
Finding Maximum Degrees in Hidden Bipartite Graphs∗

Yufei Tao Cheng Sheng
Chinese University of Hong Kong
{taoyf, csheng}@cse.cuhk.edu.hk

Jianzhong Li
Harbin Institute of Technology

lijzh@hit.edu.cn

ABSTRACT
An (edge) hidden graphis a graph whose edges are not explicitly
given. Detecting the presence of an edge requires expensiveedge-
probingqueries. We consider thek most connected vertexproblem
on hidden bipartite graphs. Specifically, given a bipartitegraphG
with independent vertex setsB andW , the goal is to find thek
vertices inB with the largest degrees using the minimum number
of queries. This problem can be regarded as a top-k extension of a
semi-join, and is encountered in many applications in practice (e.g.,
top-k spatial joinwith arbitrarily complex join predicates).

If B andW haven andm vertices respectively, the number of
queries needed to solve the problem isnm in the worst case. This,
however, is a pessimistic estimate on how many queries are neces-
sary on practical data. In fact, on some easy inputs, the problem can
be efficiently settled with onlykm+n edges, which is significantly
lower thannm for k � n. The huge difference betweenkm + n
andnm makes it interesting to design anadaptivealgorithm that is
guaranteed to achieve the best possible performance on every input
G. We give such an algorithm, and prove that it isinstance opti-
mal among a broad class of solutions. This means that, foranyG,
our algorithm can perform more queries than the optimal solution
(which is currently unknown) by only a constant factor, which can
be shown to be at most 2. Extensive experiments demonstrate that,
in practice, the number of queries required by our techniqueis far
less thannm, and agrees with our theoretical findings very well.

ACM Categories & Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complexity]: Miscel-
laneous.

General Terms: Theory

Keywords: Maximum Degree, Bipartite Graph, Competitive Anal-
ysis, Instance Optimality

∗Yufei Tao and Cheng Sheng were supported by grants
GRF4161/07, GRF 4173/08, GRF4169/09 from HKRGC, and a
direct grant (2050395) from CUHK. Jianzhong Li was supported
by National Grant Fundamental Research 973 Program of China
(2006CB303000), and Key Program of National Natural Science
Foundation of China (60533110).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’10,June 6–11, 2010, Indianapolis, Indiana, USA.
Copyright 2010 ACM 978-1-4503-0032-2/10/06 ...$10.00.

1. INTRODUCTION
An (edge) hidden graphis a graph whose edges are not explicitly

available. Detecting the presence of an edge between two vertices
requires performing one, sometimes several, expensive operations,
each of which is called anedge-probing query. In recent years,
learning hidden graphs[18] has attracted considerable attention in
the theory community [4, 7, 11, 18]. The main objective of therele-
vant research is to find out whether the graph has a certainproperty,
by issuing the least number of edge-probing queries. The under-
neath rationale is that, learning only a property of the graph (e.g.,
whether it is bipartite) is easier than revealing the whole graph.
Therefore, the number of edges that need to be probed may be sig-
nificantly smaller than the total number of edges that may exist.

As reviewed in Section 2, the existing research on hidden graphs
is mostly motivated by biological and chemical applications. This
paper focuses on the database context. We consider thek most
connected vertex(kMCV) problem on hidden bipartite graphs.
Specifically, given a bipartite graphG between two setsB and
W of vertices, the objective is to find thek vertices inB having
the maximum degrees. In Figure 1, for example,B has vertices
{b1, b2, ..., b4}, andW is {w1, w2, ..., w5}; then, the 1MCV prob-
lem should returnb2. Unlike many graph problems, the novel fea-
ture ofkMCV is that the edges ofG areunknowninitially, such that
a costly edge-probing query is required to detect the presence of an
edge. The challenge is to solve the problem using the minimum
number of queries. The problem is encountered in many database
applications, some of which are discussed below.

b�
w� w� w� w� w�

b� b� b�
Figure 1: The 1MCV result is b2

1.1 Motivation
Application 1 (Semi-join aggregation with complex predicates).
ConsiderB andW as relational tables, and the edge-probing query
as a join condition betweenB andW . The result of thekMCV
problem is thek tuples inB that can be joined with the most tuples
in W , as described by the following pesudo-SQL statement:

SELECT b FROM B b, W w
WHERE [a join predicate aboutb andw]
GROUP BY b
HAVING count(∗) ≥ the size of thek-th largest group

Notice that, if we remove the GROUP-BY and HAVING clauses,

the statement becomes a standardsemi-join. Hence,kMCV can be
regarded asa top-k extension of a semi-join, which returns thek
tuples of tableB having the strongest joining power with respect
to another tableW . Such an extension is useful in many scenarios.
For example, suppose thatB is a list of hotels, andW is a list of
tour attractions. Setting an edge-probing query to check whether a
hotelb and an attractionw are within 1 mile, the above statement is
essentially atop-k spatial join[30], which finds thek hotels whose
1-mile vicinities cover the largest number of attractions.

The join predicate can be rather unfriendly to relational query
optimization. For example, the simple geometric conditiongiven
earlier (deciding whetherb andw are within 1 mile) is not well sup-
ported by a DBMS. This is especially true if the “1 mile" refers to
the road networkdistance, in which case evaluating the join pred-
icate may even need to perform ashortest-pathsearch on a map
(which cannot be supported by [30], since it focuses on Euclidean
distances). If effective optimization is impossible, the DBMS may
execute the statement by first performing a cartesian product be-
tweenB andW , followed by a group-by and selection of the largest
groups. Such a strategy may incur prohibitive cost.

A remedy in the above situation is a fast algorithm for thekMCV
problem, which may improve efficiency dramatically by reducing
the number of join-predicate evaluation. Note that, to be incor-
porated in a relational engine, such an algorithm must be general
enough to tackleany join predicate, as opposed to only special
queries (for this reason, the solutions of [30] are not appropriate
for DBMS incorporation).

In fact, the concept of semi-join exists not only in relational
databases, but is implicit in numerous applications of other envi-
ronments. As detailed below, ourkMCV problem finds use in those
applications as well.

Application 2 (frequent patterns). Assume that each vertexb ∈ B
represents a candidate pattern, and each vertexw ∈ W corresponds
to a data item. Given a patternb ∈ B and a data itemw ∈ W , an
edge-probing query detects whetherb exists inw. In other words,
there is an edge inG betweenb andw if b is observed inw. The
kMCV problem returns thek patterns inB that are most commonly
found in the items ofW . In some environments, detecting the pres-
ence of a pattern can be rather expensive, such that the overall com-
putation time is dominated by the total cost of all queries.

As an example, currently, the pharmaceutical industry has been
establishing a novel methodology of discovering new drugs,called
fragment-based drug discovery[22]. This is motivated by the frus-
tration that“finding a new drug is like playing golf, where the tar-
get is the pin"[22]. The new methodology relieves the frustration
by initiating a drug-searching process from afragment, which is
a basic chemical compound common in the molecular structures
of drugs. Hence, an important problem is to identify thek frag-
ments that are most frequently present in a set of drugs. Thisis a
typical kMCV problem, whereB includes all the fragments, and
W is the set of drugs under screening. An edge-probing query
checks whether a fragmentb ∈ B exists in a drugw ∈ W . Since
molecular structures are graphs, the query essentially carries out a
subgraph isomorphism test, which can be very costly. Therefore,
reducing the number of queries is the key to efficiency.

In general, pattern detection is often achieved by evaluating the
distance between a pattern and a data item: a pattern is considered
to exist if the distance is sufficiently small. Some distancefunc-
tions are expensive to evaluate (e.g.,dynamic time warping[23]
and eveǹ p norms inultra-high dimensional spaces[19]). In those
cases, the cost of edge-probing queries will most likely dominate
the execution time, justifying the need to minimize such queries.

Application 3 (querying by web service). Today, many websites
provide convenient interfaces to allow the public to query their
backend databases. Such services have significantly increased the
amount of data that an ordinary user can access, without having to
store locally the gigantic datasets. For instance, atCinema Freenet
(www.cinfn.com), people can input the name of an actor/actress and
the title of a movie; then the website will return (among other in-
formation)whetherthe actor/actress played a role in the movie. As
another example, using the APIs ofGoogle Map, a program is able
to obtain the road-network distance between two addresses (with-
out requiring their coordinates).

These services can be leveraged to solve manykMCV problems
in a way we callquerying by web service. For example, assume that
B is a set of actors and actresses, andW is a set of movies. Given
an actor/actressb ∈ B and a moview ∈ W , an edge-probing
query contactsCinema Freenetto verify whetherb appeared inW .
ThekMCV result is thek actors/actresses that participated in the
largest number of movies. Similarly,Google Mapcan be employed
to solve thetop-k spatial joinproblem mentioned in Application 1,
without knowing the coordinatesof the hotels and tour attractions
at all. As mentioned earlier,B can be a set of hotels, andW a
set of attractions. Given a hotelb ∈ B and an attractionw ∈ W ,
a query connects toGoogle Mapto check if the distance fromb
to w is within 1 mile. Then, the output ofkMCV is the k hotels
that have the most attractions within their 1-mile neighborhoods.
The performance bottleneck in the above environments is thetotal
network latency of the queries issued. Once again, minimizing the
number of queries should be the aim of akMCV algorithm.

