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ABSTRACT

The previous literature of privacy preserving data pulticcahas
focused on performing “one-time” releases. Specificalbnen of
the existing solutions supponts-publicationof the microdata, af-
ter it has been updated with insertions atedetions. This is a se-
rious drawback, because currently a publisher cannot geore-
searchers with the most recent dataset continuously.

This paper remedies the drawback. First, we reveal the chara
teristics of the re-publication problem that invalidate ttonven-
tional approaches leveragiriganonymity and-diversity. Based
on rigorous theoretical analysis, we develop a new geretain
principle m-invariance that effectively limits the risk of privacy
disclosure in re-publication. We accompany the principith\an
algorithm, which computes privacy-guarded relations fiemit
retrieval of accurate aggregate information about theiraigmi-
crodata. Our theoretical results are confirmed by exteresiperi-
ments with real data.

Categories and Subject Descriptors: H.3.3 [Information Search
and Retrieval]: Retrieval Models.

General Terms. Algorithms, Theory.

Keywords: Privacy, Generalizationn-invariance.

1. INTRODUCTION

Privacy preservation has received considerable attefroomthe
database community in the past few years. Depending on ke ro
of the underlying server, the previous research can beifitass
into two categoriescentralized publicatiomnddistributed collec-
tion. The first category assumes that the dataset, calietbdata
is stored at &rustableserver. The server releases the data in a man-
ner that protects personal privacy, and permits effectiiréng on
the microdata. The second category addresses a differamaisa,
where anun-trustableserver independently contacts a set of indi-
viduals, and solicits a tuple from each person. The objed#to
devise an approach that allows each person to randomizeser/
ple, such that the server can use the collected datasetsteaneh,
yet cannot accurately infer the original form of any tuple.

This paper concerns centralized publication. Consider ¢ha
hospital releases the diagnosis records in Table la to adewdic
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searchers, after discarding the attribhiegme(we include this col-
umn for row referencing). Columbiseaseis sensitive as it con-
tains patients’ private data to be protected. Assume thadaar-
sary knows Bob’s age 21, Zipcode 12000, and the fact that Bob
has been hospitalized before (and thus has a tuple in the-micr
data). S/he can find out that the first tuple is associated Bath
namely, Bob must have contractdgspepsia Here, columns\ge

and Zipcodeare quasi-identifier(Ql) attributes, since they can be
combined to pinpoint an individual.

Generalizatio{19] is a popular methodology of privacy preser-
vation. lIts rationale is to divide the tuples into sevepalgroups
and then generalize the QI values in each group to a uniform fo
mat. A generalized version of Table 1a is presented in Table 1
The transformation is based on five QI groups, each of which is
assigned a group ID as indicated in the first column of Table 1b
Imagine that the hospital publishes Table 1b instead. Teeiquis
adversary can no longer uniquely decide Bob’s diseaseg sititer
of the first two tuples can belong to Bob, i.e., his disease bey
dyspepsiar bronchitis

A generalized table is considered privacy preserving, shiis-
fies ageneralization principle The earliest principlek-anonymity
[18, 20], requires each QI group to include at lefastples (e.g.,
Table 1b is 2-anonymous). Machanavajjhala et al. [15] psepo
an improved principlel-diversity, which demands every QI group
to contain at least “well-represented” sensitive values. The no-
tion of well-represented can be interpreted in several iildys A
popular interpretation is that, in each QI group, at mig4tof the
tuples should possess the same sensitive value. By thistidefjn
Table 1b is 2-diverse. In general, stronger privacy prateds en-
sured, when a largdror [ is deployed.

1.1 Motivation

With a single exception [6], all the existing methods for cen
tralized publication focus on static microdata. Specificahey
are restricted to only one-time publication, and do not supp
re-publication, after new (existing) tuples are inserteddeleted
from) the microdata. The seminal work by Byun et al. [6] is the
first to identify possible privacy attacks due to re-puliima, and
develops a solution to effectively prevent those attackswéver,
that solution supports only insertions, and is inapplieaibl the
presence of deletions. Privacy preserving re-publicatioe fully-
dynamic dataset remains an open problem.

To explain the difficulty of the problem, consider that a hitap
releases patients’ records quarterly, but each publicatioludes
only the results of diagnoses in the 6 months preceding the pu
lication time. Table 1la shows the microdata for the firstasée
at which time the hospital publishes the generalized @iat Ta-
ble 1b. The microdata at the second release is presentedlmZa
The tuples of Alice, Andy, Helen, Ken, and Paul have beenteléle



Name[Age[ Zip. | Disease G.ID| Age Zip. Disease Name|G.ID| Age Zip. Disease
Bob | 21 | 12000| dyspepsid 1 21, 22]| [12k, 14k]| dyspepsia Bob | 1 |[[21,22]][12k, 14K]|dyspepsij
Alice 22 [14000| bronchitis 1 21, 22]| [12k, 14K]|bronchitig c1 1 [[21, 22]| [12k, 14K]|bronchitis|
Andy [ 24 [ 18000 lu 2 23, 24]| [18Kk, 25K flu Da\(id 2 123, 25]| [21k, 25K]| gastritis
David[ 23 | 25000 gastritis 2 | [23, 24]| [18k, 25K]| gastritis Emily | 2 [[23, 25]| [21k, 25K]] flu
Gary | 41 | 20000 flu 3 36, 41]| [20K, 27K flu Jane| 3 37, 43]| [26k, 33K]| dyspepsia |Group-I1D |Count
Helen[ 36 | 27000 gastritis 3 |[36, 41]| [20k, 27K]| gastritis c2 3 [[37,43]] [26k, 33K]|  flu 1 1
Jane[ 37 [33000] dyspepsia 4 | [37, 43][ [26K, 35K]| dyspepsia Linda| 3 [[37, 43]| [26k, 33K]| gastritis 3 1
Ken [40 35000 flu 4 [[37, 43]| [26k, 35K]|  flu Gary | 4 [[41, 46]] [20k, SOK]] flu b) Published
Linda| 43 [26000] gastiis | |4 | [37. 43][26k. 35K]| gastrits Mary [ 4 [[4L, 46]| [20k, 30K]| gastriis| () f“. Ished
Paul [ 52 [ 33000] dyspepsid |5 | [52. 56]| [33k 34K][dyspepsia Ray [ 5 | [54, 56]| [31k, 34K]| dyspepsia counterfeit statistics
Steve| 56 | 34000| gastritis 5 52, 56]| [33k, 34K]| gastritis Steve| 5 54, 56][ [31k, 34K]| gastritis
- Tom 6 60, 65]| [36k, 44K]| gastritis
(a) Microdatal(1) (b) Generalizatio™ (1) Vince | 6 |60, 65]| [36k, 44K]|  flu

Table 1: Microdata and itsgeneralization at the 1st release

Name[Age[ Zip. | Disease | [G-1D| Age Zip. Disease
Bob | 21 | 12000| dyspepsia 1 ][21, 23]] [12k, 25K]| dyspepsia
David[ 23 [ 25000] gastritis 1 |[21, 23]| [12k, 25K]| gastritis
Emily[ 25 [21000] flu 2 |25, 43][[21k, 33K][ flu

Jane| 37 | 33000| dyspepsia 2 |[25, 43]| [21k, 33K] | dyspepsia
Linda| 43 [26000| gastritis 2 |[25, 43]| [21k, 33Kk]| gastritis
Gary | 41 [ 20000 flu 3 41, 46]| [20k, 30k flu

Mary [ 46 | 30000| gastritis 3 41, 46]| [20k, 30k]| gastritis
Ray | 54 | 31000] dyspepsidg 4 |54, 56]| [31k, 34K]|dyspepsia
Steve| 56 | 34000] gastritis 4 |54, 56]| [31k, 34K]| gastritis
Tom | 60 [ 44000] gastritis 5 | [60, 65]| [36k, 44K]| gastritis
Vince| 65 [36000] flu 5 | [60, 65]| [36k, 44K]| flu

(a) Microdatal’(2) (b) Generalizatio™ (2)

Table2: Microdata and its generalization at the 2nd release

(as they describe diagnoses over six months ago), while Surew
ples (with names italicized) have been inserted. Accotylirtge
hospital publishes the generalized relation in Table 2b.

Even though both published relations (Tables 1b and 2b)-are 2
anonymous and 2-diverse, an adversary can still precissigrd
mine the disease of a patient, by exploiting the correlatiemveen
the two “snapshots”. To illustrate this, assume, again, carera

(a) T (2) with counterfeits
Table 3: Remedying critical absence with counterfeits

lowed in the microdata. This is why re-publication is moraleh
lenging, when deletions must also be supported. One stfaigh
ward attempt to tackle deletions is to simply ignore themmisky,
deleted tuples are allowed to remain in the microdata, ard pu
lished in future releases together with the authentic silat have
not been deleted. Although this approach allows the apicaf
the insertion-only solution in [6], it has two obvious defecFirst,
the amount of data published at each release grows monatignic
with time, due to the increasingly-large number of garbagpes
that have been removed. Second, it becomes questionabtkexhe
the privacy guarantees in [6] are still valid, when an adwerss
aware of tuples’ deletion timestamps.

