Tries

Yufei Tao
KAIST

April 9, 2013

In this lecture, we will discuss the following exact matching problem on strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports:

- the id of q if it exists in S
- nothing otherwise.

Example

Suppose that $S=\{$ aaabb, aab, aabaa, aabab, aba, abbb, abbba, abbbb $\}$. Let the ids of these strings be (from left to right) $1,2, \ldots, 8$, respectively. Given $q=$ aabaa, a query returns id 3 , whereas given $q=\mathrm{abab}$, it returns nothing.

Think
 How is this problem related to inverted indexes and search engines?

Notations and A Naive Solution

Let

- A be the alphabet (i.e., every character of any string must come from A).
- $|s|$ be the length of a string s, i.e., the number of characters in s.
- $m=|S|$, i.e., the number of strings in S.
- $n=$ the total length of the strings in S, i.e., $n=\sum_{s \in S}|s|$.

When $|A|$ is small and all strings in S are short (e.g., $|s| \leq 10$ for all $s \in S$), the exact matching problem on strings can be reduced to exact matching on integers. For example, consider that each string s represents an English word, and that every s has length at most 10 . We can map s to an integer from 0 to $26^{10}-1$.

Think

Why does the method no longer work if $|A|$ is large or strings can be arbitrarily long?

Next, we will describe another solution based on a data structure called trie. First, let us define the concept of prefix. Let s be a string of length t. We can write its characters (from left to right) as $s[1], s[2], \ldots, s[t]$, respectively. Then, for any $i \in[1, t]$, the string formed by the sequence $s[1], \ldots, s[i]$ is called a prefix of s. Specially, an empty string \emptyset is also a prefix of s.

Example

$s=$ aabaa has 6 prefixes: $\emptyset, \mathrm{a}, \mathrm{aa}$, aab, aaba, and aabaa.
Let S be a set of strings. We say that a string s is a possible prefix of S if s is a prefix of at least one string in S.

A set S of strings is called prefix-free if no string in S is a prefix of any other string in S. Every set of strings can be made prefix-free by appending a special "termination symbol" to each string in S.

Example

Let $S=\{$ aaabb, aab, aabaa, aabab, aba, abbb, abbba, abbbb\}. We can convert S to $S^{\prime}=\{a a a b b \perp$, aab \perp, aabaa \perp, aabab $\perp, a b a \perp$, abbb \perp, abbba \perp, abbbb \perp, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string in S ends with \perp.

The trie on S is a tree T defined as follows:

- Each node u of T corresponds to a distinct possible prefix of S. Let $P(u)$ be the prefix that u represents.
- Let u be a node, and v a child node of u. Then:
- $P(u)$ is a prefix of $P(v)$.
- $|P(v)|=|P(u)|+1$.
- Each node u is labeled with a character c, which is the last character of $P(u)$.

Example: Let $S=\{$ aaabb \perp, $a \operatorname{ab} \perp$, aabaa \perp, aabab $\perp, a b a \perp$, $a b b b \perp$, abbba \perp, abbbb $\perp\}$. The trie is:

Note that every \perp-node u corresponds to a distinct string $s \in S$. We therefore store the id of s at u.

The trie on S has at most n nodes.

How do we answer an exact matching query with $q=$ aabaa? How about $q=a b a b$?

How to delete the string aaabb \perp ? How about inserting ababb \perp ?

Notice that the efficiency of queries, insertions and deletions depends on how well we can solve the following problem:

Given a node u and a character $\sigma \in A \cup\{\perp\}$, how to find the child of v of u that corresponds to σ ?

Different tradeoffs exist:

- By organizing the child nodes of u in an array, we can find v in $O(1)$ time, but the array occupies $O(|A|)$ space.
- By organizing the child nodes of u in a binary search tree (BST), we can find v in $O(\log |A|)$ time, and the tree occupies $O(|f|)$ space, where f is the number of child nodes of u.