1.2 Our main results
The objective of this work is to design a generic algorithm for the

kMCV problem that can be directly used as ablack boxin all the
above applications. If the vertex setsB andW have sizesn andm
respectively, in the worst case, solving the problem demands nm
edge-probing queries. However,nm is a very pessimistic estimate
on how many queries are needed on practical data. As we will see,
on certain inputs, the problem can be settled efficiently with only
km+ n queries, which is significantly lower thannm for k � n.

The above discussion suggests that it is a wrong direction tode-
sign aworst-case optimalalgorithm — virtuallyanycorrect algo-
rithm is worst-case optimal. In fact, the wide spectrum between
km+ n (good case) andnm (worst case) indicates that we should
aim at anadaptivealgorithm, which is guaranteed to achieve the
lowest cost onevery input. Intuitively, the cost of the algorithm
ought to be a function of the difficulty of the input. Namely, when
the input is “easy", the algorithm must perform far less thannm
queries. As the input’s hardness increases, the cost of the algo-
rithm is allowed to grow, but only to the extent enough to tackle the
additional difficulty.

This paper presents the first study on thekMCV problem. We
propose an adaptive algorithm (with the properties described ear-
lier), and prove that it isinstance optimalamong a broad class of
solutions (to be defined in the next section). Instance optimality
[17] requires that, onany data input, our algorithm should be as
fast as the optimal solution (which is currently unknown), up to
only a constant factor. We are able to show that the constant is at
most 2, regardless of the value ofk. In practice,k is usually very
small (e.g., 10) compared to the sizen of B, such that it can be
regarded as a constant. In this case, we give a strong argument that
our algorithm can be slower than the optimal solution by onlya tiny
factor of1 +O(1/n).

The rest of the paper is organized as follows. The next section
defines the problem and reviews the previous work related to ours.

Then, Section 3 explains the preliminary concepts requiredby our
discussion. Section 4 explains the details of the proposed algo-
rithms, and Section 5 presents a theoretical study of their perfor-
mance. Section 6 experimentally evaluates the efficiency ofour
techniques. Finally, Section 7 concludes the paper with a summary
of our findings.

2. PROBLEM AND RELATED WORK
Next, we first expand the discussion in Section 1 to formally

define thek most-connected vertex(kMCV) problem. Then, we
review the existing research on the relevant problems.

Problem definition. Let G = (B,W,E) be a bipartite graph,
where the setE of edges are between a setB of black vertices,
and a setW of white vertices. G is ahidden graph, meaning that
noneof the edges inE is explicitly given. To find out whether an
edge exists between a vertexb ∈ B and a vertexw ∈ W , we must
perform anedge-probing queryq(b, w), which returns a boolean
answeryesor no. The edges ofG that have not been probed are
said to behidden. The goal of thekMCV problem is to find thek
black vertices with the largest degrees, by minimizing the number
of queries (equivalently, the number of edges probed).

Two black vertices may have the same degree, namely, a tie. For
the sake of fairness, we adopt the policy that the vertices having a
tie should receive the same treatment. That is, either they are all re-
ported, or none of them is reported. This means that sometimes the
result may have more thank vertices. Formally, denote bydeg(b)
the degree of a black vertexb ∈ B; then, thekMCV result is the
minimalsetR of black vertices satisfying:

1. |R| ≥ k, and

2. deg(b) > deg(b′) for anyb ∈ R andb′ ∈ B −R

where|R| denotes the size ofR, andB − R is the set difference
betweenB andR.

Denote byn andm the numbers of vertices inB andW , re-
spectively. Apparently, the number of edges inG can range from
0 to nm. The value ofk can be any integer from 1 ton. Notice
that, interestingly,kMCV is in fact the same problem as finding the
n − k vertices inB with the smallestdegrees (which are exactly
the vertices inB − R). In practice, users are usually interested in
thetop few(e.g., 10) black vertices with the maximum or minimum
degrees. Therefore, the values ofk that are of higher practical im-
portance are close to either 1 orn. In the former case,k can be
regarded as a constant, namelyk = O(1), whereas in the latter
case,n− k can be regarded as a constant, meaningk = n−O(1).
Ideally, a solution to thekMCV problem should be especially effi-
cient in these two extreme cases.

Related work. Although graph databaseshave been extensively
studied (see [6] for a recent survey), we are not aware of any previ-
ous work dealing with thekMCV problem or hidden graphs. Tra-
ditionally, the edges of a graph are given explicitly (e.g.,in anad-
jacency matrix), so that accessing an edge incurs negligible cost.
In that scenario, it is not expensive to find thek vertices with the
largest degrees. The novel feature of ourkMCV problem is that
detecting an edge is costly, such that the number of edge-probing
queries is the key factor deciding the overall execution time.

Learning hidden graphs, also known asgraph testing, was first
studied by Goldreich et al. [18]. At a high level, given a hidden
graphG, the objective of learning is to eitherconfirmthatG has a
certain property, ordenythe existence of such a property inG. A
fuzzy answerdon’t-careis allowed whenG is closeto having such
a property. For example, a property that has been widely studied [3,

11, 18] is whetherG is bipartite. Adon’t-careanswer is permitted
whenG can be converted to a bipartite graph by adding/removing
only a small number of edges. The learning of other properties has
also been investigated; see, for example, [4, 5] for a summary.

In the original setup of [18], an edge-probing query is assumed to
detect an edge between only two vertices. In recent years, several
authors [2, 7, 10] have consideredsuper queries, each of which
detects whether a set of vertices induce any edge in the underly-
ing graph. This is motivated by biological and chemical applica-
tions. For example, consider areaction-graph, where each vertex
is a chemical, and two vertices are connected if their correspond-
ing chemicals react with each other. Then, a super query can be
understood as an experiment of mixing many different chemicals,
and observing if any reaction happens. If yes, it implies that at least
two of the chemicals involved react with each other.

Our kMCV problem differs from thegraph testingformulation
of [18]. Specifically, we are not attempting to verify any general
property (that is possessed by a class of graphs) as in [18]. Instead,
we aim at identifying particular vertices in thegivengraph satis-
fying our degree requirements. This is analogous to retrieving the
items of a dataset qualifying a query condition, as opposed to rec-
ognizing which distribution best describes the dataset. Tothe best
of our knowledge, thekMCV problem has not been addressed in
the literature of graph testing.

Finding the vertex with the maximum degree is a basic operation
in attacking many classical problems on bipartite graphs. Our algo-
rithms can be applied as a building brick in those problems, under
the circumstances where detecting the presence of edges is expen-
sive. An important example is the problem ofminimum set cover
(MSC), which has a huge number of applications in practice. In
the context of a bipartite graph between two setsB andW of ver-
tices, the MSC problem is to compute the minimum subsetB′ ⊆ B
such that every vertex inW is connected to at least one vertex in
B′. The problem is NP-hard but a good approximate solution can
be found by a classical greedy algorithm [14], which requires solv-
ing multiple 1MCV problems. Our techniques can be immediately
employed.

The concept of instance optimality was introduced by Fagin et
al. [17]. An earlier, similar, concept iscompetitive analysis[12],
whose differences from instance optimality are nicely explained in
[17]. Instance optimal algorithms have been designed for many
other problems, such as manipulating binary search trees [15], ap-
proximating the distance from a point to a curve [8], computing
the union/intersection of sorted lists [16], finding the convex hull
of polygons [9], to mention just a few. The most recent work toour
knowledge is [1], which proposes instance optimal algorithms for
several computational geometry problems.

Finally, thekMCV problem can be regarded as a variant of the
top-k problem, which has been extensively studied in distributed
systems [17], relational databases [21], uncertain data [28], and
so on. However, the solutions in those works are specific to their
own contexts, and cannot be adapted forkMCV. Another related
problem in relational databases istop-k join [20, 24, 26], which
returns the top-k tuples from a join with the highestscores. The
score of a (joined) tuple is calculated from a monotone function
based on the tuple’s attributes. The ranking criteria inkMCV, on
the other hand, are not based on any attribute, but instead, depend
on thejoining powerof a tuple in a participating relation (i.e., it
can be joined with how many tuples from the opposite relation).

3. PRELIMINARIES
This section lays down the key concepts that pave the path to the

technical discussion in the later sections. Specifically, we will first

explain the classes of algorithms considered by our analysis. Then,
we will elaborate the concept of instance optimality, following the
framework established by Fagin et al. [17].