1.2 Contributions

This paper presents the first study on privacy preserving pub
lication of fully-dynamic datasets, which can be modifieddny
sequence of insertions and deletions. The core of our salusi
the integration of two novel concepts:-invarianceand counter-
feited generalizationThe former is a new generalization principle,
whose satisfaction ensures strong protection of sensitfeema-
tion in re-publication. The latter is a technique that fiéaies the

sary who has Bob’s age and Zipcode, and knows that Bob has aenforcement ofn-invariance, in the presence of critical absence.

record in both Tables 1b and 2b (i.e., Bob was admitted fattre
ment, within 6 months before both publication times). Based
Table 1b, the adversary is certain that Bob must have cdattac
eitherdyspepsieor bronchitis From Table 2b, s/he finds out that
Bob’s disease must be eithéyspepsiar gastritis By combining
the above knowledge, the adversary correctly capturessBedl
diseasalyspepsia

The situation in practice, unfortunately, is much worsenc8i
each tuple in the microdata may be involved in any number lof su
sequent publications (until the tuple is deleted), theeesamply
too many potential correlations among various snapshatstiay
be utilized to derive sensitive values. Therefore, we needva
generalization principle, which guards privacy againgeriences
leveraging any possible correlations. The dilemma, howévéhat
such a principle may not exist at all, due to a phenomenon fee re
to ascritical absence

Let us explain the phenomenon by re-examining the first selea
from the hospital. Given Table 1b, an adversary (having 8ob’
QI particulars) is sure that Bob contracteggspepsiar bronchitis
The valuebronchitis unfortunately, is absent in the microdata (Ta-
ble 2a) at the second release. As a resdtnatter how Table 2a is
generalized, publishing the generalized version alwaybkas the
adversary to eliminate the possibility that Bob contradbeainchi-
tis. Therefore, Bob’s privacy will necessarily be breachedrafie
second release.

Note that critical absence never occurs, if only insertiaresal-

To illustrate the idea, let us revisit the scenario, wheeethtbspi-
tal has published Table 1b (with respect to the microdatdeThd),
and tries to release an anonymized version of Table 2a. Otlnatie
leads to publication of Table 3a, and an auxiliary Table JiecH-
ically, Table 3a involves a generalized tuple for every rowTa-
ble 2a, together with twaounterfeit tuples:; andce (names are
not published; they are included for row referencing). TBeu-
ples are partitioned into six QI groups. Table 3b indicated &
counterfeit is placed in QI groups 1 and 3, respectively fihe
pose of releasing such statistics is to enhance the eféeetss of
data analysis).

From an adversary’s perspective, a counterfeit tuple isiimd
guishable from the other rows in the QI group (that contalres t
counterfeit). Let us consider once more the adversary whdhe
precise QI details of Bob, and attempts to infer the dise&8ob
from Tables 1b, 3a, and 3b. S/he knows that the tuple of Boli mus
have been generalized to the first QI groups of Tables 1b and 3a
respectively. These groups encompass the same set ofivsensit
values {dyspepsiabronchitis;. Therefore, the adversary cannot
eliminate any disease that Bob cannot have contracted. tNate
although the adversary learns (from Table 3b) that a cofaitex-
its in QI group 1 of Table 2a, s/he still cannot narrow down the
possible diseases of Bob. In fact, to the adversary, theaeb3%
chance that the first tuple of Table 2a would be the counterfei

The two releases (Tables 1b and 3a) have an important pyopert
If a tuple appears in the microdata at both publication tiareps,



it is generalized to two QI groups (one per timestamp) coirigi

the same sensitive values. For instance, the t(jdee, 37, 33k,
dyspepsiabelongs to both Tables 1a and 2a. Itis generalized to QI
groups 4 and 3 in Tables 1b and 3a, respectively. The two group
include an equivalent set of diseas¢dyspepsiaflu, gastritis} (as

is achieved via a counterfeit). As a result, even if an adversary
finds out both QI groups, s/he can only conjecture that Jatig’s
ease may be an element in that equivalent set.

Indeed, the key to privacy preserving re-publication isrieuge
certain “invariance” in all the QI groups that a tuple is getieed
to in different snapshots. In this paper, we establish thiditig
through a systematic study of the re-publication probleirstFve
formalize several important concepts that constitute db@dation
of investigating privacy disclosure in re-publication. rGarmal-
ization captures all the existing generalization schersesh(as full
domain/subtree generalization, single-/multi-dimensiecoding,
global/local recoding; see [12] for the semantics of thebemes),
and generalization principles (e.g-anonymity,/-diversity, etc.).

As the second step, we present a careful analysis on theytheor
of privacy protection. Specifically, we elaborate how aneadary
can reconstruct the microdata by combining all the pubtistze
bles. This allows us to calculate the risk of privacy disatesin an
educated manner. The resulting formulae explain the fibdithe
previous generalization principles, and lead to the dermknt of
m-invariance. We show that the new principle effectivelyitgthe
disclosure risk.

Finally, we design an efficient algorithm for computing psbt
able relations that conform ta-invariance. Our algorithm maxi-
mizes the utility of the released data, by minimizing (i) thenber
of counterfeit tuples, and (ii) the amount of generalizatam the
QI attributes. Furthermore, the algorithmnsremental namely, it
enables the publisher to complete ti¢h publication, by consult-
ing only the data of the last release. As a result, infornmatéated
to thej-th publication (for anyl < j < n — 2) does not need to be
retained.

The rest of the paper is organized as follows. Section 2 for-
malizes the underlying concepts and the re-publicatiorblpro.
Section 3 presents our theoretical results on privacy prasen.
Section 4 proposes an algorithm for findinginvariant general-
ization. Section 5 experimentally demonstrates the inaaey) of
k-anonymity and-diversity, and the effectiveness of the proposed
technique. Section 6 reviews the previous research retatedrs.
Section 7 concludes the paper with directions for futurekwor

2. FUNDAMENTAL DEFINITIONS

LetT be a microdata table maintained by the publisher. We clas-
sify the columns off" into: (i) an identifier attributed®®, which is
the primary key off’, (ii) d quasi-identifier (Ql) attributed ?*, ...,

Agi, and (iii) a sensitive attributel®. Following the literature’s
convention [15], we requirel® to be categorical, while the other
attributes can be either numerical or categorical. For ¢aglet,
t[A] denotes its value on attribute

As time evolves,T" is updated with insertions and deletions,
which can arrive in any order. The publisher may release an
anonymized version df" at any time, as long as it is possible to
do so without compromising privacy. We use an integer denote
the timestamp of thg-th publication.

Let T'(j) be the snapshot df’ at time j. The publisher re-
leases a pair of relatiodd"" (j), R(j)}, whereT* (j) anonymizes
T(j), andR(j) is an auxiliary table providing some statistics about
T*(5). In particular, anonymization is achieved througdunter-
feited generalization Before formalizing this new concept, we
clarify several basic notions:

DEFINITION1 (QI GROUP/ PARTITION). For a microdata
tableT'(j), a QI group is a subset of the tuples ifi(j). A par-
tition of 7T'(j) consists of disjoint QI groups whose union equals
T'(j). Each QI group is assigned an ID that is unique in the parti-
tion.

Foratuplet € T'(5),t.QI(j) denotes the QI group that contains
t. We refer toe.Q1(j) as thehosting group of ¢ in T'(5).

We are ready to formulate tl%"(j) published at timg.

DEFINITION 2 (COUNTERFEITEDGENERALIZATION).
The anonymized versidli*(j) of T'(j) is computed based on a
partition of T'(5), and has the following properties:

1. T*(j) contains a columm? named “Group-ID”, and all

attributes inT'(j) exceptA™.

. Each tuplet € T'(j) has ageneralized tuplet™ € T7(j)
suchthat™[A°] = t[A”], t[A7] is the ID of the hosting group
oftinT(j), andt*[A%"] (1 < i < d)is anintervat covering
t[A?]. The value of*[A¢] also satisfies Property 4.

. Foreach QI grougQI of T'(5), T (j) may contain any num-
ber of counterfeit tuples ¢> such thatt’[A°] is a value in
the domain of4?, t;[A7] equals the ID ofQ1, and¢*[AY"]
(1 < i < d)isaninterval subject to Property 4.

. All'tuples inT™* (j) with the samed? have an identical value
on every Ql attribute. These tuples forr@agroup in 7 (5)
whose ID is thed? value in the group.

Foratuplet € T'(j), t.QI*(j) denotes the QI group i (j) that
contains the generalized tuple of We refer tot.QI"(j) as the
generalized hosting group of t in 77 ().

Clearly, counterfeited generalization captures existingeral-
ization schemes in the literature as special cases, whea ihao
counterfeit. The next definition clarifies thie(;) released along
with 7 (5):

DEFINITION 3 (AUXILIARY RELATION). The auxiliary re-
lation R(j) accompanyindl™(j) has two columns “Group-ID”
and “Count”. For each QI group@QI™* in T*(5) that contains at
least a counterfeit, there is a rogy, c) in R(j), whereg is the ID
of QI andc is the number of counterfeit tuplesdn/*.

R(3j) is empty, if no counterfeitis presentTri (7). As explained
in Section 5.2, the counterfeit information RYj) is necessary for
a researcher to derive accurate understanding about thiedata
from the published data.

