relies
on the distribution of the pilot records. If their distribution is
the same as the whole dataset, each slave sorts approximately an
equal number of tuples. Otherwise, certain slaves may receive an
excessive amount of data and thus become the bottleneck of sorting.

minimal-Sky MR-SFS

0

5000

10000

15000

20000

100 200 300 400 500

dataset size (GB)

total processing time (sec)

0

10

20

30

40

50

100 200 300 400 500

dataset size (GB)

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 5: Minimal-Sky vs. MR-SFS on LIDAR

We implement pure TeraSort in a way similar to HS with the
difference in how pilot records are picked. Specifically, the master
now forms S by randomly sampling t ln t records from the dataset.
Figure 2a illustrates the running time of HS and pure TeraSort in
sorting LIDAR by its first dimension, when the dataset size varies
from 51.4GB to 514GB (a dataset with size smaller than 514GB
consists of random tuples from LIDAR, preserving their original
ordering.) Pure TeraSort consistently outperforms HS, with the
difference becoming more significant as the size grows. To reveal
the reason behind, we plot in Figure 2b the maximum data amount
on a slave node in the above experiments. Evidently, while pure

TeraSort distributes the data evenly to the slaves, HS sends a large
portion to a single slave, thus incurring enormous overhead.

To further demonstrate the deficiency of HS, Figure 3a shows
the time taken by pure TeraSort and HS to sort a modified version
of LIDAR, where tuples with small first coordinates are put to
the beginning of each block. The efficiency of HS deteriorates
dramatically, as shown in Figure 3b, confirming the intuition that
its cost is highly sensitive to the distribution of pilot records. In
contrast, the performance of pure TeraSort is not affected, owning
to the fact that its sampling procedure is not sensitive to original
data ordering at all.

To demonstrate the effect of sample size, Figure 4a shows the
cost of pure Terasort on LIDAR as the number of pilot tuples
changes. The result suggests that t ln(nt) is a nice choice. When
the sample size decreases, pure Terasort is slower due to the
increased unbalance in the distribution of data across the slaves,
as can be observed from Figure 4b. On the opposite side, when
the sample size grows, the running time also lengthens because
sampling itself is more expensive.

6.2 Skyline
The second set of experiments evaluates our skyline algorithm,

referred to as minimal-Sky, against MR-SFS [61], a recently
developed method for skyline computation in MapReduce. We use
exactly the implementation of MR-SFS from its authors. Figure 5a
compares the cost of minimal-Sky and MR-SFS in finding the
skyline on the first two dimensions of LIDAR, as the dataset
size increases. Minimal-Sky significantly outperforms MR-SFS in
all cases. The reason is that MR-SFS, which is not a minimal
algorithm, may force a slave node to process an excessive amount
of data, as shown in Figure 5b.

Figure 6 illustrates the performance of minimal-Sky and MR-SFS

on three synthetic datasets that follow a correlated, anti-correlated,
and independent distribution, respectively. 120GB in size, each
dataset contains 2.5 billion 2D points generated by a publicly
available toolkit8. Clearly, MR-SFS is rather sensitive to the dataset

8Http://pgfoundry.org/projects/randdataset.

minimal-Sky MR-SFS

0

2000

4000

6000

8000

10000

12000

anti-correlated
independent

correlated

data distribution

total processing time (sec)

0
5
10
15
20
25
30
35
40

anti-correlated
independent

correlated

data distribution

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 6: Minimal-Sky vs. MR-SFS on synthetic data

minimal-GB base-GB

0

2000

4000

6000

8000

10000

100 200 300 400 500

dataset size (GB)

total processing time (sec)

0

10

20

30

40

50

100 200 300 400 500

dataset size (GB)

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 7: Minimal-GB vs. base-GB on LIDAR

distribution, whereas the efficiency of Minimal-Sky is not affected
at all.

6.3 Group By
Next, we compare our group by algorithm, referred to as

minimal-GB, with a baseline approach called base-GB. Suppose
that we are to group a dataset D by an attribute A. Base-GB first
invokes a map phase where each tuple t ∈ D spawns a key-value
pair (t[A], t), where t[A] is the value of t onA. Then, all key-value
pairs are distributed to the slave nodes using Hadoop’s Partitioner

program. Finally, every slave aggregates the key-value pairs it
receives to compute the group by results.