Algorithm classes.We aim at designing generic algorithms that do
not assume any pre-knowledge of the underlying graphG. In other
words, the algorithm obtains information aboutG only from the
problem input (i.e., the vertex setsB andW), and the results of the
edge-probing queries already performed. To make our discussion
more specific, Figure 2 describes a high-level framework to capture
a broad class ofkMCV algorithms.

algorithm MCV
1. repeat
2. b = pick-black
3. probe-next(b)
4. until it is safe to return the result

Figure 2: An algorithmic framework

The framework describes two core operations that are performed
repetitively by an algorithm:

pick-black, which returns the black vertexb on which the algo-
rithm wants to probe a hidden edge, according to the current
status of the algorithm’s execution. Different strategiescan
make a huge difference. This is the key of the algorithm de-
sign.

probe-next(b), which reveals an edge ofb that is still hidden at
this time. Specifically, it selects a white vertexw whose edge
with b has not been probed, and performs a queryq(b, w).

It would be ideal if we could implementprobe-next(b) in a way
that canselectivelyprobe an edge that is likely to be present or
absent. This, however, implies that we must know at least some
properties aboutG, such as the correlations between the edges al-
ready probed and the one to be probed next. Since our objective
is to propose a generic algorithm, it appears unjustified to favor a
specific application by leveraging its properties, since this will in-
evitably disfavor another application that does not have such prop-
erties. Hence, we focus on two “neutral" versions ofprobe-next(b):

• Randomized.A randomizedprobe-next(b), as shown in Fig-
ure 3, probes any hidden edge ofb with the same probability.
This is quite reasonable when the algorithm cannot predict
the nature (i.e., present or not) of any hidden edge.

algorithm probe-next(b)

/* for the random-probealgorithm classARAN */

1. if b has no more hidden edge
2. return NULL
3. w = a random vertex ofW whose edge withb remains hidden
4. return q(b, w)

Figure 3: Randomizedprobe-next(b)

• Deterministic. Assume that them white vertices inW are
arranged into a sequence{w1, w2, ..., wm}. A deterministic
probe-next(b), as shown in Figure 4, probes the next hidden
edge ofb in the sequence. This is a natural choice in scenar-
ios where the data items corresponding to the white vertices
are fetched in a sequential order, for example, by theget-next
function of a search engine [17].

algorithm probe-next(b)

/* for deterministic-probethe algorithm classADET */
/* assume that the vertices inW have been labeled asw1, w2, ...,wm,
respectively */

1. i = the number of edges ofb that have been probed
2. if i = m then return NULL
3. return q(b, wi+1)

Figure 4: Deterministic probe-next(b)

Depending on which version ofprobe-next(b) is adopted, the
algorithmic framework of Figure 2 is specialized into two algo-
rithm classes:ARAN andADET. Specifically,ARAN, referred to as
the random-probe algorithm class, includes algorithms that apply
the randomized version;ADET, the deterministic-probe algorithm
class, contains algorithms that apply the deterministic version. In
each class, the algorithms differ in their implementationsof pick-
black. As the number of edges that need to be probed can benm,
there are(nm)! different probing orders, each corresponding to an
implementation ofpick-black. Hence, the number of possible algo-
rithms is at least(nm)! in bothARAN andADET.

Instance optimality. In the worst case,nm edge-probing queries
are needed to solve thekMCV problem. To prove this, consider an
input G with no edge at all, namely, no black vertex is connected
to any white vertex. As a result, any algorithm must probe the
edge betweeneachpair of black and white vertices, before it can
conclude that all black vertices have degree 0. Skipping anyedge,
say betweenb ∈ B andw ∈ W , leaves the risk thatb may have a
degree of 1.

Worst case analysis often incurs the criticism of being overcon-
servative in practice. In our problem, the previous paragraph indi-
cates that the worst-case cost of solvingkMCV is nm anyway. So
by this yardstick, it does not even make sense to study the prob-
lem, because all algorithms are equally bad. This, however,is a
pessimistic judgment because it is possible to do much better than
the worst case on many inputs.

To make our argument solid, consider an inputG where one ver-
tex b∗ in B has degreem (i.e., b∗ has an edge with every vertex
in W), and all the othern − 1 vertices inB have degree0 (see
Figure 5). It is easy to see that the 1MCV problem can be solved
by issuing less thanm + n queries. Specifically, we can probe
all the edges ofb∗, and onlyoneedge for every other black vertex
b ∈ B, b 6= b∗. The total number of queries ism+n−1, but this is
enough to find out that (i)b∗ has degreem, and (ii) any other black
vertexb has degreeat mostm− 1. Therefore,b∗ must be the only
vertex in the result.

b*

m
Figure 5: An easy input to 1MCV

Motivated by this, we turn our attention to designing an algo-
rithm that guarantees the best performance oneveryinput. Specif-
ically, on difficult inputs that requirenm queries anyway, our al-
gorithm does not achieve any improvement. However, on easier
inputs, our algorithm incurs lower cost, actually so low that it is
provably as fast as even the optimal algorithm (which remains un-
known currently), up to a very small factor.

Next, we formalize the above discussion using the concept of

instance optimalityintroduced by Fagin et al. [17]. This concept
requires an algorithm to be optimal on every data input, and is thus
stronger than worst-case optimality. In general, letA be a class of
algorithms, andD a family of datasets. Denote bycost(A,D) the
cost of algorithmA ∈ A on datasetD ∈ D. Then, an algorithm
A∗ ∈ A is instance optimaloverA andD if there is a constantr
satisfying

cost(A∗, D) ≤ r · cost(A,D) (1)

for anyA ∈ A and anyD ∈ D.
In our context,A is eitherARAN or ADET, andD includes all

the bipartite graphs. Note that while all the algorithms inARAN

must be randomized, those inADET can be either randomized or
deterministic (depending on their implementations ofpick-black).
In any case, we definecost(A,G) to be theexpected costof an
algorithmA (in ARAN or ADET) on the input graphG ∈ D (a cost
is measured by the number of edge-probing queries performedby
A). This definition trivially applies to a deterministicA, whose
cost(A,G) is simply its single-execution cost onG.

Our objective is to find anA∗ in each algorithm class that makes
Equation 1 hold. Furthermore, it is important to keep the constant
r as small as possible. In particular, a much stronger result is ob-
tained ifr can be shown todecreasewith the size of the input. For
example, if an algorithm achieves anr = 1 + 1/n, then not only
the algorithm is instance optimal (notice that1 + 1/n is at most
2), but it is actually nearly optimal in the absolute sense when n is
large (in which caser is very close to 1).

4. ALGORITHMS
In this section, we give two algorithms for solving thekMCV

problem. The first one, calledsample-sort, is based on a simple
sampling idea. It is included because, in general, it is goodpractice
to disprovethe efficiency of straightforward solutions, before mov-
ing to more complex methods. Indeed, we give an argument in the
next section showing thatsample-sortfails to be instance optimal.
Our second algorithm, calledswitch-on-empty, is less intuitive, but
turns out to be instance optimal.

Before elaborating the two algorithms, we will first introduce
some key notations and explain a basic bounding strategy. Further-
more, we will first make the assumption thatk ≤ n/2, wheren is
the number of black vertices. Later, we will remove the assump-
tion, by extending our solutions tok > n/2.

Notations and basic strategy.Denote bydeg(b) the degree of a
black vertexb ∈ B in the input graphG. LetR ⊆ B be the set of
black vertices that an algorithm decides to return. As mentioned in
Section 2, the algorithm must have evidence showing:

for anyb ∈ R andb′ /∈ R, deg(b) > deg(b′).

This, however, does not imply that the algorithm needs to have the
exactdeg(b) anddeg(b′). It suffices to show that a lower bound of
deg(b) is greater than an upper bound ofdeg(b′).

Let us introduce two notions that will help the presentation. If
b ∈ B does not have an edge withw ∈ W in G, we say thatb has
anempty edgewith w; otherwise,b has asolid edgewith w. Hence,
deg(b) equals the number of solid edges ofb. Moreover, the total
number of empty and solid edges ofb equalsm (= |W |).

Each time when an edge-probing query is performed, the out-
come reveals that the edge is either empty or solid. Denote by
empty(b) the number of empty edges ofb that have been probed,
and similarly, letsolid(b) be the number of its solid edges probed.
It immediately follows that

solid(b) ≤ deg(b) ≤ m− empty(b). (2)

For eachb ∈ B, our algorithm maintains, at all times, an upper
boundm−empty(b) of deg(b), as well as a lower boundsolid(b).
It terminates as soon as it is able to conclude on the final result R
based on these bounds, in the way explained earlier.

Algorithm sample-sort (SS).Next, we explain our first algorithm.
It aims at quickly discoveringk black vertices with large degrees.
After this is done, letx be thek-th largest degree of the vertices
identified. Then, we can prune any black vertexb oncem− x+ 1
of its empty edges have been found. Apparently, a higherx gives
stronger pruning power.