ExampPLE 1. We illustrate the previous definitions by setting
T'(j) to Table 2a,17(5) to Table 3a, and?(j) to Table 3b. Con-
sidert as the tuplegBob, 21, 12k dyspepsiain T'(j). Its hosting
groupt.QI(j) consists of the first two rows df'(j). Its gener-
alized tuple inT*(5) is (1, [21, 22], [12k, 14K]dyspepsia The
generalized hosting groupR [ (j) of ¢ contains the two rows with
Group-ID=1inT"(j). In particular, the tuple; int.QI"(j) isa
counterfeit, which does not have any corresponding tuplg(if).
There is another counterfeit in the QI group with ID 3. R(j)
summarizes the number of counterfeits in each QI group. =

To make the interval well-defined on a categorid4l, we trans-
form A?" into a numerical attribute, by placing a total ordering on

its values. When there is a generalization hierarchyl(;)h(a com-
mon assumption in the literature [12]), this ordering liatsthe
leaves of the hierarchy from left to right.



DEFINITION 4 (GENERALIZATION PRINCIPLE). A general-
ization principle is a set of constraints that must be satisfied by
the QI groups in"™*(1), ...,T"(n).

For instancek-anonymity and-diversity are two generalization
principles. Specifically, the former imposes the constridiat each
QI group inT*(j) (1 < 7 < n) must have at least tuples; the
latter demands that the sensitive values in each QI groupglie
represented. In general, a generalization principle msy raquire
that the QI groups of multipld™*(j) (with differentj € [1,n])
should jointly fulfill certain conditions.

When the publisher is preparif@™ (n), R(n)} (wheren > 1),
it must take into account the information that an adversanyoom-
bine withT*(n) to intrude privacy. Apparently, such information
includes all the data iff"”* (1), ..., 7" (n — 1) released previously.
Furthermore, the adversary may also possess “backgrowowdkn
edge” that does not exist in those relations. To formalizehsu
knowledge, we first introduce a notatidéh(n):

DEFINITION5 (HISTORICALUNION). At timen > 1, the
historical union U(n) contains all the tuples iff” at timestamps
1, 2, ...,n, respectively. Formally:

Un) = J T0) (1)
j=1

Each tuplet € U(n) is implicitly associated with &fespan [z, y],

wherex (y) is the smallest (largest) integgrsuch thatt appears

inT(5).

U(n) can be regarded as a table with the same schenfa as
Note that, if a tuple appears in sevefa(;) with differentj, it is
included only once iU/ (n). Now we can define the background
knowledge that can be tackled by our technique.

DEFINITION 6 (PRIORKNOWLEDGE). At timen, an adver-
sary'sprior knowledge includes

e the deployed generalization principle, and

e a knowledge table B(n), which has a columm? named
“Group-ID”, a column A' named “Lifespan”, and all the
attributes ofU (n) exceptA®.

For every tuplet € U(n), there is a rowb € B(n) such
that b[AY] = *, b[A™] = t[A"], b[AY] = t[AZ] for all
1 < i < d, andb[A!] equals the lifespan af

For every counterfeit. in each7™(j) (wherel < j < n),
there is arowb. € B(n) such thab.[A?] = t.[A], b.[A"]
is any counterfeit identification unique iB(n), b.[A?'] = 0
forall 1 <i < d, andb.[A'] = [4, 4].

Equivalently, B(n) incorporates (i) everything iV (n) except
column A°, (ii) the lifespan of each tuple iV (n), and (iii) the
published details of all the counterfeits.

EXAaMPLE 2. We explain Definitions 5 and 6 by assumimg-=
2, and that Tables 1a, 1b, 2a, 3a, and 3b&(¢), 7" (1), T'(2),
T7(2), andR(2) respectively.

U(2) includes all the tuples iff'(1) andT'(2), after eliminating
the duplicates. The lifespan of the tugRob, 21, 12k dyspepsia
is[1, 2], since it remains ifi" during the entire history. On the other
hand, the lifespan ofAlice, 22, 14k,bronchitig is [1, 1], because
the tuple is inserted at time 1 and deleted at time 2.

Table 4 demonstrates part of the knowledge tabi{@). As an
example, for tupleé = (Bob, 21, 12kdyspepsiain U(2), the corre-
sponding rowb € B(n) is the first tuple of Table 4)[Group-ID]=x

Group-ID | Name | Age | Zip Lifespan
* Bob 21 | 12000 1,2
* Alice | 22 | 14000 1,1
* Helen | 36 | 27000 1,1
* David | 23 | 25000 2,2
1 c1 0 0 2,2
3 c2 0 0 2,2

Table4: Adversaries’ background knowledge

means that the adversary is not sure about the generaliztithdno
groups oft. In general, foreveryindividual involved inU(n), the
adversary knows her/his identity, exact QI particulars] asich
of the published relations contain her/his record.

Let t. be the counterfeit; in Table 3a. Its corresponding row
b. € B(n) is the last-but-one tuple in Table 4. The adversary
knowsb.[Group-ID] = 1 because this value is explicitly indicated
in R(2). The QI values ob. aref), since, in general, counterfeits
do not have any “original QI values” before generalizatiorhe
lifespan of every counterfeit covers only a single timegiarkor
instancep.[Lifespar) implies thatt. is in 7" (2). n

Notice that, if we eliminatéGroup-ID andLifespan B(n) de-
generates into an external database (most popularly, a negis-
tration list) commonly assumed [18, 20] as the adversarsir p
knowledge, for carrying out privacy attacks ork-@nonymoust
diverse relation. In reality, an adversary’s knowledgeydally
much weaker than that representedBiin). In the application
context of Table 1, for instancd3(n) essentially includes (i) the
names, ages and Zipcodesalf patients, and (ii) the exact dates
of their visits to the hospital! In other words, by guardingaast
attacks leveraging the background knowledge in Definitipw®
aim at privacy preservation under more hostile circumstartban
would be encountered in practice.

Observe that all the information iR(1), ..., R(n) has been cap-
tured byB(n). Thus, we formulate privacy disclosure as follows:

DEFINITION 7 (PRIVACY BREACH). A privacy breach oc-
curs if an adversary correctly finds out the sensitive valfiany
tuplet € U(n), utilizingT* (1), ...,T"(n), and B(n).

For instance, in Example 2, it is a privacy breach, if an astver
can reconstruct the sensitive valdgspepsian tuplet = (Bob, 21,
12k, dyspepsia e U(2), from Tables 1b, 3a, and 4.

We close this section with an inductive definition of the re-
publication problem.

DEFINITION 8 (RE-PUBLICATION). Assume that the pub-
lisher has released — 1 anonymized versions of the microd&dta
{T*(1), R()} ...{T"(n — 1), R(n — 1)}, wheren is an integer
> 1, and{T"(j), R(j)} 1 < j < n — 1) is defined in Defini-
tions 2 and 3. The objective pfivacy preserving re-publication
is to compute a pair of 7" (n), R(n)} that minimizes the risk of
privacy disclosure, yet captures as much information inrttiero-
data as possible.

3. THEORY OF PRIVACY PROTECTION

Before releasing™ (n), the publisher must guarantee that the
privacy of every tuple i/ (n) has been adequately protected. This
section provides the underlying theory towards that objectin
Section 3.1, we quantify the risk of privacy disclosure. ih8ec-
tion 3.2 establishes the importance of ensuring “persistemari-
ance” in re-publication, which leads to the development nbeel
generalization principle in Section 3.3.



U*(2) £ B(2)

r*={1, 21, 22], [12k, 14k], dyspepsia, 1}}
*={1, [21, 22], [12k, 14k], bronchitis, 1}
1*5={4, [37, 43], [26k, 35k], flu, 1} —__|
*%={1, [21, 22], [12k, 14k], dyspepsia, 2}
*s={1, [21, 221, [12k, 14K], gastritis, 2} ——>

bi={*, Bob, 21, 12k, [1, 2]}
by={*, Alice, 22, 14k, [1, 1]}
by={*, Helen, 36, 27k, [1, 1]}
be={1, e, @, @, [2, 21}

(a) Reasonable surjection

U*(2) P B(2)
*={1, [21, 22], [12k, 14K], dyspepsia, 1}}—
! > bi={*, Bob, 21, 12k, [1, 2]}

r#={1, [21, 23], [12k, 25k], gastritis, 2}

(b) Unreasonable surjection violating Condition 1.1 of Definition 13

U*(2) P
*={1, [21, 22], [12k, 14K], dyspepsia, 1}
*={1, [21, 22], [12k, 14K], bronchitis, 1}

(c) Unreasonable surjection violating Condition 1.2

B(Q2)

bi={*, Bob, 21, 12k, [1, 2]}

Figure 1. Microdata reconstruction from surjective functions

3.1 Microdata Reconstruction

We will explain how an adversary can reconstruct the midiada
tablesT'(1), ...,T'(n) from the published™* (1), ...,7"(n) and the
knowledge tableB(n). For this purpose, we need a generalized
counterpart of Definition 5:

DEFINITION9 (GENERALIZED HISTORICAL UNION).
Given a generalized relatio*(5) (1 < j < n), we convert each
row t* € T (j) to atimestamped tuple (¢*, j), which augments
t* with another attributed™, called “Timestamp”, storingj.
Thegeneralized historical union U* (n) includes all the times-
tamped tuples converted frofff (1), ...,7" (n), or formally:

U (n) = Q (U @.9)

t*eT*(j5)

@)

Note that counterfeits it () (1 < j < n) also have converted
tuples inU* (n). Regarding/*(n) and B(n) as two sets, next we
define a class of surjective functions frdif (n) to B(n).