Figure 7a presents the cost of minimal-GB and base-GB in
grouping LIDAR by its first attribute. Regardless of the dataset size,
minimal-GB is considerably faster than base-GB which, as shown
in Figure 7b, is because Hadoop’s Partitioner does not distribute
data across the slaves as evenly as minimal-GB.

To evaluate the effect of dataset distribution, we generate 2D
synthetic datasets where the first dimension (i) has an integer
domain [1, 2.5 × 108], and (ii) follows a Zipf distribution with
a skew factor between 0 and 1.9 Each dataset contains 5 billion
tuples and is 90GB in size. Figure 8 illustrates the performance
of minimal-GB and base-GB on grouping the synthetic datasets
by their first attributes. The efficiency of base-GB deteriorates as
the skew factor increases. This is because base-GB always sends
tuples with an identical group-by key to the same slave node. When
the group-by keys are skewed, the data distribution is very uneven
on the slaves, leading to severe performance penalty. In contrast,
minimal-GB is completely insensitive to data skewness.

6.4 Semi-Join

9Data are more skewed when the skew factor is higher. In
particular, when the factor is 0, the distribution degenerates into
uniformity.

minimal-GB base-GB

0

2000

4000

6000

8000

10000

0 0.2 0.4 0.6 0.8 1

skew factor

total processing time (sec)

0

5

10

15

0 0.2 0.4 0.6 0.8 1

skew factor

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 8: Minimal-GB vs. base-GB on synthetic data

PSSJminimal-SJ

0
100
200
300
400
500
600
700

10-3 10-2 10-1

referencing factor

total processing time (sec)

0

5

10

15

10-3 10-2 10-1

referencing factor

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 9: Minimal-SJ vs. PSSJ on various referencing factors

We now proceed to evaluate our semi-join algorithm, referred
to as minimal-SJ, with Per-Split Semi-Join (PSSJ) [7], which is
the best existing MapReduce semi-join algorithm. We adopt the
implementation of PSSJ that has been made available online at
sites.google.com/site/hadoopcs561. Following [7], we generate
synthetic tables T and R as follows. The attributes of T are A1

and A2, both of which have an integer domain of [1, 2.5 × 108].
T has 5 billion tuples whose A1 values follow a Zipf distribution
(some tuples may share an identical value). Their A2 values are
unimportant and arbitrarily decided. Similarly, R has 10 million
tuples with integer attributes A1 and A3 of domain [1, 2.5 × 108].
A fraction r of the tuples in R carry A1 values present in T , while
the other tuples have A1 values absent from T . We refer to r
as the referencing factor. Tuples’ A3 values are unimportant and
arbitrarily determined.

Figure 9 compares minimal-SJ and PSSJ under different
referencing factors, when the skew factor of T.A1 equals 0.4. In
all scenarios, Minimal-SJ beats PSSJ by a wide margin. Figure 10a
presents the running time of minimal-SJ and PSSJ as a function
of the skew factor of T.A1, setting the reference factor r to 0.1.
The efficiency of PSSJ degrades rapidly as the skew factor grows
which, as shown Figure 10b, is because PSSJ fails to distribute the
workload evenly among the slaves. Minimal-SJ is not affected by
skewness.

6.5 Sliding Aggregation
In the last set of experiments, we evaluate our sliding aggregation

algorithm, referred to as minimal-SA, against a baseline solution
referred to as Jaql, which corresponds to the algorithm proposed
in [6]. Suppose that we want to perform sliding aggregation over
a set S of objects using a window size l ≤ n. Jaql first sorts
S with our ranking algorithm (Section 4.1). It then maps each
record t ∈ S to l key-value pair (t1, t), ..., (tl, t), where t1, ..., tl
are the l largest objects not exceeding t. Then, Jaql distributes the
key-value pairs to the slaves by applying Hadoop’s Partitioner, and

PSSJminimal-SJ

0

200

400

600

800

0 0.2 0.4 0.6 0.8 1

skew factor

total processing time (sec)

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

skew factor

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 10: Minimal-SJ vs. PSSJ on various skew factors

minimal-SA Jaql Jaql-original

103

104

105

106

2 4 6 8 10

window length

total processing time (sec)

0

10

20

30

40

2 4 6 8 10

window length

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 11: Sliding aggregation on small window sizes

instructs each slave to aggregate the key-value pairs with the same
key. Besides our own implementation of Jaql, we also examine the
original implementation released by the authors of [6], henceforth
called Jaql-original.