But how do we know which vertices are likely to have large de-
grees? The idea of sampling naturally kicks in. Specifically, algo-
rithm SS has two phases. The firstsampling phaserandomly probes
s edges of every black vertex, wheres is a parameter of the algo-
rithm. At the end of this phase, all the black verticesb are sorted
in descending order ofsolid(b). Denote the sorted list asL. As
m
s
solid(b) is an unbiased estimate ofdeg(b), L essentially ranks

all black vertices in descending order of their expected degrees.
The second,refinement phase, processes the black vertices by

their sorted order inL. For each black vertexb, SS keeps probing
its hidden edges until all of its edges have been probed (at which
point, the exactdeg(b) is available) orb can be pruned. To en-
able pruning, at all times, the algorithm maintains a threshold t,
which equals thek-th largestsolid(b′) of all b′ ∈ B (t may change
continuously as more edges are probed). Thus,b is pruned once
empty(b) ≥ m− t+ 1.

algorithm sample-sort

/* for eachb ∈ B, solid(b) andempty(b) are dynamically maintained
throughout the algorithm */

1. for each black vertexb
2. callprobe-next(b) s times
3. sort all black verticesb by solid(b) in descending order, breaking ties

randomly; letL be the sorted order
4. maintaint = thek-th largestsolid(b) of all b ∈ B in the rest of the

algorithm
5. for each black vertexb by the ordering inL
6. repeat
7. probe-next(b)
8. until all edges ofb have been testedor

empty(b) ≥ m− t+ 1
9. return thek black vertices with the largest degrees (handle ties if

necessary)

Figure 6: Algorithm sample-sort

The overall algorithm is presented in Figure 6. Its main draw-
back is the need of a parameters, on which careful tuning is needed
to obtain good efficiency. This motivates the next algorithm, which
does not require any parameter.

Algorithm switch-on-empty (SOE). The algorithm works in
rounds, where each round finds exactlyone empty edge for ev-
ery black vertex. Rounds continue until the algorithm is able to
conclude the result setR of black vertices.

More precisely, each round works as follows. For every black
vertexb, we keep probing its hidden edges, and stop (i)as soon as
an empty edge ofb is found, or (ii) whenb has no more edge to
probe. In either case, we switch to another black vertex (hence the
nameswitch-on-empty), and repeat the same. The round finishes
when all the black vertices inB have been processed like this.

Before starting the next round, the algorithm checks whether
some black vertices can be safely put into the resultR and thus
removed fromB. Specifically, a vertexb ∈ B is added toR if it
satisfies two conditions:

1. All its m edges have been probed.

2. empty(b) is the lowest among all the vertices still inB (re-
member that the vertices inR are already removed fromB).

To see why, note that Condition 1 implies that we have obtained
the exactdeg(b), and Condition 2 ensures thatdeg(b) = m −
empty(b) ≥ m − empty(b′) ≥ deg(b′) for any b′ ∈ B, b′ 6= b,
which means thatb has the largest degree among all vertices inB.

SOE terminates when (i)R has at leastk vertices, and (ii) the
remaining vertices inB definitely have lower degrees than those in
R. Namely, for each vertexb ∈ B, we have found at leastm−t+1
of its empty edges, wheret is thek-th largest degree of the vertices
in the resultR. Figure 7 formally summarizes the algorithm.

algorithm switch-on-empty

/* for eachb ∈ B, solid(b) andempty(b) are dynamically maintained
throughout the algorithm */

1. R = ∅ /* the result set */
2. maintaint = thek-th largest degree of the vertices inR in the rest

of the algorithm
3. maintainemin = the smallestempty(b) of all verticesb still in B

4. repeat
5. perform-a-round/* see below */
6. Bdone = {the vertices inB with no more hidden edge}
7. Bmin = {the vertices inBdone with degreem− emin}
8. if Bmin 6= ∅
9. addBmin to R, and removeBmin from B

/* this may change the values oft andemin */
10. until all vertices still inB have a degree upper bound smaller thant,

namely,m− emin ≤ t− 1
11. returnR

algorithm perform-a-round
1. for eachb ∈ B

2. repeat
3. probe-next(b)
4. until an empty edge is foundor b has no more hidden edge

Figure 7: Algorithm switch-on-empty

Example.Next, we illustrate SOE using the input graph in Figure 8
whereB andW have 2 and 5 vertices, respectively. Assumek =
1 (i.e., we aim to solve the 1MCV problem), and the algorithm
class considered is the random-probe classARAN (the case of the
deterministic-probe classADET is similar). At the beginning, all
the edges are hidden; so for each black vertex, SOE initializes an
upper bound of|W | = 5 on its degree.

Then, SOE executes its rounds, each of which keeps probing a
black vertex’s hidden edges until encountering an empty edge or
the vertex has no more hidden edge. In round 1, forb1, suppose
that SOE probes first its edge withw2, which turns out to be solid.
Hence, the algoritm probes another edge ofb1, for example, its
edge withw5. As the edge is empty, SOE is done withb1 in this
round. Forb2, suppose that SOE first probes its edge withw3,
(since it is solid) then its edge withw4, and (since an empty edge
is found) stops. The first round finishes at this point. No result
can be confirmed, because each black vertex still has hidden edges.
Nevertheless, the algorithm knows that the degree of each black
vertex can be at most 4 (because one empty edge has been found
for b1 andb2, respectively).

In the second round, as all the (remaining) hidden edges ofb1
are solid, SOE probes all of them before processing the next black
vertex. Forb2, suppose that SOE probes (among its hidden edges)
its edge withw1, which happens to be empty. Thus, the algorithm
finishes the second round. At this time, SOE sees thatdeg(b1)
equals 4, anddeg(b2) is at most 3 (as 2 empty edges ofb2 have
been identified). Therefore, it terminates by reportingb1 as the
result.

b� b�
w� w� w� w� w	

Figure 8: An example to illustrate SOE

Dealing with k > n/2. So far we have assumed thatk is at most
n/2. Now, we are ready to explain how to handle the casek >
n/2. As mentioned in Section 3, this is equivalent to finding the
(n− k) < n/2 vertices inB having thelowestdegrees.

Let us consider thecomplement̄G of the input graphG. Specif-
ically, Ḡ has the same vertex setsB andW asG. However, for
each pair of black vertexb ∈ B and white vertexw ∈ W , there is
an edge inḠ, if and only if b is not connected tow in G. In other
words, a vertexb with degreedeg(b) in G has a degreem−deg(b)
in Ḡ. It thus follows that then−k black vertices with the minimum
degrees inG areexactly the sameas then − k black vertices with
the maximum degrees in̄G.

Since the originalkMCV problem onG with k > n/2 has been
reduced to ak′MCV problem onḠ with k′ = n − k < n/2,
we can solve thek′MCV problem directly using the proposed al-
gorithms SS and SOE. In fact, no modification is needed in those
algorithms. The only change required is to simplyreversethe out-
come of each edge-probing query. Namely, if the query returns yes,
the algorithms should take it as no, and vice versa.

Remark. Algorithm SOE simultaneously belongs to both the
random-probe algorithm classARAN and the deterministic-probe al-
gorithm classADET, depending on which version ofprobe-next(b)
(Figure 3 or 4) is plugged in. Although the same is true for algo-
rithm SS, it is better suited forARAN. The reason is that, in the con-
text ofADET, the sampling phase can no longer guarantee probing
a set of random edges for each black vertex, because the sequence
of white vertices in Figure 4 may not be a random sequence.

5. THEORETICAL ANALYSIS
In this section, we analyze the performance of the proposed algo-

rithms SS and SOE. Since both of them belong toARAN andADET,
we will discuss the two algorithm classes separately in Sections 5.1
and 5.2, respectively.

5.1 The randomized algorithm class
Let us start with a property of all the algorithmsA ∈ ARAN.

Consider any black vertexb ∈ B. Assume, without loss of gener-
ality, thatb hasml empty edges in the input graphG, wherel is a
value between 0 and 1. In other words,b is connected tom(1− l)
white vertices inG. Let Q(u) be the expected number of edge-
probing queries thatA must perform forb, in order to findu empty
edges ofb. We have the following aboutQ(u):

PROPOSITION 1. Q(u) = u(m+ 1)/(ml + 1).

PROOF. Let X be the random variable whose expectation is
captured byQ(u). Namely,X is the number of queries thatA
must perform onb before seeingu empty edges ofb. The distribu-
tion ofX is a standardnegative hypergeometric distribution, whose
expectation is as given in the proposition.

Equipped with the proposition, next we discuss algorithms SS
and SOE separately.

Sample-sort. Recall that SS has a parameters, which specifies
the number of edges to probe for each black vertex in the sampling

phase. In general,s can be a function ofn andm, that is, SS may
decides after obtaining the sizes ofB andW .

As shown in the experiments, with a suitables, SS can be fairly
efficient, but such ans appears to heavily depend on the dataset.
Because of this, we are interested in knowing whether there is a
“universal" choice ofs that makes SS instance optimal. A positive
answer would allow us to get rid of this parameter. Unfortunately,
we ended up proving:

THEOREM 1. If s is chosen without any query, algorithm SS
cannot be instance optimal.

PROOF. See the appendix.