DEFINITION 10 (REBUILDING SURJECTION. Mapping f:
U*(n) — B(n) is arebuilding surjective function if it fulfills
these requirements:

1. it maps each tuple¢® € U*(n) to arowb € B(n), which is
represented ag(t*) = b;

2. for any rowb € B(n), there exists at least a tuple <
U™ (n) such thatf(t*) = b;

3. if f(¢t*) = b, then
3.1. b[A'] containst™[A"™];
3.2. t*[A9]=b[AY] (the equality always holds #{ A7] = x);
3.3. t*[A?"] coversb[AZ'] along every QI attributel?" (the
covering relationship always holdstfA}'] = 0).

Conditions 1 and 2 constitute the standard mathematical defi
nition of surjection. Conditions 3.1-3.3 will be explainedth a
concrete example.

ExamMPLE 3. We illustrate Definitions 9 and 10 by settingo
2,7*(1) andT™"(2) to Tables 1b and 3a respectively, aBd2) to
Table 4.

The left box in Figure 1a encloses five timestamped tugiles.,
t5 in the generalized historical unidin*(2). For instancet; = (1,
[21, 22], [12k, 14k] dyspepsial) augments the first tuple ifi* (1)
with timestamp 1, that ig;; [A"™] = 1. Similarly, t; augments the
first tuple in7*(2) with timestamp 2. The right box contains four
rowsby, ... bs from B(2), including a counterfeibs.

The arrows depict five mappings in a surjective functipn
namely, f(t7) = b1, f(t3) = b2, f(t3) = bs, f(ti) = by and
f(t3) = ba. Mapping f(¢t7) = bi1, for example, qualifies Condi-
tion 3.1 in Definition 10 becauda [A'] = [1, 2] encloses;[A"™]
= 1. It satisfies Condition 3.2 ds[A?] = *. Finally, it fulfills Con-
dition 3.3 sinceti[Agd = [21, 22] and¢;[Zipcodé = [12k, 14K]
containb; [Agd = 21 andb: [Zipcodd = 12k, respectively. n

Rebuilding surjection can be used to reconstruct a possédie
sion of the microdata tablég(1), ..., 7'(n):

DEFINITION 11  (POSSIBLEMICRODATA INSTANCE). Let f
be a function in Definition 10. For each mappirfgt*) = b such
that b°? is not counterfeit identification, we first obtain the times-
tampj = t*[A'™], and then reconstruct a tuple iA(j) as

(LA™, [AT'], ..., b[AF], 7[A7]). ®)

All the reconstructed tuples constitutepassible microdata in-
stance.

The instance rebuilt fronfi is a possible version of the microdata
that can result if"* (1), ..., 7" (n) through counterfeited general-
ization (Definition 2), as elaborated next.

DEFINITION 12 (POSSIBLEGENERALIZATION INSTANCE).
Let f be a rebuilding surjective function. For any rotve B,
f£71(b) denotes the set of tuplés € U*(n) satisfyingf (t*) = b.

Mapping f *: B(n) — U*(n) determines a counterfeited gen-
eralization process of obtainirig* (1), ...,7* (n) from the possible
microdata instance rebuilt by. Specifically, given eadhe B(n),
we distinguish two cases:

o [b'is personal identificationFor everyt* € f~*(b), regard
t* as the generalized tuple ifi* () of the microdata tuple in
Formula 3 (reconstructed from mapping¢*) = b), where
Jj=t"[A"].

e [b' is counterfeit identificatichFor everyt* € f~'(b), re-
gardt* as a counterfeit tuple ifi’™* (j) wherej = t*[A"™].

The above process ispssible generalization instance.

ExXAMPLE 3 (CONTINUED). We explain Definitions 11 and 12
using Figure 1la. The meaningsf ...,t5, b1, ..., bs are as men-
tioned in Example 3.

The five mappings (indicated by arrows) reconstruct fouletsip
in the microdata table$'(1) and 7'(2) (no reconstruction from
f(tt) = ba, asbs[A"] = ¢, is counterfeit identification). For
example, f(t]) = by implies taking the QI values in: as the
original forms of those in;] before generalization. This way, we
reconstruct a tupléBob, 21, 12kdyspepsiain 7'(1), conforming
to Formula 3. Similarly,f(¢1) = b1 rebuilds the same tuple in
T(2); f(t5) = be indicates a tupléAlice, 22, 14k,bronchitis in
T(2).

Reconstruction is not always accurate. For instafi¢g,) = bs
gives (Helen, 36, 27kflu) in 7'(1), but the real disease of Helen



is gastritis In other words, for each € [1, n], function f decides
only a possible, but not necessarily the actiidl;).

We proceed to illustrate the counterfeited generalizatieter-
mined byf~'. f~'(b1) equals{t},t;}. Hence, by Definition 12,
t] is the generalized tuple dBob, 21, 12kdyspepsiain 7*(1),
which, as mentioned earlier, is restored frgift}) = bi. By
the same reasoningj is the generalized tuple dBob, 21, 12k,
dyspepsiain 7*(2). As another example, considgr*(bs) =
{tz}. Sincebs[A*] is counterfeit identificatior; , 3 is a counter-
feit tuple added t@"* (2) in the generalization process. n

There is agenuine surjective functiorwhich exactly recon-
structs the original microdata. If the adversavgre able to dis-
cover this surjection, s/he would reveal the sensitivermtion of
all individuals. Fortunately, as the tuplesifi (n) have been gen-
eralized, there exist a huge number of possible surjeatinetions
from U™ (n) to B(n). The best the adversary can do is to eliminate
as many “unreasonable” functions as possible, in orderaease
her/his chance of identifying the genuine surjection.

DEFINITION 13 (REASONABLE SURJECTION). A functionf
in Definition 10 isreasonable, if it satisfies these conditions:

1. the following holds for each row € B(n): Given the set
f1(b) of tuplest™ € U*(n) satisfyingf (t*) = b, then

1.1. alltuples inf~*(b) carry the same sensitive value;

1.2. for any timestamg in the lifespanb[A'] of b, there
exists a unique tupl&” € f~'(b) with t*[A"™] = j.

2. f~! decides a possible generalization instance that con-
forms to the deployed generalization principle (Definitin

EXAMPLE 4. Condition 2 in Definition 13 is straightforward.
Next we clarify Conditions 1.1 and 1.2 by assuming the same
T*(1), T*(2) and B(2) as in Example 3.

Consider the surjection in Figure 1b, where tuglgst; andb,
are identical to those in Figure 1a. In the reconstructediptesmi-
crodata instance, Bob has two different record¥'{n) and7'(2),
carrying sensitive valuedyspepsiandgastritis respectively. This
contradicts the semantic 6f, whose lifespari1, 2] indicates that
Bob should have the same tuple’ifl) and7’(2). Thus, the sur-
jection is unreasonable, which is captured by Definition3j3ecif-
ically, botht} andt# belong tof~'(b1); hence, Condition 1.1 is
violated.

The surjection in Figure 1c is also unreasonable. HETE(b1)
equals{ti, ¢35} (both tuples have timestamp 1), which breaches
Condition 1.2 for two reasons. First, more than one tupl@ (i)
is mapped td;. This is impossible, because Bob (in general, any
individual) has at most one record in the microdata at timgeic-
ond, no tuple inZ"(2) is mapped td,, contradicting the fact that
Bob has a record at time 2. =

Naturally, we arrive at the following formulation of privateak-
age risk.

DEFINITION 14  (PrRIVACY DISCLOSURERISK). Lett¢ be a
tuple in the historical uniori/(n). Theprivacy disclosure risk
risk(t) of t is represented as

4)

wheren:,tq; is the number of reasonable surjective functions, and
nereach (t) IS the number of those functions that correctly recon-
struct the sensitive value of

risk(t) = noreacn (t) /Niotat,

A surjective function may correctly reconstruct the sewsit
value of a tuple, but at the same time, incorrectly recoustat
of another. For instance, the surjection in Figure 1a pedgise-
stores the diseastyspepsiaf Bob, but indicates a wrong disease
flu of Helen, as explained in Example 3. Therefore, variousesipl
in U(n) can have different privacy disclosure risks.

Specially, ifnpreqch (t) = niotar (€Qquivalentlyrisk(t) = 1), an
adversary (with the background knowledgeBiin)) will discover
the true sensitive value ofwith 100% confidence. In general, un-
der the random-world assumption [4] where every reasorable
jection is equally likelyyisk(t) is the probability that an adversary
can breach the privacy of

3.2 Persistent Invariance

In the sequel, we use the analysis in Section 3.1 to discuss
the properties that should be possessed by privacy pregerei
publication. Our discussion utilizes a crucial concept:

DEFINITION 15 (CANDIDATE SENSITIVE SET). Let ¢t be a
tuple inU(n). Thecandidate sensitive set ¢t.C'SS(j) of ¢ at time
J is the union of the sensitive values in each QI grapp” of
T*(4), such thatQI*[A¥"] containst[A]’] on every attributed!’
(1 <i < d), whereQI*[A%] is the A% value inQI*.

The next result points out the tuplesifi(n) whose privacy is
the most vulnerable in re-publication.

LEMMA 1. Lett be atuple inU(n) with a lifespan[z, y]. Re-
gardless of the generalization principle appliedsk(t) = 1, if
only a single element exists#rC'SS(z) Nt.CSS(z +1)N...N
t.CSS(y).

PROOF The proofs of all lemmas can be found in the ap-
pendix. O

EXAMPLE 5. We demonstrate the lemma, by settimgo 2,
T(1) andT’(2) to Tables 1a and 2a respectively; (1) to Table 1b,
and7(2) to Table 2b (notenot Table 3a).