Figure 11 demonstrates the performance of minimal-SA, Jaql,
and Jaql-original on the PageView dataset, varying l from 2 to 10.
Minimal-SA is superior to Jaql in all settings, except for a single
case l = 2. In addition, minimal-SA is not affected by l, while
Jaql deteriorates linearly. Jaql-original is slower than the other two
methods by a factor of over an order of magnitude. It is not included
in Figure 11b because it needs to keep almost the entire database
on a single machine, which becomes the system’s bottleneck.

Focusing on large l, Figure 12 plots the running time of
minimal-SA when l increases from 105 to 109. We omit the
Jaql implementations because they are prohibitively expensive, and
worse than minimal-SA by more than a thousand times.

7. CONCLUSIONS
MapReduce has grown into an extremely popular architecture

for large-scaled parallel computation. Even though there have been
a great variety of algorithms developed for MapReduce, few are
able to achieve the ideal goal of parallelization: balanced workload
across the participating machines, and a speedup over a sequential
algorithm linear to the number of machines. In particular, currently
there is a void at the conceptual level as to what it means to be a
“good” MapReduce algorithm.

We believe that a major contribution of this paper is to fill the
aforementioned void with the new notion of “minimal MapReduce
algorithm”. This notion puts together for the first time four
strong criteria towards (at least asymptotically) the highest parallel
degree. At first glance, the conditions of minimality appear to be
fairly stringent. Nonetheless, we prove the existence of simple
yet elegant algorithms that minimally settle an array of important
database problems. Our extensive experimentation demonstrates

0
1000
2000
3000
4000
5000
6000

105 106 107 108 109

window length

total processing time (sec)

0

1

2

3

4

5

105 106 107 108 109

window length

maximum local data (GB)

(a) Total time (b) Max. data volume on a slave

Figure 12: Minimal-SA on large window sizes

the immediate benefit brought forward by minimality that, the
proposed algorithms significantly improve the existing state of the
art for all the problems tackled.

ACKNOWLEDGEMENTS

Yufei Tao was supported in part by (i) projects GRF 4166/10,
4165/11, and 4164/12 from HKRGC, and (ii) the WCU (World
Class University) program under the National Research Foundation
of Korea, and funded by the Ministry of Education, Science and
Technology of Korea (Project No: R31-30007). Wenqing Lin
and Xiaokui Xiao were supported by the Nanyang Technological
University under SUG Grant M58020016, and by the Agency for
Science, Technology, and Research (Singapore) under SERCGrant
102-158-0074. The authors would like to thank the anonymous
reviewers for their insightful comments.

8. REFERENCES
[1] A. Abouzeid, K. Bajda-Pawlikowski, D. J. Abadi, A. Rasin, and

A. Silberschatz. Hadoopdb: An architectural hybrid of mapreduce
and dbms technologies for analytical workloads. PVLDB,
2(1):922–933, 2009.

[2] F. N. Afrati, A. D. Sarma, D. Menestrina, A. G. Parameswaran, and
J. D. Ullman. Fuzzy joins using mapreduce. In ICDE, pages 498–509,
2012.

[3] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a
map-reduce environment. TKDE, 23(9):1282–1298, 2011.

[4] B. Bahmani, K. Chakrabarti, and D. Xin. Fast personalized pagerank
on mapreduce. In SIGMOD, pages 973–984, 2011.

[5] B. Bahmani, R. Kumar, and S. Vassilvitskii. Densest subgraph in
streaming and mapreduce. PVLDB, 5(5):454–465, 2012.

[6] K. S. Beyer, V. Ercegovac, R. Gemulla, A. Balmin, M. Y. Eltabakh,
C.-C. Kanne, F. Özcan, and E. J. Shekita. Jaql: A scripting language
for large scale semistructured data analysis. PVLDB,
4(12):1272–1283, 2011.

[7] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and
Y. Tian. A comparison of join algorithms for log processing in
mapreduce. In SIGMOD, pages 975–986, 2010.

[8] S. Borzsonyi, D. Kossmann, and K. Stocker. The skyline operator. In
ICDE, pages 421–430, 2001.

[9] R. Chaiken, B. Jenkins, P. ake Larson, B. Ramsey, D. Shakib,
S. Weaver, and J. Zhou. Scope: easy and efficient parallel processing
of massive data sets. PVLDB, 1(2):1265–1276, 2008.