The theorem indicates that, while sampling is a natural ideato
attack thekMCV problem, it is non-trivial to decide the proper
sample size. In particular, straightforward strategies such as “sam-
ple a certain percentage of the edges of eachb ∈ B" does not work.
The theorem strongly implies that the correct sample size needs to
be chosenadaptively, based on the degree distributions of the black
vertices. This implication is consistent with the design ofalgorithm
SOE, since it proceeds by continuously monitoring the edgesfound
on all the black vertices.

Switch-on-empty. In the sequel, we denote byR the set of result
(black) vertices. Lett∗ be the lowest degree of the vertices inR, or
formally:

t∗ = min
t∈R

deg(t). (3)

Denote byRtail ⊆ R the set of vertices inR having degreet∗. Let
k∗ = |R|. Apparently,k∗ ≥ k; furthermore, ifk∗ > k, thenRtail

must contain at leastk∗ − k + 1 vertices.
We first point out two more properties of all algorithmsA ∈

ARAN. The first one concerns the status ofA when it finishes. For
eachb ∈ B, let solidA(b) andemptyA(b) be the numbers of solid
and empty edges thatA has found onb at its termination, respec-
tively. Denote bytA the minimumsolidA(b) of all verticesb ∈ R,
namely,tA = minb∈R solidA(b). We have:

LEMMA 1. At termination, for each non-result black vertexb ∈
B −R, it holds thatempty(b) ≥ m− tA + 1.

PROOF. Obvious because otherwiseA cannot have concluded
thatb has a smaller degree than the vertices inR.

The second property concerns the scenario wherek∗ > k:

LEMMA 2. If k∗ > k, thenA has probed all them edges of at
leastk∗ − k + 1 black vertices inR.

PROOF. LetS ⊆ Rtail be the set of vertices inRtail such that,
for any black vertex inS, algorithmA did notprobe all of its edges.
Let g = |Rtail| − (k∗ − k). Note thatg must be positive.

The crucial observation is that|S| must be smaller thang. Oth-
erwise, assume|S| ≥ g; then consider anyg vertices, sayb1, b2, ...,
bg, in S, and useS′ to denote the set of those vertices. Since each
bi has at least 1 hidden edge, it is possible that all thoseg hidden
edges (one for eachbi) turn out to be solid, and at the same time,
the black vertices inRtail − S′ have no more hidden solid edge.
In this case,Rtail − S′ must be eliminated from the result, which
contradicts the fact thatA was able to terminate safely.

Therefore,A must have probed all them edges of at least
|Rtail| − |S| ≥ |Rtail| − (g − 1) = k∗ − k + 1 vertices.

The above two properties also hold for all algorithms that cannot
predict whether a hidden edge is solid or empty. The next lemma
states a property of algorithm SOE:

LEMMA 3. SOE probes all them edges of each vertex inR.
For each vertexb ∈ B−R, its finds exactlym− t∗+1 of its empty
edges. Furthermore, the last edge ofb probed by SOE is empty.

PROOF. The lemma follows directly from the algorithm descrip-
tion in Figure 7.

We are ready to prove the main result of this paper:

THEOREM 2. Let Aopt be the fastest algorithm inARAN for
solving thekMCV problem on the inputG, namely:

Aopt = {A | cost(A,G) ≤ cost(A′, G);A,A′ ∈ ARAN}.

For any k ≤ n/2, the expected cost of SOE is at mostr ·
cost(Aopt, G), wherer ≤ 1 + k

n−k
.

PROOF. Let us label then − k∗ black verticesnot in the result
R as

bk∗+1, bk∗+2, ..., bn,

respectively (the ordering is not important). For eachi ∈ [k∗ +
1, n], let

li = 1− deg(bi)/m.

Equivalently,mli is the number of empty edges ofbi. Furthermore,
defineQi(u) as the expected number of edges ofbi that must be
probed by an algorithmA ∈ ARAN, in order to findu empty edges
of bi.

For convenience, we denote algorithm SOE asA∗. By Lemma 3,
the expected cost ofA∗ can be written as:

cost(A∗, G) = mk∗ +
n∑

i=k∗+1

Qi(m− t∗ + 1). (4)

Now consider the optimal algorithmAopt. Define a random vari-
able:

topt = min
b∈R

solidopt(b). (5)

wheresolidopt(b) is the number of solid edges of a vertexb ∈ R
that are found byAopt at termination. Next, we focus on the event:

ω : topt = x.

Note that assolidopt(b) ≤ deg(b), it must hold thatx ≤ t∗. Under
eventω, Lemma 1 indicates thatAopt probes in expectation at least
Qi(m−x+1) edges ofbi. Define functionC(x) to be the expected
cost ofAopt conditioned ontopt = x.

The rest of the proof will show thatr = cost(A∗, G)/C(x) ≤
1 + k/(n − k). This, together withcost(Aopt, G) =

∑
x C(x) ·

Pr[x], will establish the theorem. We proceed in two cases, de-
pending on the comparison ofk∗ andk:

Case 1:k∗ = k. It holds that

C(x) ≥ xk +

n∑

i=k∗+1

Qi(m− x+ 1).

Combining the above with Equation 4, we know

r ≤
mk∗ +

∑m
i=k∗+1 Qi(m− t∗ + 1)

xk +
∑n

i=k∗+1 Qi(m− x+ 1)
.

Sincex ≤ t∗, we have

r ≤
mk∗ +

∑m
i=k∗+1 Qi(m− x+ 1)

xk +
∑n

i=k∗+1 Qi(m− x+ 1)
.

leading to

r − 1 ≤
(m− x)k∗

xk∗ +
∑n

i=k∗+1 Qi(m− x+ 1)
.

By Proposition 1,Qi(m− x+ 1) = (m− x+ 1) m+1
mli+1

. Hence:

r − 1 ≤
(m− x)k∗

xk∗ + a(m− x)
.

where

a =

n∑

i=k∗+1

m+ 1

mli + 1
. (6)

If x = m, thenr = 1, trivially satisfyingr ≤ 1 + k/(n− k). For
x < m, equipped witha ≥ n− k∗ = n− k, we have

r − 1 ≤
(m− x)k

(n− k)(m− x)
=

k

n− k
.

Case 2:k∗ > k. Lemma 2 indicates the existence of a setS of
k∗ − k + 1 vertices inR, such thatAopt must have probed all the
m edges of each vertex inS. Hence:

C(x) ≥ x(k − 1) +m(k∗ − k + 1) +

n∑

i=k∗+1

Qi(m− x+ 1)

Combining the above with Equation 4 gives:

r ≤
mk∗ +

∑m
i=k∗+1 Qi(m− t∗ + 1)

x(k − 1) +m(k∗ − k + 1) +
∑n

i=k∗+1 Qi(m− x+ 1)

≤
mk∗ +

∑n
i=k∗+1 Qi(m− x+ 1)

mk∗ +
∑n

i=k∗+1 Qi(m− x+ 1)− k(m− x)

where the last inequality usedx ≤ t∗ andx ≤ m. Hence, decreas-
ing both sides of the above inequality by 1 and applying Proposi-
tion 1, we have:

r − 1 ≤
k(m− x)

mk∗ + a(m− x+ 1)− k(m− x)

wherea is given in Equation 6. Again ifm = x, thenr = 1 <
1 + k/(n− k). Otherwise, knowinga ≥ n− k∗, we derive:

r − 1 ≤
k(m− x)

mk∗ + (n− k∗)(m− x)− k(m− x)

≤
k(m− x)

n(m− x)− k(m− x)
=

k

n− k
.

This completes the proof.

The above theorem concernsk ≤ n/2. As mentioned in Sec-
tion 4, the case ofk > n/2 can be reduced to ak′MCV problem
with k′ = n − k < n/2 on the complement̄G of the inputG.
The proof of Theorem 3 also holds on̄G. Thus, we arrive at the
following general result:

COROLLARY 1. The expected cost of SOE is at mostr ·

cost(Aopt, G), wherer ≤ 1 + min{k,n−k}
max{k,n−k} , andAopt as defined

in Theorem 2.

The corollary has two significant implications:

• For anyk, the value ofr is definitely lower than 2. Hence,
SOE is instance optimal. Furthermore, since SOE performs
at leastkm + n − 1 queries on any inputG, it follows that
Ω(km + n) is a cost lower bound ofany algorithm in the
classARAN.

• Whenk = O(1) or k = n − O(1), r = 1 + O(1/n),
namely, SOE isnearly as fast as the optimal algorithmin
these two extremes. Recall that, in practice,k = O(1) and
k = n − O(1) correspond to the important scenarios where
users want to find thetop few(e.g., 10) black vertices having
the maximum and minimum degrees, respectively.

5.2 The deterministic algorithm class
Next, we extend the analysis of the previous subsection to the

algorithm classADET. We focus on only SOE because the instance
optimality of SS inADET can be disproved using an argument sim-
ilar to but much simpler than the proof of Theorem 1. ForADET,
Proposition 1 obviously is not applicable; Lemmas 1-3, however,
are still correct. We first give a theorem that is the counterpart of
Theorem 2.