Let ¢ be the tuple(Bob, 21, 12k,dyspepsig which belongs
to U(2) and has a lifespafil,2]. The candidate sensitive set
t.C'SS(1) at time 1 includes the sensitive valudgspepsiaand
bronchitis in QI group 1 of 7"(1). Similarly, t.C'SS(2) is
{dyspepsiagastritis}. Therefore, by Lemma 1, the privacy dis-
closure risk oft is 1. Namely, an adversary can precisely derive its
real disease, confirming the discussion in Section 1.1. n

Lemma 1 reveals the reason behind the failuré-@nonymity
and [-diversity in re-publication:neither generalization principle
can prevent the situation stated in the lemri&ach principle con-
straints only individualt.CSS(j) (for j € [z,y]), but ignores
the relationships among these sets. Specificalgnonymity en-
sures that each.C'SS(j) has a size at leadt, while [-diversity
guarantees that the sensitive values in evefy/*(j) are well-
represented. Nevertheless, itis still possible that osiygle value
appears im¥__t.C'SS(j).

A general version of Lemma 1 is:

LEMMA 2. m?;xt.CSS(j) includes all the possible sensitive
values oft, reconstructed from reasonable surjective functions.

The lemma theoretically justifies our intuition: frof* (1), ..,
T*(n) and B(n), an adversary can learn that the real sensitive
value oft must fall inn¥__¢.C'SS(j). Hence, to protect privacy,
re-publication must ensure a sufficiently Iar@?;xt.CSS(j) af-
ter every publication. In other words, amvariant set of sensi-
tive values shoulgersistentlyappear inﬂ?zxt.C’SS(j) at each



publication timestamp, until is deleted from the microdata. This
persistent-invarianceobservation motivates a new generalization
principle in the next subsection.

3.3 me-Invariance
We will need the following concept frequently.

DEFINITION 16 (SGNATURE). Let QI be a QI group in
T7(j) foranyj € [1,n]. Thesignatureof QI is the set of distinct
sensitive values i)~

Note that if a sensitive value is carried by multiple tuple&ir *,
the value appears only once in the signature. Next, we peopes
invariance which is the key to privacy protection in re-publication.

DEFINITION 17 (m-INVARIANCE). A generalized table
T*(j) 1 < j < n)is m-unique, if each QI group inT*(5)
contains at leastn tuples, and all the tuples in the group have
different sensitive values.

A sequence of published relatiof$ (1), ...,7*(n) (wheren >
1) is m-invariant if the following conditions hold:

1. T*(4) is m-unique for allj € [1, n].

2. For any tuplet € U(n) with lifespan|z,y], t.QI"(z),
t.QI"(x + 1), ...,,t.QI" (y) have the same signature, where
t.QI*(j) is the generalized hosting group (see Definition 2)
oft attimej € [z, y].

m-~unigueness demands that each sensitive value shouldrappe
at most once in every Ql-group. Apparently;uniqueness implies
m-diversity, but not the vice versa. The rationalenefinvariance
is that, if a tuplet (from the microdata) is published several times,
all its generalized hosting groups must contain the samsitsen
values. In Example 5, Tables 1b and 2b are 2-unique, but tbey d
not constitute a 2-invariant sequence. To understand thig,bet
the tuple of Bob in the microdata.QI*(1) andt.QI*(2) are the
first Ql-group in Tables 1b and 2b, respectively. The two €lups
do not encompass the same sensitive values, thus viol&grggt-
ond condition of Definition 17. On the other hand, in Example 3
{Table 1b, Table 2pis a 2-invariant sequence.

LEMMA 3. If {T*(1), ...,T"(n)} is m-invariant, then
risk(t) <1/m

foranyt¢ € U(n), whererisk(t) is given in Equation 4.

Therefore, the publisher can simply setto a sufficiently large
value to achieve the target extent of privacy preservation.

LEMMA 4. If {T*(1), ..., T*(n — 1)} is m-invariant, then
{T*(1), ..., T*(n—1), T"(n)} is alsom-invariant if and only if:

1. T*(n) is m-unique;

2. for any tuplet € T'(n — 1) N T'(n), its generalized hosting
groupst.QI*(n—1) andt.QI*(n) have the same signature.

Lemma 4 points to an incremental approach for performing re-
publication. Specifically, to prepar€*(n), the publisher only
needs to consult the microdata tablEén — 1), T'(n), and the
last released versidfi*(n — 1). The older microdata tablés(1),

..., T'(n — 2), as well as their published counterpais(1), ...,
T*(n — 2), do not even need to be retained.

4. M-INVARIANT GENERALIZATION

This section elaborates computation of #i€*(n), R(n)} re-
leased at the:-th publication. We focus ofi"*(n) because once
it is ready, producingR(n) is trivial, as shown in Definition 3.
Section 4.1 first describes our solution at a high level. Tisst-
tions 4.2 and 4.3 provide detailed explanation to two conepts
of the solution. Finally, Section 4.4 clarifies the recodsupeme
underlying our solution.

4.1 TheAlgorithm

We aim at achieving two intuitive goals. First, the number of
counterfeit tuples should be minimized, because they daoet
respond to any records in the microdata. Second, we usedbe le
generalization to distort QI values. Specifically, for eagblet, we
attempt to reduce, as much as possible, the lengtfi[af?’] (for
eachl < i < d), wheret” is the generalized tuple afin 7 (n).
Clearly, a shortet*[AY'] implies less information loss.

We permit then-th publication, only ifT’(n) — T'(n — 1) is m-
eligible, that is, at most /m of the tuples ifil’(n) — T'(n— 1) have
an identical sensitive value. Note tH&f{n) — T'(n — 1) is essen-
tially the set of new tuples ifi'(n). For example, ifn = 10, in the
application of Table 1, the requirement is that at most 10%hef
new patients irf’(n) contracted the same disease, which is fairly
reasonable. Note that this publishability constraint altylalready
exists in the literature [15]: no “recursi\(e"%, 2)-diverse” publi-
cation is possible, if the microdata is nateligible.

According to Lemma 4, calculation @f* (n) requires only mi-
crodata tableg’(n — 1), T'(n), and the last published relation

aT*(n — 1). Let us divide the tuples iff’(n) into two disjoint sets
Sn=T(n)NT(n—1)andS_ = T(n)—T(n—1). Our algorithm
ensures two properties:

1. For any tuplet € Sn, its generalized hosting groups
t.QI"(n — 1) andt.QI"(n) have the same signature (see
Definition 16).

. For any tuplet € S_, its generalized tuplé® in 7™ (n) is
in a QI group which has at least tuples, and all the tuples
have distinct sensitive values.

By Lemma 4, these properties establish the correctness @f).

We producel™ (n) in four phasesdivision balancing assign-
ment andsplit. The rest of this subsection elaborates each phase in
turn. We use a running example where= 2, n = 2, 7'(1) and
T*(1) are Tables 1a and 1b, respectively. Givief2) = Table 2a,
we will show how7™(2) = Table 3a is computed.

Division. For eacht € S, we define itsignatureas the signature
of its generalized hosting group i*(n — 1). This phase simply
partitions S into severabuckets such that each bucket contains
only the tuples with the same signature.

In the running example$S contains the tuples of Bob, David,
Jane, Linda, Gary, and Steve. Figure 2a shows the contettig of
buckets after this phase. The tuple of Bob, for example, tsg-a
nature{dyspepsiabronchitis} (i.e., the sensitive values in Group
1 of Table 1b). It is the only element in buckBf/C5. A bucket
can have multiple tuples. For exampB{/C, contains Gary and
David, since they share an equivalent signafihe gastritis}.

Balancing. Unlike in the previous phase, we will work with tu-
ples’ sensitive values, as opposed to their signatures. ay/¢hait

a bucketBUC' is balanced if every sensitive value in its signature
is owned by the same number of tuplesB&/C. For example, in
Figure 2a,BU C, is balanced, since its signature has two vafies
andgastritis each of which is possessed by a tuple. The objective
of this phase is to balance all buckets.



Gary| David Steve Bob Jane Linda
flu | gast. dysp/| gast. dysp/bron. dysp/|flu| gast.
BUC, BUC» BUCs BUC4

(a) Bucket contents after the division phase

Gary| David Ray | Steve Bob | ¢ Jane| co | Linda
flu | gast. dysp/| gast. dysp.|bron. dysp|flu| gast.
BUC, BUC» BUCs BUCy

(b) After the balancing phase

Vince| Tom

Emily | Mary

Gary | David Ray | Steve Bob | ¢ Jane| co | Linda
flu | gast. dysp/| gast. dysp|bron. dysp|flu| gast.
BUC, BUC» BUCs BUCy

(c) After the assignment phase
Figure 2: Illustration of our generalization algorithm

Each buckeBUC'is inspected in turn. IBUC'is not balanced,
there is a “shortage” of some sensitive valueBitiC'. In this case,
we attempt to fill the shortage by moving the tuplesSin into
BUC, as long as the resulting_ is still m-eligible (the reason
will be clear in a while).

In Figure 2a,BUC> is unbalanced, because there is one (tuple
with) gastritis but no dyspepsia S_ equals{Emily, Mary, Ray,
Tom, Vincel. We can move Ray (whodRiseasevalue isdyspep-
sid) to BUC, because there remainfl and 2gastritisin S_,
which is still 2-eligible. The update®U C>, shown in Figure 2b,
becomes balanced.

