
Tries

Yufei Tao

KAIST

April 9, 2013

Y. Tao, April 9, 2013 Tries

In this lecture, we will discuss the following exact matching problem on
strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a
query string q, a query reports:

the id of q if it exists in S

nothing otherwise.

Example

Suppose that S = {aaabb, aab, aabaa, aabab, aba, abbb, abbba,
abbbb}. Let the ids of these strings be (from left to right) 1, 2, ..., 8,
respectively. Given q = aabaa, a query returns id 3, whereas given
q = abab, it returns nothing.

Y. Tao, April 9, 2013 Tries

Think

How is this problem related to inverted indexes and search engines?

Y. Tao, April 9, 2013 Tries

Notations and A Naive Solution

Let

A be the alphabet (i.e., every character of any string must come
from A).

|s| be the length of a string s, i.e., the number of characters in s.

m = |S |, i.e., the number of strings in S .

n = the total length of the strings in S , i.e., n =
∑

s∈S |s|.

When |A| is small and all strings in S are short (e.g., |s| ≤ 10 for all
s ∈ S), the exact matching problem on strings can be reduced to exact
matching on integers. For example, consider that each string s represents
an English word, and that every s has length at most 10. We can map s
to an integer from 0 to 2610 − 1.

Think

Why does the method no longer work if |A| is large or strings can be
arbitrarily long?

Y. Tao, April 9, 2013 Tries

Next, we will describe another solution based on a data structure called
trie. First, let us define the concept of prefix. Let s be a string of length
t. We can write its characters (from left to right) as s[1], s[2], ..., s[t],
respectively. Then, for any i ∈ [1, t], the string formed by the sequence
s[1], ..., s[i] is called a prefix of s. Specially, an empty string ∅ is also a
prefix of s.

Example

s = aabaa has 6 prefixes: ∅, a, aa, aab, aaba, and aabaa.

Let S be a set of strings. We say that a string s is a possible prefix of S

if s is a prefix of at least one string in S .

Y. Tao, April 9, 2013 Tries

A set S of strings is called prefix-free if no string in S is a prefix of any
other string in S . Every set of strings can be made prefix-free by
appending a special “termination symbol” to each string in S .

Example

Let S = {aaabb, aab, aabaa, aabab, aba, abbb, abbba, abbbb}. We
can convert S to S ′ = {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥,
abbb⊥, abbba⊥, abbbb⊥}, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string

in S ends with ⊥.

Y. Tao, April 9, 2013 Tries

Tries

The trie on S is a tree T defined as follows:

Each node u of T corresponds to a distinct possible prefix of S . Let
P(u) be the prefix that u represents.

Let u be a node, and v a child node of u. Then:

P(u) is a prefix of P(v).
|P(v)| = |P(u)|+ 1.

Each node u is labeled with a character c , which is the last
character of P(u).

Y. Tao, April 9, 2013 Tries

Example: Let S = {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥, abbb⊥,
abbba⊥, abbbb⊥}. The trie is:

a

∅

a b

a b

b

b

⊥

⊥
a

a

⊥

b

⊥

a

⊥

b

b

a

⊥

b

⊥

⊥

Note that every ⊥-node u corresponds to a distinct string s ∈ S . We

therefore store the id of s at u.

Y. Tao, April 9, 2013 Tries

Lemma

The trie on S has at most n nodes.

Y. Tao, April 9, 2013 Tries

a

∅

a b

a b

b

b

⊥

⊥
a

a

⊥

b

⊥

a

⊥

b

b

a

⊥

b

⊥

⊥

How do we answer an exact matching query with q = aabaa? How

about q = abab?

Y. Tao, April 9, 2013 Tries

a

∅

a b

a b

b

b

⊥

⊥
a

a

⊥

b

⊥

a

⊥

b

b

a

⊥

b

⊥

⊥

How to delete the string aaabb⊥? How about inserting ababb⊥?

Y. Tao, April 9, 2013 Tries

Notice that the efficiency of queries, insertions and deletions depends on
how well we can solve the following problem:

Given a node u and a character σ ∈ A ∪ {⊥}, how to find the child of v
of u that corresponds to σ?

Different tradeoffs exist:

By organizing the child nodes of u in an array, we can find v in
O(1) time, but the array occupies O(|A|) space.

By organizing the child nodes of u in a binary search tree (BST), we
can find v in O(log |A|) time, and the tree occupies O(|f |) space,
where f is the number of child nodes of u.