Theorem

- By using the array implementation, a trie occupies $O(|A| n)$ space, answers a query with string q in $O(|q|)$ time, and supports the insertion and deletion of a string s in $O(|A||s|)$ time.
- By using the BST implementation, a trie occupies $O(n)$ space, answers a query with string q in $O(|q| \log |A|)$ time, and supports the insertion and deletion of a string s in $O(|s| \log |A|)$ time.

Next, we will describe another trie variant, called balanced trie, which occupies $O(n)$ space, and answers a query with string q in $O(\log m+|q|)$ time. The trie, however, is static, namely, it does not support insertions and deletions.

From now on, we consider that S is sorted alphabetically (placing \perp before all characters of A). In general, given a set S^{\prime} of x sorted strings, we refer to the one in S^{\prime} whose rank is $\lceil x / 2\rceil$ as the median of S^{\prime}.

Example

The median of $\{$ aaabb $\perp, a a b \perp$, $a \operatorname{abaa} \perp$, $a \operatorname{abab} \perp, a b a \perp$, $a b b b \perp$, abbba \perp, abbbb $\perp\}$ is aabab \perp.

Furthermore, given a prefix p, denote by $S(p)$ the set of strings in S with prefix p.

Example

Let $S=\{$ aaabb $\perp, a \operatorname{ab} \perp, a \operatorname{abaa} \perp, a \mathrm{abab} \perp, \mathrm{aba} \perp, \mathrm{abbb} \perp, \mathrm{abbba} \perp$, $a b b b b \perp\}$. Then $S(a a b)=\{a a b \perp, a a b a a \perp, a a b a b \perp\}$.

We also need to define what it means by concatenation. The concatenation of two strings s_{1} and s_{2} forms a string by appending the characters of s_{2} at the end of s_{1}.

Example

If $s_{1}=\mathrm{ab}$ and $s_{2}=\mathrm{bba}$, then concatenation gives abbba. If $s_{1}=\emptyset$ and $s_{2}=\mathrm{bba}$, then concatenation gives bba. Similarly, if $s_{1}=\mathrm{ab}$ and $s_{2}=\emptyset$, concatenation gives ab .

Let S be a set of strings. The balanced trie on S is a tree T defined as follows:

- Every node u in T corresponds to a set $S(u)$ of strings, and carries a label $L(u)$ and a positional index $I(u)$, which will be formally defined below.
- $L(u)$ is the i-th character of the median of $S(u)$, where $i=I(u)$.
- Each u corresponds to a possible prefix $P(u)$ of S, where $P(u)$ is the concatenation of the labels of the nodes on the path from the root to u.
- If u is the root, $S(u)=S$, and $I(u)=1$.
- u is a leaf if $|S(u)|=1$ and $I(u)=|s|$, where s is the (only) string in $S(u)$.
- An internal u has at most 3 child nodes $u_{<}, u_{=}$, and $u_{>}$such that:
- $S\left(u_{<}\right)$is the set of strings in $S(u)$ alphabetically less than $P(u)$. $I\left(u_{<}\right)=I(u)$.
- $S\left(u_{=}\right)$is the set of strings in $S(u)$ that have $P(u)$ as their prefixes. $I\left(u_{=}\right)=I(u)+1$.
- $S\left(u_{>}\right)$is the set of remaining strings in $S(u) . I\left(u_{>}\right)=I(u)$

Example: Let $S=\{a a a b b \perp, a a b \perp, a a b a a \perp, a a b a b \perp, a b a \perp, a b b b \perp$, abbba $\perp, \mathrm{abbbb} \perp\}$. The balanced trie is:

Each node u is denoted in the form $(L(u), I(u))$.

How do we answer an exact matching query with $q=$ aabaa? How about $q=a b a b$?

Theorem

A balanced trie occupies $O(n)$ space, and answers a query with string q in $O(\log m+|q|)$ time