If S_ cannot be used to fix an unbalanced budk&tC, there are
two possibilities: (i) no tuple inS_ carries the required sensitive
value(s), or (ii))S— is no longerm-eligible after a tuple removal. In
both cases, we insert counterfeits to balaBééC'.

Continuing our example in Figure 2a, boBUCs and BUC4
are unbalanced, but neither of them can be remedied #ith
Specifically, BUC3 needs abronchitis which is absent inS_.
BUC4 needs dlu; although there are tuples wiftu in S_, re-
moving any of them leavesd@astritisand 1fluin S_, violating the
2-eligibility constraint. Therefore, as in Figure 2b, twaunterfeits
c1 and ¢y (with sensitive valuedronchitis and flu) are added to
BUC5 and BUC4 respectively, both of which are now balanced.
Recall that each counterfeit has a vafuen every QI attribute.

Assignment. In this phase, we assign the remaining tuple$'in
to buckets, subject to two rules. First, each tuple S_ can be
placed only in a bucket whose signature inclutle§’]. Second, at
the end of the phase, all buckets are still balanced. If macgsnew
buckets (each bucket’s signature contains at leasialues) may
be generated, and they also obey these rules. As provegdatér
an assignment scheme always exists, as lon§_as m-eligible
(which is why we insist on itsn-eligibility in balancing).

In the running exampleS_ = {Emily, Mary, Tom, Vincg af-
ter the balancing phase. Figure 2c illustrates the bucKess all
assignments. The 4 tuples f1r are all placed inBUC", which
remains balanced. We will discuss assignment in detail i+ Se
tion 4.2.

Split. This last phase processes each budk&tC' individually. It
splits BUC into |BUC|/s QI groups, where (> m) is the num-
ber of values in the signature &UC. Each group has tuples,
taking thes sensitive values in the signature, respectively.
Splitting optimizes the quality of generalization. ltefts, ..., ts
be the tuples in a group. Their generalized tuples form a Qugr
QI inthe published™(n). On each Ql attributel?* (1 < i < d),

QI*[A%]is theminimum intervabnclosing alk; [A%], ...t [A%].
Therefore, splitting aims at minimizing the length sum déivals
QI*[AT], ...,QI"[AY], as will be explained in Section 4.3.

Given BUC4 in Figure 2c, our split algorithm creates three QI
groups:{David, Emily}, {Gary, Mary}, and{Vince, Tom}. They
lead to QI groups 2, 4, and 6 in Table 3a. Similafy/C>, BUCs,
and BUCy result in QI groups 5, 1, 3, respectively.

A few last words concern the age [21, 22] of QI group 1 in Ta-
ble 3a. This group covers the tuple of Bob (age 21) and a counte
feit (age@). We would have published 21, if the minimum-interval
generalization were followed. In practice, however, peasgar-
ticulars should not be released directly, for several nesistis-
cussed in [16]. Hence, we require each QI valu&'irfn) to be an
interval whose length is at least a threshold (e.g., 24g8. This
threshold may vary for different QI attributes (e.g., 2kZagpcodg.

4.2 The Assignment Phase

The algorithm of the assignment phase accepts as a paraheeter
setS_ passed from the previous phase, and runs in iterations. Each
iteration moves a s&,..,,., of -3 tuples fromS_ to a bucketBUC'
whose signature contairis(> m) sensitive valuesBU C' perhaps
already exists (since it may have been generated in thediatpn
phase or an earlier iteration of this phase); otherwise, neate it.
To keepBU C' balancedS; . must satisfy a property: every value
in the signature oBUC should be possessed by exactlyuples
in Srmu-

The crucial part is the selection of the integerss, and the
signature ofBUC. We aim at maximizingx to reduce the num-
ber of iterations. On the other hand, we should mininfizeince
m-invariance can be enforced more easily on QI groups with les
sizable signatures. The constraint is that, after elinmigathe tu-
ples in S,mv, S— must remainm-eligible, to make sure that all
its remaining tuples can be eventually assigned (see thef pfo
Lemma 5).

The above observations motivate the following strategy.u.e
ve, ..., vx be the distinct sensitive values f1-. At the beginning
of an iteration, we collect the number, (1 < ¢ < ) of tuples
in the currentS_ that have valuey;, and sort those numbers in
descending order. The sorted order may vary in each iteratitd,
without loss of generality, is assumed tobg no, ...,n,. We use
7 to denotey" 7, ;.

Now suppose that has been determined (its determination will
be clarified shortly). We choose thiemost frequent sensitive val-
ueswy, ..., vg to form the signature oBUC'. For each € [1, ],
we randomly pickxy tuples inS_ having the value;, and add them
t0 S,mv. Since there are onlys tuples with valuevs, we have

©)

After S,..,, is discarded, theemainingS_ has cardinalityy — - 3.
In that S_, (i) there aren: — « tuples with valuev;, and (i) the
most frequent sensitive value can only be eitheendvg. For
the remainingS_ to bem-eligible, we need

< (v—a-B)/m
ngr1 < (y—a-B)/m.

a < ng.

n—oa <

(6)
@)

« is set to the largest positive integer that satisfies Inétipmb-7.

It remains to clarify the decision @f. Initially, we set it to the
smallest possible value,, and attempt to solve: from the above
three inequalities. v exists, then the formulation of and 3
is completed. Otherwiséd is increased by 1, and we again try to
solve«. This process is repeated, urititeaches the first value that
yields a solution ofv. As proved in Lemma 5, the process always



Algorithm Assign(S—-)

1. X =the number of distinct sensitive valuesSn

2. while S_ is not empty //start an interation

3. y=15-]

4 obtainni, na, ...,ny wheren; (1 < i < \) is the number of tuples
having thei-th most frequent sensitive valag in the currentS_

5. B=m

6. « = the largest positive integer satisfying Inequalities 5-7

7. if v does not exist

8. B =p08+1;gotoLine6

9.  BUC =abucket whose signature{s1, ...,vg} (createBUC if it
does not exist yet)

10. fori=1top

11. randomly movev tuples with valuev; from S_ to BUC

Figure 3: Theassignment algorithm

terminates with a pair of appropriateand 3. Figure 3 formally
presents the assignment algorithm.

LEMMA 5. If S_ is m-eligible, the algorithm in Figure 3 as-
signs all tuples inS_ to balanced buckets.

4.3 The Split Phase

Let BUC be a balanced bucket output by the assignment phase,
whose signature has> m sensitive values;, vz, ...,vs. The split
phase starts by initiating a s&t.,. = {BUC}. If BUC includes
more thars tuples, we remove it frons.., and split (the tuples in)
BUC into two balanced bucket8U C; and BUC'; with the same
signature aBUC. BUC1 and BUC, are then added t8py.c-

If any bucket inSy.,. still has a size oves, we setBUC' to
that bucket, and repeat the above procedures. The phadsadtm
when all the buckets ir$y,. contain exactlys tuples. They are
returned as the QI groups for generalization, as discuss&ea-
tion 4.1. Totally% — 1 bucket splits are performed (notice that
the cardinality of each bucket i, is always a multiple of).

Next we clarify the details of splittingUC. We organizeBUC'
into s groups, such that thgth (1 < j < s) group contains only
the tuples with the sensitive valug. Clearly, every group has
size |[BUC|/s. Then, the tuples in each group are sorted in as-
cending order of theid?* values () precedes all non-empty values
in sorting). Let us deploy_; to denote the sorted list of theth
(1 <j < s)group.

Suppose that we include the first tuple of edch(1 < j < s)
into BUC1, and the other tuples intBUC>. This determines a
split scheme Similarly, we can obtain an alternative scheme by
placing the first 2 (or 3, 4, ..|BUC|/s — 1) tuples of eacH.; into
BUC4, and the rest int@&U Cs. This way,s — 1 different schemes
have been defined. Recall that, ..., L were computed based on
attribute A7, By generating these sorted lists with respect to each
otherAfi (2 < i < d), we derive anothes — 1 schemes in the
same manner.

Among all thed - (|BUC|/s — 1) schemes, we pick the “best”
one as the final split, which minimizes the perimeter sum of
BUC, and BUC,. Specifically, theperimeterof BUC, equals
|BUC| - Zle l;, wherel; (1 <1 < d) is the length of the mini-
mum interval, which encloses th&* values of all tuples iBUC;.

The perimeter ofBUC% is defined symmetrically. To make the
lengths of minimum intervals along differert!" comparable, we
normalize the domain of each?’ to [0, 1].

4.4 Discussion

The QI-groups output by our algorithm conform to tloeal-
recoding generalization scheme [12], in contrast to thlebal-
recodingscheme often adopted in the literature. We employ the
local-recoding scheme because it provides higher fleiibih

Income
50

Education
17

Gender
2

attribute
domain size

Age
79

Birthplace
57

Occupation
50

Table 5: Attributedomain sizes

forming Ql-groups. Apparently, the concept@f-invariance can
also be implemented under global-recoding, although itaieta
the development of another generalization algorithm. Whease,
the choice of a scheme is not important, as long as the peblish
information has good utility. In the next section, we willbshthat
the anonymized data produced by our technique permit aecura
aggregate analysis.