THEOREM 3. Let Aopt be the fastest algorithm inADET for
solving thekMCV problem on the inputG, namely:

Aopt = {A | cost(A,G) ≤ cost(A′, G);A,A′ ∈ ADET}.

For any k ≤ n/2, the cost of SOE is at mostr · cost(Aopt, G),
wherer ≤ 1 + k

n−k
.

PROOF. The proof is similar to that of Theorem 2 (called the
old proof in the sequel). Refer to the sequence{w1, w2, ..., wm}
in Figure 3 as theprobing sequence. LetA∗, k∗, t∗, bi (k∗ + 1 ≤
i ≤ n) retain their meanings in the old proof.

Let Q∗
i (k∗ + 1 ≤ i ≤ n) be the number of edges ofbi thatA∗

has probed at termination.Q∗
i equals the position of the(m− t∗+

1)-th white vertex (in the probing sequence) that has an empty edge
with bi. By Lemma 3,cost(A∗, G) = mk∗ +

∑n
i=k∗+1 Q

∗
i .

Define topt, solidopt(b), C(x) in the same way as in the old
proof. LetQi be the least number of edges that (all possible execu-
tion of) Aopt needs to probe forbi, conditioned ontopt = x. The
crucial observation is that, sincex = topt ≤ t∗, by Lemma 1,Aopt

must have seen at leastm−x+1 ≥ m− t∗+1 empty edges ofbi.
In other words,Aopt must have probed all the edges ofbi probed
byA∗; hence:

Q∗
i ≤ Qi. (7)

Let r = cost(A∗, G)/C(x) anda =
∑n

i=k∗+1 Qi. Note that
a ≥ (n−k∗)(m−x+1). Assumingm 6= x (same as in Theorem 2,
if m = x, thenr = 1 < 1+ k/(n− k)), we proceed in two cases:

Case 1:k∗ = k. It holds thatC(x) ≥ xk∗ +
∑n

i=k∗+1 Qi. Hence

r ≤
mk∗ +

∑n
i=k∗+1 Q

∗
i

xk∗ +
∑n

i=k∗+1 Qi
≤

mk∗ + a

xk∗ + a
.

where the last inequality used Inequality 7. Hence:

r − 1 ≤
(m− x)k∗

xk∗ + a
≤

(m− x)k∗

a
.

≤
(m− x)k∗

(n− k∗)(m− x)
=

k

n− k
.

Case 2:k∗ > k. By Lemma 2,C(x) ≥ x(k − 1) +m(k∗ − k +
1) +

∑n
i=k∗+1 Qi. Thus

r ≤
mk∗ +

∑n
i=k∗+1 Q

∗
i

x(k − 1) +m(k∗ − k + 1) +
∑n

i=k∗+1 Qi

≤
mk∗ + a

mk∗ + a− k(m− x)

Hence:

r − 1 ≤
k(m− x)

mk∗ + a− k(m− x)

≤
k(m− x)

mk∗ + (n− k∗)(m− x+ 1) − k(m− x)

<
k(m− x)

n(m− x)− k(m− x)
=

k

n− k

(8)

which completes the proof.

With the same argument leading to Corollary 1, we get:

COROLLARY 2. The cost of SOE is at mostr · cost(Aopt, G),
wherer ≤ 1 + min{k,n−k}

max{k,n−k} .

Therefore, the same conclusions inARAN can be drawn about
SOE inADET. Specifically, SOE is also instance optimal inADET.
Furthermore, whenk = O(1), SOE can be more expensive than
the optimal algorithm inADET only by a factor of1 +O(1/n).

6. EXPERIMENTS
In the sequel, we experimentally evaluate the performance of

the proposed algorithms. Section 6.1 describes the data employed
in our experimentation, and Section 6.2 clarifies how alternative
methods will be compared. Then, Section 6.3 studies the environ-
ments where thekMCV problem can be settled much faster than
probing all edges. Sections 6.4 and 6.5 evaluate our techniques
in the random-probe and deterministic-probe algorithm classes, re-
spectively.

6.1 Datasets
Our experiments are based on synthetic and real data which are

explained in the sequel:

Power-law graphs. This is a family of synthetic graphs where the
degrees of black vertices follow apower lawdistribution. Each
graph is generated as follows. It has 5000 black and white vertices,
respectively (i.e.,|B| = |W | = 5000). For each black vertex
b ∈ B, its degreedeg(b) equalsd (0 ≤ d ≤ 5000) with probability

c(d+ 1)−γ (9)

whereγ is a parameter of the power law, andc is a normalizing
constant chosen to make

∑5000
d=0 c(d + 1)−γ equivalent to 1 (i.e.,

c = 1/
∑5000

d=0 (d + 1)−γ). Oncedeg(b) is decided, thedeg(b)
white vertices connected tob are selected randomly.

As discussed in the next section, we often need to control the
average degreedeg of the black vertices in a power-law graph.
Hence, we need to set the parameterγ to generate a graph with
the desireddeg. This is achieved by utilizing the fact that the ex-
pectation of the power law in Equation 9 is:

5000∑

d=0

cd(d+ 1)−γ

Therefore, we can solveγ by equating the above formula todeg.

NBA. This is a real graph selected to assess the benefits of the pro-
posed algorithms when they are incorporated into the execution en-
gine of a relational DBMS. The original data (fromwww.nba.com)
consists of 16739 NBA players in history. For each player, the
dataset contains his performance statistics in 13 aspects,such as
the numbers of points scored, rebounds, assists, etc. We define a
dominating relationshipbetween players based on the concept of
k-dominance[13]. Specifically, a playerp1 7-dominatesanother
playerp2 if p1 has better statistics thanp2 in at least 7 aspects (i.e.,
a majority of the total 13 aspects). We want to find thek play-
ers that 7-dominate the largest number of players, as given by the
following pseudo-SQL statement1:

SELECT p1 FROM PLAYER p1, PLAYERp2
WHERE p1 7-dominatesp2
GROUP BY p1
HAVING count(∗) ≥ the size of thek-th largest group

where PLAYER is a table with 13 attributes, and one row for each
player. The entire table occupies less than 1 mega bytes, andcan be
comfortably kept in main memory. Therefore, the total overhead is
determined by the number of times the join predicate is evaluated.
As explained in Section 1.1, evaluating the above statementis a
kMCV problem on a bipartite graphG = (B,W,E), where each
of the vertex setsB andW includes all the players, and the edge
setE has an edge between two playersb ∈ B andw ∈ W if b
7-dominatesw. The optimization goal is to minimize the number
of edges probed.

Actor. This is a real graph chosen to evaluate our algorithms
in a querying-by-web-serviceenvironment (introduced in Sec-
tion 1.1). The underlying data, which is publicly availableat IMDB
(www.imdb.com), is a social network between a set of actors, where
two actors have an edge if they collaborated in a movie before.
We extracted the 10000 most “active" actors that have the largest
number of collaborators, and focused on studying their2-hop re-
lationships. Specifically, an actora1 has a 2-hop relationship with
another actora2 if either a1 is a collaborator ofa2, or they have a
common collaborator (i.e.,a1 is at most two hops away froma2 in
the social network). Note that 2-hop relationships are an important
type of characteristics of a social network, as pointed out in [27].

We aimed at finding thek actors that have the largest number
of 2-hop relationships. This is akMCV problem on a graphG =
(B,W,E), where each ofB andW contains all the actors, andE
has an edge between two actorsb ∈ B andw ∈ W if b has a 2-hop
relationship withw. Detecting a 2-hop relationship betweenb and
w can be accomplished by submitting the names ofb andw to the
websiteCinema Freenet(see Section 1.1) and obtaining its reply.
The overall cost is dominated by the network latency, which in turn
is decided by the total number of relationships checked (i.e., the
number of edges inE probed).

6.2 Methods
Since no previous solution is known for thekMCV problem,

we concentrate on comparing the proposed algorithmssample-and-
sort (SS) andswitch-on-empty(SOE). The value ofk will be varied
from 1 to 100. Since the black vertex setB in all our data graphs

1This statement is essentially atop-k dominating query, which has
been studied in [25, 29]. However, the solutions in [25, 29] are de-
signed for a different dominance definition, where an itemp1 dom-
inates anotherp2 if and only if p1 is better thanp2 in all aspects.
Those solutions heavily rely ontransitivity, namely, the fact thatp1
dominatesp2 andp2 dominatesp1 implies thatp1 dominatesp3.
As shown in [13], transitivity doesnot hold onk-dominance.

have at leastn = 5000 vertices, the conditionk ≤ n/2 always
holds.

The cost of an algorithm is measured in the number of edge-
probing queries issued (if the algorithm is randomized, thecost
reported is the average of 5 runs). Sometimes we will also give
a theoreticallower bound(LB) of the cost of any algorithm on the
same data input. The lower bound is derived using the fact that
the cost of SOE can be greater than that of the optimal algorithm
by a factor of at most1 + k/(n − k) (see Theorems 2 and 3 and
apply k ≤ n/2). Therefore, if SOE needs to probex edges, we
will report a lower bound of x

1+k/(n−k)
.