[10] B. Chattopadhyay, L. Lin, W. Liu, S. Mittal, P. Aragonda,
V. Lychagina, Y. Kwon, and M. Wong. Tenzing a sql implementation
on the mapreduce framework. PVLDB, 4(12):1318–1327, 2011.

[11] S. Chen. Cheetah: A high performance, custom data warehouse on
top of mapreduce. PVLDB, 3(2):1459–1468, 2010.

[12] F. Chierichetti, R. Kumar, and A. Tomkins. Max-cover in
map-reduce. In WWW, pages 231–240, 2010.

[13] R. L. F. Cordeiro, C. T. Jr., A. J. M. Traina, J. Lopez, U. Kang, and
C. Faloutsos. Clustering very large multi-dimensional datasets with
mapreduce. In SIGKDD, pages 690–698, 2011.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press, 2001.

[15] A. Das, M. Datar, A. Garg, and S. Rajaram. Google news
personalization: scalable online collaborative filtering. In WWW,
pages 271–280, 2007.

[16] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on
large clusters. In OSDI, pages 137–150, 2004.

[17] F. K. H. A. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel
geometric algorithms for coarse grained multicomputers. In SoCG,
pages 298–307, 1993.

[18] J. Dittrich, J.-A. Quiane-Ruiz, A. Jindal, Y. Kargin, V. Setty, and
J. Schad. Hadoop++: Making a yellow elephant run like a cheetah
(without it even noticing). PVLDB, 3(1):518–529, 2010.

[19] I. Elghandour and A. Aboulnaga. Restore: Reusing results of
mapreduce jobs. PVLDB, 5(6):586–597, 2012.

[20] M. Y. Eltabakh, Y. Tian, F. Ozcan, R. Gemulla, A. Krettek, and
J. McPherson. Cohadoop: Flexible data placement and its
exploitation in hadoop. PVLDB, 4(9):575–585, 2011.

[21] A. Ene, S. Im, and B. Moseley. Fast clustering using mapreduce. In
SIGKDD, pages 681–689, 2011.

[22] A. Floratou, J. M. Patel, E. J. Shekita, and S. Tata. Column-oriented
storage techniques for mapreduce. PVLDB, 4(7):419–429, 2011.

[23] A. Ghoting, P. Kambadur, E. P. D. Pednault, and R. Kannan. Nimble:
a toolkit for the implementation of parallel data mining and machine
learning algorithms on mapreduce. In SIGKDD, pages 334–342,
2011.

[24] A. Ghoting, R. Krishnamurthy, E. P. D. Pednault, B. Reinwald,
V. Sindhwani, S. Tatikonda, Y. Tian, and S. Vaithyanathan. Systemml:
Declarative machine learning on mapreduce. In ICDE, pages
231–242, 2011.

[25] R. Grover and M. J. Carey. Extending map-reduce for efficient
predicate-based sampling. In ICDE, pages 486–497, 2012.

[26] B. Gufler, N. Augsten, A. Reiser, and A. Kemper. Load balancing in
mapreduce based on scalable cardinality estimates. In ICDE, pages
522–533, 2012.

[27] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu. Rcfile:
A fast and space-efficient data placement structure in
mapreduce-based warehouse systems. In ICDE, pages 1199–1208,
2011.

[28] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of mapreduce programs. PVLDB,
4(11):1111–1122, 2011.

[29] E. Jahani, M. J. Cafarella, and C. Re. Automatic optimization for
mapreduce programs. PVLDB, 4(6):385–396, 2011.

[30] J. Jestes, F. Li, and K. Yi. Building wavelet histograms on large data
in mapreduce. In PVLDB, pages 617–620, 2012.

[31] H. J. Karloff, S. Suri, and S. Vassilvitskii. A model of computation
for mapreduce. In SODA, pages 938–948, 2010.

[32] N. Khoussainova, M. Balazinska, and D. Suciu. Perfxplain:
Debugging mapreduce job performance. PVLDB, 5(7):598–609,
2012.

[33] L. Kolb, A. Thor, and E. Rahm. Load balancing for mapreduce-based
entity resolution. In ICDE, pages 618–629, 2012.

[34] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In
PODS, pages 223–234, 2011.

[35] H. T. Kung, F. Luccio, and F. P. Preparata. On finding the maxima of
a set of vectors. JACM, 22(4):469–476, 1975.