5. EXPERIMENTS

All the experiments are performed on a machine running a 3Ghz
CPU with 1 Giga-byte memory. We deploy two real databases
OCC and SAL downloadable frohittp://ipums.org Each database
contains 600k tuples, each storing the information of an Acae
adult. OCC includes four QI attributeAge Gender Education
andBirthplace and a sensitive attribut@ccupation SAL contains
the same QI attributes, but a different sensitive attridot®me
All columns are discrete, and the sizes of their domains meng
in Table 5.

A dynamic microdata tabl@%c. (Tsq1) is created from OCC
(SAL). It suffices to clarify the generation @,.., since the same
method is used fof's,;. The first versioril,..(1) contains 200k
tuples randomly sampled from OCC. We initiate@ol that con-
tains the other 400k tuples in OCC. At tlieh (j > 2) timestamp,
Tocc(7) is obtained by arbitrarily deletingtuples fromZc.(j—1),
and then inserting the same number of tuples randomly redhove
from pool. Here,r is a parameter, calledpdate volumgecon-
troling the update rate. We repeat this process up to tinmgsta
H =1+ 400k/r (e.g., forr = 20Kk, the history has totally7 = 21
timestamps).

We refer to the sequend&occ(1), Toce(2), ..., Tocc(H)} as a
Tocc-Series(the concept off s, -seriesis defined similarly). Such
a series is characterized by the parameter

5.1 Failureof Conventional Generalization

In the first set of experiments, we aim at establishing oujemsn
ture that the existing generalization principles may leaddvere
privacy disclosure in re-publication. We ukdiversity as the rep-
resentative principle, since it is widely adopted and sffgronger
protection thark-anonymity.

Given aT,..-series, we adopt the algorithm in [13] to compute
an [-diverse versiorl}..(j) of eachT,..(j) for all j € [1, H].
Then, we capture all the tuples (that ever appedfiin) whose
sensitive values will definitely be revealed, i.e., theivacy re-
ceives no protection at all. Theselnerable tuplesire extracted
using Lemma 1. Note that, a generalization principle candeslu
for re-publication, only if no vulnerable tuple can ever berid.

In Figure 4a, we plot the number of vulnerable tuples as a-func
tion of r, as this parameter changes from 5k to 40k. Each curve
corresponds to the result obtained with a differefvaried from 2
to 10).

Obviously, I-diversity fails to support re-publication, because it
results in a large number of vulnerable tuples. For exanfple,

I = 2, there are nearly 100k tuples whose privacy is not preserved
at all, regardless of. Although fewer vulnerable tuples exist &s
increases, they still cannot be completely prevented evtntie
largest! = 10. The number of vulnerable tuples decreases as
grows. This is because, for a largereach tuple in the microdata

is published fewer times, and thus, has a lower chance ofhiego
vulnerable (in the extreme case where each tuple is releadgd
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Figure5: Number of counterfeitsvs. time (r» = 5k, m = 10)
once, no tuple is vulnerable).

We repeat the experiment @n,;. The results are illustrated in
Figure 4b, confirming the same observations.

5.2 m-Invariance Evaluation

In the sequel, we examine the effectiveness and efficiency of

me-invariant generalization. Given B,-series (where: = occ or
sal), the counterfeited generalization (CG) algorithm in stt
is invoked to compute the generalized relati@ijg1), 75 (2), ...,
T (H) for m-invariant publication. We call the sequengg; (1),
... T, (H)} aT,-series which is characterized by parameters
andm.

Number of Counterfeits. We start by demonstrating that only a
small number of counterfeits are needed to enferc@variance.
We first deploy theT,..-series withr = 5k andm = 10. The se-
ries includes 81 releases. Figure 5a demonstrates the nsimbe
counterfeits in those releases, in ascending order of thication
timestamps. Figure 5b presents the results of a similarerpat
with respect t0Tsq;. FOr Toce (Tsqi), the maximum number of
counterfeits at a timestamp is only 10 (12). Furthermor&14B83)
timestamps, no counterfeit is necessary at all.

Next, we focus on the average number of counterfeits perstime
tamp in aT; -series Fixing m to 10, Figure 6a shows the averages
for both T,.- andT,,-series as a function of. The average de-
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wherej is a timestamp in the history of the deploy&H-series,
A, ..., AL denote the four QI attributes ifi,, and A° the sensitive
attribute. For each attributé, the conditionpred(A) has the form
A € R. Here,R is a random range in the domain df and has
length|A| - 6'/°, where| A| is the domain size ofl (see Table 5),
andd a query parameter called tlpected selectivityA larger
result is returned with a highé. A workload consists of 10000
queries with the samgands.

Given a query, we obtain its actual resudt from the microdata
table T%.(j), and compute an estimated answet from 7.7 (j).
The computation oést follows the algorithm in [23], except that
here the tableR(j) auxiliary to T, (j) is also taken into account.
Specifically, from each QI-grou@™* in T} (j), a partial answer
is calculated as follows. We define a 4-dimensional rectangl
fromQI*, usingQI*[AY], ...,QI"[A]'] as the extents of. Simi-
larly, a 4-dimensional rectanglé can be defined from the query’s
pred(AY"), ...,pred(A]"). We sete; to the ratio between the areas
of 2’ N z andz, ¢, to the percentage of the tuples@V* whose
sensitive values qualifyred(A°®), andcs to the number of coun-
terfeits iNQI* (cs is available fromR(j)). Then, the partial answer
of QI equals(|QI*| — c3) - c1 - c2. Our estimatesst equals the
sum of the partial answers of all Ql-groups.

The relative error of a query equals:t — est|/act. We measure
the workload erroras the median relative error of all the queries.
Adoptingm = 10, Figure 7a (7b) plots the workload error as a func-

creases quickly asincreases, such that CG does not generate any tion of time, for77..- (T7,,-) series withr = 5k and 40Kk (i.e., the
COUnterfeit, fOrT 2 20k ThIS iS expected, because Critical absence two extreme values tested in Figure 6a)’ respective|y_ Atraks-

is less likely when a larger number of tuples are insertechahe
timestamp. In Figure 6b, we setto 5k, and measure the average

by varyingm from 2 to 10. The average number never exceeds 2.5.

Utility of the Published Data. In the following set of experi-
ments, we will usel’;-series (wherer = occ or sal) to answer
queries about the original microdata, and demonstrate ¢he-a
racy of query results. We concentrate aggregate queriessince
they are the basic operation for numerous mining tasks, @egi-
sion tree learning, association rule mining, etc.). Speadiff, each
query has the form:

SELECT COUNT(*) FROMTS(j) ,
WHERE pred(A7") AND... ANDpred(Aj") AND pred(A®)

tamps, the error is at mo$0%, indicating high utility of the gen-
eralized tables. Furthermore, the error does not vary fagnitly
with time, and is not sensitive to the update volume

In the experiments of Figure 8, we focus @j..- (T.,,-) se-
ries withr» = 5k. We measure the average workload error of all
workloads performed at each timestamp in the history of the e
ployed series. Figure 8a plots the average error as a funofio
0, for ;.- andT?,;- series withm = 10. The accuracy improves
as6 increases. This is expected because a higheads to larger
query results, whereas in general, aggregate analysiedieé for
sizable queries. Fixing at 10%, Figure 8b illustrates the average
error with respect ton. A smallerm requires less generalization,
and hence, permits even more accurate analysis.
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Computation Overhead. The last experiment evaluates the effi-
ciency of our CG algorithm. First, we set to 10, and measure
the average time of computing a generalized relatiofiirseries
(wherex = occ or sal) of differentr. Figure 9a demonstrates the
time as a function of. The cost is more expensive wheis higher,
because the algorithm needs to process more newly insepkzbt
at each timestamp.

Then, we fixr to 5k, and plot the cost as a function of in
Figure 9b. The overhead decreasesidacreases, since a larger
necessitates fewer buckets, and requires a smaller nurhihecket
splits. In all cases, the algorithm terminates within 12oseis.

6. RELATED WORK

The literature of centralized publication can be classifigd
three main categories. The first one aims at devising genatiah
principles, which serve as the criteria for judging whetagyub-
lished relation provides sufficient privacy protectidnanonymity
[18, 20] and-diversity [15] are the two most widely accepted prin-
ciples, and hence, are used as the representatives in oussiisn.

Li and Li [14] proposet-closenesswhich requires the distribution
of sensitive values in each QI group to be analogous to the-dis
bution of the entire dataset. Aggarwal et al. [2] suggest pwin-
ciples based on clustering. Xiao and Tao [23] adopt a pelizeda
approach, where each individual may request a tailoredegegf
privacy preservation.

The second category includes algorithms for computing a gen
eralized table under a generalization principle, whichimines
some quality metric. With certain constraints [12] on theuténg
generalization, itis often feasible to enumerate all thesfie gen-
eralized relations. In that case, the optimal relation carfidond
efficiently by using several heuristics [5, 12] to prune tearsh
space. Greedy solutions have also been proposed [7, 8, [lig 13
obtain a suboptimal solution much faster. Several hardressdts
have been derived. In particular, itis shown [3, 13, 17] twabput-
ing the optimal generalized table is NP hard, even when alsimp
quality metric is deployed. Aggarwal [1] proves that, whae t
number of QI attributes is high, enforcikganonymity necessarily
results in severe information loss, even fo& 2.