In Sections 6.3 and 6.4, we study the random-probe algorithm
classARAN, where an algorithm deploys theprobe-nextimplemen-
tation in Figure 3. Section 6.5 investigates the deterministic-probe
algorithm classADET, where an algorithm applies theprobe-nextin
Figure 4.

6.3 How pessimistic is the worst case?
If B andW haven andm edges respectively, solving akMCV

problem requires probingnm edges in the worst case. The objec-
tive of this subsection is to find out when it is possible to achieve
a cost (much) lower thannm. For this purpose, we generated a
series of power-law graphs whosedeg (i.e., the average degree of
black vertices) ranges from the minimum 0 to the maximum 5000.
Then, we measured the performance of SOE in settling the 10MCV
problem on each of these graphs.

 0.25

 0.5

 1

 2

 4

 8

 16

 32

 0 1000 2000 3000 4000 5000

nu
m

be
r

of
 q

ue
rie

s
(m

ill
io

n)

average degree

SOE LB

Figure 9: Impact of the average degree of black vertices

Figure 9 plots the cost of SOE and the lower bounds as a function
of deg (notice that the vertical axis is in log scale). Recall that both
n andm are 5000 in every power-law graph, so the value ofnm
equals 25 million. Whendeg is close to the extreme value 0 or
5000, SOE needs to probe all the edges, and thus, incurs the worst-
case cost. However, its efficiency improves dramatically soon after
deg moves away from the extreme values. For example, whendeg
equals 250 (i.e., on average, a black vertex is connected to 5% of
the white vertices), SOE probes around 2 million edges, which is
smaller than the worst case by a factor over an order of magnitude.
The minimum overhead of SOE is observed whendeg is close to
the middle value 2500; in this case, SOE needs to probe only less
than half million edges.

It is clear that the worst-case cost can occuronly in a highly
sparse or dense graph. For other graphs, the cost can be substan-
tially reduced. The efficiency of SOE is built exactly on thisobser-
vation. In fact, as shown in Figure 9, the cost of SOE is very close
to the lower bound.

6.4 Performance of random-probe algorithms
Tuning sample-and-sort. Recall that algorithm SS needs a param-
eters, which is the number of edges that are probed for each black
vertex in the sampling phase. The next set of experiments aims

 9.6
 9.7
 9.8
 9.9
 10

 10.1
 10.2
 10.3
 10.4

 5 10 15 20 25 30 35 40 45 50

s

1

number of queries (million)

 0.74

 0.76

 0.78

 0.8

 0.82

 0.84

 0.86

 0.88

 5 10 15 20 25 30 35 40 45 50

s

1

number of queries (million)

(a) Power law withdeg = 50 (b) Power law withdeg = 3000

 4
 6
 8

 10
 12
 14
 16
 18
 20

 5 10 15 20 25 30 35 40 45 50

s

1

number of queries (million)

 9.2
 9.4
 9.6
 9.8
 10

 10.2
 10.4
 10.6
 10.8

 11
 11.2

 5 10 15 20 25 30 35 40 45 50

s

1

number of queries (million)

(c) NBA (d) Actor

Figure 10: Tuning the parameter s of algorithm SS

to decide a good value ofs. Towards this, given a data graph
G = (B,W,E), we measure the cost of SS whens is set to 1,
2, ..., 50, respectively. Figure 10 shows the results when the input
G is the power law graphs withdeg = 50 and3000 respectively,
and the real graphsNBA andActor. Clearly, the best value ofs
(minimizing the overhead of SS) is different for each dataset. Nev-
ertheless, a common pattern is that SS is expensive whens is too
small. Overall, a good choice ofs is around 20, which achieves
reasonable efficiency in all cases. Therefore, we fixs to 20 in the
following experiments.

Scalability with k. We proceed to compare SOE and SS inkMCV
computation by increasingk from 1 to 100. Figure 11 illustrates
the results, as well as the lower bounds, on the same graphs in
Figure 10. For benchmarking, remember that the worst-case cost is
25 million for power-law graphs,167392 > 280 million for NBA,
and100002 = 100 million for Actor.

The overhead of SS and SOE is always significantly lower than
the worst case (often by orders of magnitude), especially for k ≤
10. The only exception is in Figure 11a, whenk approaches 100.
This is expected because a graph withdeg = 50 is very sparse (on
average, a black vertex is connected to only 1% of the white ver-
tices), so most of the edges must be probed to deal with a relatively
largek. In all the experiments, SOE consistently outperforms SS,
and its cost is only slightly higher than the lower bounds.

6.5 Performance of deterministic-probe algo-
rithms

The previous experiments focused on the random-probe algo-
rithm classARAN. This subsection evaluates SS and SOE when
they are deployed as algorithms in the deterministic-probeclass
ADET. Recall that every algorithm inADET probes the hidden edges
of each black vertex in the sameprobing sequence(instead of a
random order as inARAN) that is prescribed by the underlying ap-
plication (see Figure 4).

The following experiments have two objectives. The first oneis
to inspect the efficiency of SS and SOE in the deterministic sce-
nario. The second, perhaps more interesting, objective is to under-
stand how their efficiency is affected by the ordering of the white
vertices in the probing sequence. For this purpose, we considered a
set of sequences that are controlled by a parameter calleddistortion
d, which ranges from 0 to 1. Specifically, a sequence with distor-

SS SOE LB

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

k

1

number of queries (million)

 0

 0.5

 1

 1.5

 2

 2.5

 10 20 30 40 50 60 70 80 90 100

k

1

number of queries (million)

(a) Power law withdeg = 50 (b) Power law withdeg = 3000

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

k

1

number of queries (million)

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 10 20 30 40 50 60 70 80 90 100

k

1

number of queries (million)

(c) NBA (d) Actor

Figure 11: Performance vs.k (random-probe class)

tion 0 ranks the white vertices in ascending order of their degrees
(or equivalently, in descending order of how many empty edges
they have). On the other extreme, a sequence with distortion1 is
simply a random permutation of the white vertices. In general, in a
sequence with distortiond, the positions ofdm white vertices are
randomly permutated (the other white vertices remain in ascending
order of their degrees), wherem is the number of white vertices.

To distinguish with the SS (SOE) in the random-probe class
ARAN, we refer to the version of SS (SOE) in the deterministic-
probe classADET as dSS (dSOE). The parameters of dSS is also
set to 20, after a tuning process similar to Figure 10. Concerning
10MCV computation onNBA, Figure 12a plots the performance of
dSS and dSOE as a function of distortion, together with the theo-
retical lower bounds (which are calculated by dividing the cost of
dSOE by1 + 10

n−10
, wheren is the number of black vertices). For

referencing, we also include the cost of SS and SOE so that compar-
ison can be made between random- and deterministic-probe solu-
tions. In the same fashion, Figure 12b presents the 10MCV results
on Actor.

Clearly, dSS and dSOE benefit significantly from a sorted or-
dering. In particular, when distortion is 0 (i.e., completely sorted),
the cost of dSOE is nearly 10 times lower than its cost when dis-
tortion is 1 (i.e., completely random). In general, the overhead of
both dSS and dSOE grows with distortion, and eventually (i.e., at
distortion 1) reaches the cost of SS and SOE. This phenomenon
is not surprising at all. When the white vertices with more empty
edges are probed first, many empty edges can be discovered sooner
for each black vertex. As a result, the upper bounds of the degrees
of the black vertices drop faster, which enables earlier termination.
Finally, the relative performance of dSS and dSOE is similarto
the random-probe class reported in Figure 11. Also, dSOE is once
again nearly optimal, leaving little room for further improvements.

7. CONCLUSIONS
This paper studied thek most connected vertex(kMCV) problem

on hidden bipartite graphs, which has a large number of database
applications in practice. The novelty of the problem is that(unlike
many other graph problems) the edges are not explicitly given; in-
stead, a unit cost must be paid to detect the presence of each edge.
We presented an algorithm that is guaranteed to be instance optimal

dSS dSOE SS SOE LB

 1

 2

 3

 4

 5

 0 20 40 60 80 100

distortion (percent)

number of queries (million)

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100

distortion (percent)

number of queries (million)

(a)NBA (b) Actor

Figure 12: Effects of distortion (deterministic-probe class)

in a broad class of algorithms. In other words, for any data input,
our algorithm can be worse than the optimal algorithm (whichre-
mains unknown) by at most a constant factor, which can be shown
to be at most 2. Furthermore, for smallk (such as 10), we proved a
much stronger result indicating that our solution is nearlyas fast as
the optimal algorithm.

We believe thatquery processing in hidden graphsis a promis-
ing research direction in the database area. Such graphs constitute
a powerful way to model many problems in a large number of ex-
isting and emerging applications. ThekMCV problem studied in
this paper serves as the first step into this exciting topic. In fact, it
is worth re-visiting many conventional graph problems due to the
novel features of hidden graphs. The existing algorithms may not
necessarily treat edge-probing as a cost-dominating operation, in
which case potential improvements are possible.