Y. Tao, April 9, 2013 Tries

Theorem

By using the array implementation, a trie occupies O(|A|n) space,
answers a query with string q in O(|q|) time, and supports the
insertion and deletion of a string s in O(|A||s|) time.

By using the BST implementation, a trie occupies O(n) space,
answers a query with string q in O(|q| log |A|) time, and supports
the insertion and deletion of a string s in O(|s| log |A|) time.

Y. Tao, April 9, 2013 Tries

Next, we will describe another trie variant, called balanced trie, which

occupies O(n) space, and answers a query with string q in O(logm + |q|)
time. The trie, however, is static, namely, it does not support insertions

and deletions.

Y. Tao, April 9, 2013 Tries

From now on, we consider that S is sorted alphabetically (placing ⊥
before all characters of A). In general, given a set S ′ of x sorted strings,
we refer to the one in S ′ whose rank is dx/2e as the median of S ′.

Example

The median of {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥, abbb⊥,
abbba⊥, abbbb⊥} is aabab⊥.

Furthermore, given a prefix p, denote by S(p) the set of strings in S with
prefix p.

Example

Let S = {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥, abbb⊥, abbba⊥,
abbbb⊥}. Then S(aab) = {aab⊥, aabaa⊥, aabab⊥}.

Y. Tao, April 9, 2013 Tries

We also need to define what it means by concatenation. The
concatenation of two strings s1 and s2 forms a string by appending the
characters of s2 at the end of s1.

Example

If s1 = ab and s2 = bba, then concatenation gives abbba. If s1 = ∅ and
s2 = bba, then concatenation gives bba. Similarly, if s1 = ab and s2 = ∅,
concatenation gives ab.

Y. Tao, April 9, 2013 Tries

Let S be a set of strings. The balanced trie on S is a tree T defined as follows:

Every node u in T corresponds to a set S(u) of strings, and carries a label L(u)
and a positional index I (u), which will be formally defined below.

L(u) is the i-th character of the median of S(u), where i = I (u).

Each u corresponds to a possible prefix P(u) of S , where P(u) is the
concatenation of the labels of the nodes on the path from the root to u.

If u is the root, S(u) = S , and I (u) = 1.

u is a leaf if |S(u)| = 1 and I (u) = |s|, where s is the (only) string in S(u).

An internal u has at most 3 child nodes u<, u=, and u> such that:

S(u<) is the set of strings in S(u) alphabetically less than P(u).
I (u<) = I (u).
S(u=) is the set of strings in S(u) that have P(u) as their prefixes.
I (u=) = I (u) + 1.

S(u>) is the set of remaining strings in S(u). I (u>) = I (u)

Y. Tao, April 9, 2013 Tries

Example: Let S = {aaabb⊥, aab⊥, aabaa⊥, aabab⊥, aba⊥, abbb⊥,
abbba⊥, abbbb⊥}. The balanced trie is:

(a, 1)

=

(a, 2)
=

(b, 3)

(a, 3)

<

=

=

(⊥, 6)

(b, 4)

=

(b, 5)

=

(a, 4)

(⊥, 4)

< =

(a, 5)

(⊥, 6)

= >

(b, 5)

=

(⊥, 6)

>

=
(b, 2)

(b, 3)

(a, 3)
=

(⊥, 4)

< =

(b, 4)

<

=

(⊥, 5)

(a, 5)

=
(⊥, 6)

>

(b, 5)
=

(⊥, 6)

Each node u is denoted in the form (L(u), I (u)).

Y. Tao, April 9, 2013 Tries

(a, 1)

=

(a, 2)
=

(b, 3)

(a, 3)

<

=

=

(⊥, 6)

(b, 4)

=

(b, 5)

=

(a, 4)

(⊥, 4)

< =

(a, 5)

(⊥, 6)

= >

(b, 5)

=

(⊥, 6)

>

=
(b, 2)

(b, 3)

(a, 3)
=

(⊥, 4)

< =

(b, 4)

<

=

(⊥, 5)

(a, 5)

=
(⊥, 6)

>

(b, 5)
=

(⊥, 6)

How do we answer an exact matching query with q = aabaa? How

about q = abab?

Y. Tao, April 9, 2013 Tries

Theorem

A balanced trie occupies O(n) space, and answers a query with string q
in O(logm + |q|) time

Y. Tao, April 9, 2013 Tries