The third category concerns improving the utility of the pub
lished dataset, without compromising privacy protectiokifer

and Gehrke [9] advocate releasing timarginals each of which
anonymizes the projection of the microdata table on a sulfskée
(Ql'and sensitive) attributes. Xiao and Tao [22] presenatieomy
technique which publishes QI and sensitive values in two sepa-
rate tables. In this way, QI values do not need to be genedliz
since the separation already prevents privacy breachesdasoet

al. [10] exploit a similar idea for improving the accuracyagfgre-
gate search.

The above works focus on one-time publication. Wang and Fung
[21] consider a re-publication scenario different fromufhey
assume a (again, static) microdata table that containge tarm-
ber of QI attributes. In the first publication, the publisheleases
a subset of those attributes, together with the sensitivibatie.
Later, the publisher is requested to release a differergetuds the
QI attributes (but not the sensitive attribute). The olyects to
anonymize the second publication, so that no adversaryrdan i
sensitive data by combining both releases. Unlike [21], ineat
re-publication of microdata after its contents have beeatatgd.

The work closest to ours is due to Byun et al. [6]. They pro-
pose an interesting technique that enables privacy-piesere-
publication of a dataset, after new tuples have been irsee-
spite its pioneering role in tackling re-publication, treehnique
has three shortcomings. First, it is inapplicable whentawle are
allowed in the microdata, unlike the proposed solution thgi-
ports both insertions and deletions. Second, it enforcemple
version ofl-diversity with weak privacy guarantees. Specifically,
let S be the set of sensitive values that an adversary thinks may be
the real sensitive value of an individual. The technique of [6]
ensuresS| > [, but imposes no limit on the adversary’s confi-
dence about taking a specific element if. For instance, if =
2, an adversary may derive = {HIV, flu}, but have exceedingly
high (e.g., 99%) confidence about= HIV. On the other hand,
under the same assumption of adversaries’ prior knowledge,
invariance guarantees that such confidence is boundédrhy as
proved in Lemma 3. Third, the technique of [6] requires cdesi
ation of all the releases in history, in assessing the rigkrivhcy
disclosure of a new release. As a result, the space consanrpti
the publisher) increases continuously with time, due tadwed of
retaining every past release. Furthermore, the computatet of
preparing a new release also grows monotonically, becaase m
information must be examined each time. Our solution dogs no
have this defect, since it demands storing only the lasaseleas
established in Lemma 4.

7. CONCLUSIONS

The existing centralized-publication methods do not supe
publication of microdata in the presence of both insertiand
deletions. This paper remedies the problem by developing
invariance, a novel concept that prevents an adversary frem
ing multiple releases to infer sensitive information. Wegant a
formal analytical study that elaborates the theoreticahttation
of m-invariance, and proves its effectiveness of limiting ady
disclosure. As a second step, we provide an efficient algarit
for computing anonymized versions of the microdata, whige-a
quately protect privacy and yet support effective datayemisl

This work also initiates several promising directions fotufe
work. First, it would be exciting to extend the proposed teghe
to tackle alternative forms of background knowledge. Re$ea
towards this direction may lead to the discovery of altéveagen-
eralization principles. Second, it may be worthwhile todgtthe
possibility of releasing marginal tables [9], in order tather im-
prove the utility ofm-invariant publication. Third, it would be in-
teresting to explore how-invariant generalization can be adapted



to optimize a given workload [11].
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APPENDIX

Proof of Lemmas 1 and 2. Let b be the row inB(n) generated by, and
Sj (x < j < y) be the set of tuples ifi™* (j) whose values along&?i
coverb[Affi], for each:i € [1,d]. Consider any reasonable surjectifn
U*(n) — B(n). For everyj € [z,y], there exists exactly one tuptg €
S satisfyingf(t;f) = b (Condition 1.1 of Definition 13). Furthermore,
i3ty 1, -ty have the same sensitive value (Condition 1.2), which is the
sensitive value of ¢ reconstructed by By Definition 15,0 = ¢7[A°] €
t.CSS(j) (z < j < y), which is equivalent to € NY__t.CSS(k), and
thus establishes Lemma 2.

ny__t.CSS(k) definitely contains the real sensitive valtel*] of ¢.
Hence, ifnY_ t.C'SS(k) contains only one value, this value must equal
t[A®]. In this case, any reasonable surjectforeconstructs[A®] correctly,
renderingnyreach (t) = niotqr. HeNce, Lemma 1 is proved.

(2]

(3]
(4]

5]

[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

[20]

[21]
[22]

[23]

Proof of Lemma 3. Let ¢ be an arbitrary tuple iV (n), andb be the
row in B(n) generated by. Given any reasonable surjective functipn
U*(n) — B(n), we defineAQ (b, f) as the set of Ql-groups ii*(1), ...,
T*(n) that contain at least a tuple ! (b).

Consider then.:q; reasonable surjections frobi* (n) to B(n). We
divide them intabatchessuch that, for any surjectionsand f’ in the same
batch, AQ(b, f) = AQ(b, f'). Letnyqs be the total number of resulting
batches. For théth (1 < i < ngp,;) batch F;, usecnt(F;,v) to denote
the number of surjections ifi; that reconstruct the sensitive valuetads
v. Inthe sequel, we will shownt(F;, t[A®]) < ‘Zj‘ , which will establish
the lemma because

24t ent(Ft[A]) _ Rt IR| 1
m

risk(t) =

Ntotal T m Nyotal

Given any surjectiorf € F;, all Ql-groups inAQ(b, f) have an identi-
cal signature (Definition 16), due tm-invariance. Without loss of gen-
erality, assume that each QIl-group Q) (b, f) hasx sensitive values
v1,v2,...,Uz. The value ofr is at leastm as required byn-invariance.

Let f1 be any surjection inF; that reconstructs the sensitive value of
t asv;. Let us design another surjectigh : U*(n) — B(n) as fol-
lows. Initially, f2(t*) is undefined for any tuple* € U*(n). Then, we
inspect the Ql-groups in each*(j) (1 < 7 < n). If a Ql-group has
two tuplest] andt} satisfyingtj[A®] = v andt3[A%] = va, we set
f2(ty) = f1(t5) and f2(t5) = f1(t]). After examining all QI groups,
for any tuplet® € U*(n) such thatfz(t*) remains undefined, we set
f2(t*) = f1(t*). Subjectionfs is a reasonable surjection, which satisfies
AQ(b, f1) = AQ(b, f2). Hence,f> belongs toF;.

f2 reconstructs the sensitive value bfas v2. The existence offs
for any f1 implies cnt(F;,v1) < cnt(F;,v2). By symmetry, we
can also deriveent(Fy,v2) < cnt(Fi,v1), and thus,cnt(F;,v2) =
cnt(F;,v1). Extending the analysis to all the elements{of, ..., v. },
we havecnt(F;,v1) = cnt(Fi,v2) = ... = cnt(Fi,ve) = |Fi|/x.
Givenz > m andt[A®] € {vi1,...,vz}, it holds thatent(F;,t[A%]) <
|Fil/z < |Fil/m.m
Proof of Lemma 4. By Definition 17, if {T*(1),...,7*(n)} is m-
invariant, then the two conditions in Lemma 4 hold. Convigrsas-
sume thafl™ (n) satisfies both conditions in Lemma 4, we will show that
{T*(1), ...,T*(n)} is anm-invariant sequence.

Since aIITj (1 < j < n)arem-unique, they satisfy the first require-
ment in Definition 17. Next we show that the second requirdrhetus for
any tuplet € U(n). If t ¢ T(n), all the generalized hosting groups of
t must have the same signature, beca{ifé(1),...,7*(n — 1)} is m-
invariant. Ift € T'(n) butt ¢ T'(n — 1), thent has only one generalized
hosting groug.QI*(n), which appears ifi’™(n). In that case, the second
requirement in Definition 17 trivially holds far.

Now consider the case wheh € T(n) N T(n — 1). Since
{T(1),...,T(n — 1)} is m-invariant, the generalized hosting groups of
tinT*(1), ..., 7*(n — 1) should share the same signature. By the second
condition in Lemma 4{.QI*(n — 1) andt.QI*(n) also have an identi-
cal signature. Therefore, the second requirement in Digimit7 is also
fulfilled for ¢. m

Proof of Lemma 5. Let us consider any iteratiohof the algorithmAssign

A a, B,7,n1,n2, ...,n) are as defined in Section 4.2. To prove the lemma,
it suffices to show that (again, for afy we can always find a pair @¢tv, 3)
such that > 1, 8 € [m, A], and they satisfy Inequalities 5-7. L&tbe

the largest subscriptsatisfyingn; = n1 (specially,; = 1, if no element in
{n2, ...,ny} is equivalent tax1). We will prove that the three inequalities
hold, givena = 1 and3 = max{i’,m}.

In the sequelS refers to the content of_ before! starts. Sinces is
me-eligible, ny, > 1. Henceng > nmax{i/,m} = nm > 1 = a. Thus,
Inequality 5 holds.

By the wayg is defined, we haveg, | <ng—1=ng—a <ni—a.
Consequently, next we discuss only Inequality 6, sincesaitisfction auto-
matically validates Inequality 7. For this purpose, an in@at observation
isn1 < ~/B. This observation can be established by discussing twscase
First, if 3 = m, by them-eligibility of S, we known; < v/m = ~/p.
Second, if3 > m, thenn; - 8 = Zﬁj/:lni < ~, also resulting in
n1 < /0. Hence:

nm—a<y/8-1<(y-p8)/B<(y—a-B)/m.
Namely, Inequality 6 holdss