8. REFERENCES
[1] P. Afshani, J. Barbay, and T. M. Chan. Instance-optimal

geometric algorithms. InFOCS, 2009.
[2] N. Alon, R. Beigel, S. Kasif, S. Rudich, and B. Sudakov.

Learning a hidden matching.SIAM J. Comput.,
33(2):487–501, 2004.

[3] N. Alon and M. Krivelevich. Testing k-colorability.SIAM J.
Comput., 15(2):211–227, 2002.

[4] N. Alon and A. Shapira. A characterization of the (natural)
graph properties testable with one-sided error.SIAM J.
Comput., 37(6):1703–1727, 2008.

[5] N. Alon and A. Shapira. Every monotone graph property is
testable.SIAM J. Comput., 38(2):505–522, 2008.

[6] R. Angles and C. Gutiérrez. Survey of graph database
models.ACM Comp. Surv., 40(1), 2008.

[7] D. Angluin and J. Chen. Learning a hidden graph using
O(logn) queries per edge.JCSS, 74(4):546–556, 2008.

[8] I. Baran and E. D. Demaine. Optimal adaptive algorithms for
finding the nearest and farthest point on a parametric
black-box curve.Int. J. Comput. Geometry Appl.,
15(4):327–350, 2005.

[9] J. Barbay and E. Y. Chen. Convex hull of the union of convex
objects in the plane: an adaptive analysis. InCCCG, 2008.

[10] T. C. Biedl, B. Brejová, E. D. Demaine, A. M. Hamel,
A. López-Ortiz, and T. Vinar. Finding hidden independent
sets in interval graphs.Theo. Comp. Sci., 310(1-3):287–307,
2004.

[11] A. Bogdanov, K. Obata, and L. Trevisan. A lower bound for
testing 3-colorability in bounded-degree graphs. InFOCS,
pages 93–102, 2002.

[12] A. Borodin and R. El-Yaniv.Online Computation and
Competitive Analysis. Cambridge University Press, 1998.

[13] C. Y. Chan, H. V. Jagadish, K.-L. Tan, A. K. H. Tung, and

Z. Zhang. Finding k-dominant skylines in high dimensional
space. InSIGMOD, pages 503–514, 2006.

[14] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
Introduction to Algorithms, Second Edition. The MIT Press,
2001.

[15] E. D. Demaine, D. Harmon, J. Iacono, D. Kane, and
M. Pătraşcu. The geometry of binary search trees. InSODA,
pages 496–505, 2009.

[16] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive
set intersections, unions, and differences. InSODA, pages
743–752, 2000.

[17] R. Fagin, A. Lotem, and M. Naor. Optimal aggregation
algorithms for middleware. InPODS, 2001.

[18] O. Goldreich, S. Goldwasser, and D. Ron. Property testing
and its connection to learning and approximation.JACM,
45(4):653–750, 1998.

[19] M. E. Houle and J. Sakuma. Fast approximate similarity
search in extremely high-dimensional data sets. InICDE,
pages 619–630, 2005.

[20] I. F. Ilyas, W. G. Aref, and A. K. Elmagarmid. Supporting
top-k join queries in relational databases. InVLDB, pages
754–765, 2003.

[21] I. F. Ilyas, G. Beskales, and M. A. Soliman. A survey of
top-k query processing techniques in relational database
systems.ACM Comp. Surv., 40(4), 2008.

[22] D. B. Kell. Screen idols: faster, smaller, cheaper and smarter.
Trends in Biotechnol, 18:186–187, 2000.

[23] E. J. Keogh. Exact indexing of dynamic time warping. In
VLDB, pages 406–417, 2002.

[24] A. Natsev, Y.-C. Chang, J. R. Smith, C.-S. Li, and J. S. Vitter.
Supporting incremental join queries on ranked inputs. In
VLDB, pages 281–290, 2001.

[25] D. Papadias, Y. Tao, G. Fu, and B. Seeger. Progressive
skyline computation in database systems.TODS,
30(1):41–82, 2005.

[26] K. Schnaitter and N. Polyzotis. Evaluating rank joins with
optimal cost. InPODS, pages 43–52, 2008.

[27] P. Singla and M. Richardson. Yes, there is a correlation: -
from social networks to personal behavior on the web. In
WWW, pages 655–664, 2008.

[28] M. A. Soliman, I. F. Ilyas, and K. C.-C. Chang. Probabilistic
top-k and ranking-aggregate queries.TODS, 33(3), 2008.

[29] M. L. Yiu and N. Mamoulis. Multi-dimensional top-
dominating queries.VLDB J., 18(3):695–718, 2009.

[30] M. Zhu, D. Papadias, J. Zhang, and D. L. Lee. Top-k spatial
joins.TKDE, 17(4):567–579, 2005.

Appendix (proof of Theorem 1)
We will find two families of bipartite graphsG1 andG2, such that
(i) for any sufficiently largen andm satisfyingn > m, there is a
graphG1(n,m) in G1 and a graphG2(n,m) in G2, both of which
haven (m) black (white) vertices, and (ii) they demand conflicting
ways to sets so that algorithm SS can be instance optimal. Since
(without probing any edge) SS cannot tell whether the input is from
G1 orG2, it is not able to sets correctly, and thus, fails to be instance
optimal. For the above purpose, we only need to focus onk =
1. Given a pair ofn andm, next we explain how to construct
G1(n,m) andG2(n,m) respectively.

G1(n,m) is exactly the graph illustrated in Figure 5, where a
unique black vertex has degreem, and the other black vertices all
have degree 0. In Section 4, we have shown that algorithm SOE

solves the problem withn+m− 1 = O(n) queries. As for SS, its
sampling phase already probesO(sn) edges; sos must beO(1) if
SS needs to be instance optimal. In the sequel, we assumes ≤ λ,
whereλ is a constant.

cm

m n/8
.

b*
Figure 13: Illustration of G2(n,m)

G2(n,m) is such that one black vertexb∗ has degreem, and
the other black vertices all have degreecm, wherec, which will
be determined later, is a constant close to 1 from below. Figure 13
illustratesG2(n,m) by using the height of a column to represent
a black vertex’s degree. Consider the sampling phase of SS on
G2(n,m). Let S be the set of black verticesb ∈ B such that
all the s edges ofb probed by SS are solid (clearly,b∗ is defi-
nitely in S). The choice ofc will make sure that|S| ≥ n/4 with
probability at least1/2 (later we will argue that suchc always ex-
ists). Assuming|S| ≥ n/4, let us look at the refinement phase
of SS, where the black verticesb are processed in descending or-
der ofsolid(b), i.e., how many solid edges ofb were found in the
sampling phase. Since all vertices inS have the samesolid(b),
their ordering is random. Hence, with probability at least1/4, n/8
of the vertices inS rank beforeb∗. For each such vertexb, SS
needs to probe all of itsm edges; hence, at leastnm/8 edges are
probed in total. Therefore, the expected cost onG2(n,m) is at
least(1/4) · (nm/8) = Ω(nm).

The 1MCV problem onG2(n,m) can be solved by algorithm
SOE withO(n) queries in expectation. Specifically, when SOE
terminates, it has found exactly one empty edge of eachb ∈ B, b 6=
b∗, plus all them edges ofb∗. By Proposition 1, in expectation,
SOE probes m+1

m(1−c)+1
= O(1) edges ofb. Hence, the expected

cost of SOE isO(n − 1 +m) = O(n), meaning that SS is worse
by a factor ofΩ(m).

It remains to show that thec we need always exists. LetX be a
random variable that equals the size ofS after SS finishes its sam-
pling phase.X follows a Binomial distributionB(n−1, p), where
p is the probability that all thes edges probed for ab ∈ B, b 6= b∗

are solid. More precisely,p is the success probability of the follow-
ing sampling-without-replacementoperation: imagine a bag with
m balls in whichcm are red, and the others blue; we samples
balls from the bag without replacement, and call it asuccessif all
of them are red. Whenm is large enough,p can be approximated
with arbitrarily small error by the success probabilitycs of the
correspondingsampling-with-replacementoperation. So, conser-
vatively, assumep ≥ cs − ε ≥ cλ− ε, whereε > 0 is an arbitrarily
small constant. By Hoeffding’s inequality2,X ≥ (n−1)/2 > n/4
with probability at least1− exp(−2(n− 1)(p− 0.5)2), which is
at least 0.5 ifp ≥ (ln

√
2

n−1
)0.5 + 0.5. To ensure this, it suffices to

guaranteecλ ≥ (ln
√
2

n−1
)0.5 + 0.5 + ε. Hence, for largen, we can

setc to 0.61/λ.
We have shown, for a specificλ, there is always ac that makes

SS worse than SOE by a factor ofΩ(m) onG2(n,m) (implying SS
cannot be instance optimal). To break the argument,λ cannot exist
which, by the definition ofλ, means thats must beω(1). This,
however, conflicts with the requirement ofs onG1(n,m).

2In general, ifX obeysB(n, p), thenPr[X ≤ x] ≤ exp(−2(np−
x)2/n).