[36] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. Skewtune:
mitigating skew in mapreduce applications. In SIGMOD, pages
25–36, 2012.

[37] W. Lang and J. M. Patel. Energy management for mapreduce clusters.
PVLDB, 3(1):129–139, 2010.

[38] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for
advanced analytics on mapreduce. PVLDB, 5(10):1028–1039, 2012.

[39] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii. Filtering: a
method for solving graph problems in mapreduce. In SPAA, pages
85–94, 2011.

[40] H. Lim, H. Herodotou, and S. Babu. Stubby: A transformation-based
optimizer for mapreduce workflows. PVLDB, 5(11):1196–1207,
2012.

[41] Y. Lin, D. Agrawal, C. Chen, B. C. Ooi, and S. Wu. Llama:
leveraging columnar storage for scalable join processing in the
mapreduce framework. In SIGMOD, pages 961–972, 2011.

[42] W. Lu, Y. Shen, S. Chen, and B. C. Ooi. Efficient processing of k
nearest neighbor joins using mapreduce. PVLDB, 5(10):1016–1027,
2012.

[43] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis. Dremel: Interactive analysis of
web-scale datasets. PVLDB, 3(1):330–339, 2010.

[44] A. Metwally and C. Faloutsos. V-smart-join: A scalable mapreduce
framework for all-pair similarity joins of multisets and vectors.
PVLDB, 5(8):704–715, 2012.

[45] G. D. F. Morales, A. Gionis, and M. Sozio. Social content matching
in mapreduce. PVLDB, 4(7):460–469, 2011.

[46] K. Morton, M. Balazinska, and D. Grossman. Paratimer: a progress
indicator for mapreduce dags. In SIGMOD, pages 507–518, 2010.

[47] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas.
Mrshare: Sharing across multiple queries in mapreduce. PVLDB,
3(1):494–505, 2010.

[48] A. Okcan and M. Riedewald. Processing theta-joins using mapreduce.
In SIGMOD, pages 949–960, 2011.

[49] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins. Pig
latin: a not-so-foreign language for data processing. In SIGMOD,
pages 1099–1110, 2008.

[50] O. O’Malley. Terabyte sort on apache hadoop. Technical report,
Yahoo, 2008.

[51] B. Panda, J. Herbach, S. Basu, and R. J. Bayardo. Planet: Massively
parallel learning of tree ensembles with mapreduce. PVLDB,
2(2):1426–1437, 2009.

[52] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online
aggregation for large mapreduce jobs. PVLDB, 4(11):1135–1145,
2011.

[53] A. Shinnar, D. Cunningham, B. Herta, and V. A. Saraswat. M3r:
Increased performance for in-memory hadoop jobs. PVLDB,
5(12):1736–1747, 2012.

[54] S. Suri and S. Vassilvitskii. Counting triangles and the curse of the
last reducer. In WWW, pages 607–614, 2011.

[55] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, N. Zhang,
S. Anthony, H. Liu, and R. Murthy. Hive - a petabyte scale data
warehouse using hadoop. In ICDE, pages 996–1005, 2010.

[56] C. E. Tsourakakis, U. Kang, G. L. Miller, and C. Faloutsos. Doulion:
counting triangles in massive graphs with a coin. In SIGKDD, pages
837–846, 2009.

[57] L. G. Valiant. A bridging model for parallel computation. Commun.

ACM, 33(8):103–111, 1990.
[58] R. Vernica, A. Balmin, K. S. Beyer, and V. Ercegovac. Adaptive

mapreduce using situation-aware mappers. In EDBT, pages 420–431,
2012.

[59] R. Vernica, M. J. Carey, and C. Li. Efficient parallel set-similarity
joins using mapreduce. In SIGMOD, pages 495–506, 2010.

[60] G. Wang, M. A. V. Salles, B. Sowell, X. Wang, T. Cao, A. J. Demers,
J. Gehrke, and W. M. White. Behavioral simulations in mapreduce.
PVLDB, 3(1):952–963, 2010.

[61] B. Zhang, S. Zhou, and J. Guan. Adapting skyline computation to the
mapreduce framework: Algorithms and experiments. In DASFAA

Workshops, pages 403–414, 2011.
[62] X. Zhang, L. Chen, and M. Wang. Efficient multi-way theta-join

processing using mapreduce. PVLDB, 5(11):1184–1195, 2012.

