Tries

Yufei Tao
KAIST

April 9, 2013

Y. Tao, April 9, 2013 Tries

In this lecture, we will discuss the following exact matching problem on
strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a
query string g, a query reports:

@ the id of g if it exists in S

@ nothing otherwise.

| A

Example

Suppose that S = {aaabb, aab, aabaa, aabab, aba, abbb, abbba,
abbbb}. Let the ids of these strings be (from left to right) 1, 2, ..., 8,
respectively. Given g = aabaa, a query returns id 3, whereas given

g = abab, it returns nothing.

Y. Tao, April 9, 2013 Tries

How is this problem related to inverted indexes and search engines?

Y. Tao, April 9, 2013 Tries

Notations and A Naive Solution

Let

@ A be the alphabet (i.e., every character of any string must come
from A).

@ |s| be the length of a string s, i.e., the number of characters in s.
@ m =S|, i.e., the number of strings in S.

@ n = the total length of the strings in S, i.e., n = ZSGS |s].

When |A| is small and all strings in S are short (e.g., |s| < 10 for all

s € S), the exact matching problem on strings can be reduced to exact
matching on integers. For example, consider that each string s represents
an English word, and that every s has length at most 10. We can map s
to an integer from 0 to 2610 — 1.

Why does the method no longer work if |A| is large or strings can be
arbitrarily long?

Y. Tao, April 9, 2013 Tries

Next, we will describe another solution based on a data structure called
trie. First, let us define the concept of prefix. Let s be a string of length
t. We can write its characters (from left to right) as s[1], s[2], ..., s[t],
respectively. Then, for any i € [1, t], the string formed by the sequence
s[1], ..., s[i] is called a prefix of s. Specially, an empty string () is also a
prefix of s.

s = aabaa has 6 prefixes: (), a, aa, aab, aaba, and aabaa.

Let S be a set of strings. We say that a string s is a possible prefix of S
if s is a prefix of at least one string in S.

Y. Tao, April 9, 2013 Tries

A set S of strings is called prefix-free if no string in S is a prefix of any
other string in S. Every set of strings can be made prefix-free by
appending a special “termination symbol” to each string in S.

Let S = {aaabb, aab, aabaa, aabab, aba, abbb, abbba, abbbb}. We
can convert S to S’ = {aaabb l, aabl, aabaal, aabab.l, abal,
abbb_L, abbba.l, abbbb.l}, which is prefix-free.

From now on, we will consider that S is prefix-free, and that every string
in S ends with L.

Y. Tao, April 9, 2013 Tries

Tries

The trie on S is a tree T defined as follows:

@ Each node u of T corresponds to a distinct possible prefix of S. Let
P(u) be the prefix that u represents.

@ Let u be a node, and v a child node of u. Then:

o P(u) is a prefix of P(v).
o |P(v)| = [P(u)| + 1.

@ Each node u is labeled with a character ¢, which is the last
character of P(u).

Y. Tao, April 9, 2013 Tries

Example: Let S = {aaabb.l, aabl, aabaal, aababl, abal, abbbl,
abbba_l, abbbb.l}. The trie is:

?
P
AN
P AL
| /N I
b a b | a p
| S

Note that every 1-node u corresponds to a distinct string s € 5. We

therefore store the id of s at w.

Y. Tao, April 9, 2013 Tries

The trie on S has at most n nodes.

Y. Tao, April 9, 2013 Tries

L=

/\
/\ /\

P AL
| /N I
A S
1 1 L 1 1

How do we answer an exact matching query with ¢ = aabaa? How

about g = abab?

Y. Tao, April 9, 2013 Tries

a/\b
NN

L AL

| AVEZ N
b a b 1 a
i1

How to delete the string aaabb_l? How about inserting ababb_?

Y. Tao, April 9, 2013 Tries

Notice that the efficiency of queries, insertions and deletions depends on
how well we can solve the following problem:

Given a node u and a character 0 € AU {_L}, how to find the child of v
of u that corresponds to o7 J

Different tradeoffs exist:

@ By organizing the child nodes of u in an array, we can find v in
O(1) time, but the array occupies O(|A|) space.

@ By organizing the child nodes of u in a binary search tree (BST), we
can find v in O(log|A|) time, and the tree occupies O(|f]|) space,
where f is the number of child nodes of u.

Y. Tao, April 9, 2013 Tries

@ By using the array implementation, a trie occupies O(|A|n) space,
answers a query with string g in O(|g|) time, and supports the
insertion and deletion of a string s in O(|A||s|) time.

@ By using the BST implementation, a trie occupies O(n) space,
answers a query with string g in O(|q|log|A|) time, and supports
the insertion and deletion of a string s in O(|s| log |A|) time.

Y. Tao, April 9, 2013 Tries

Next, we will describe another trie variant, called balanced trie, which
occupies O(n) space, and answers a query with string g in O(log m + |q|)
time. The trie, however, is static, namely, it does not support insertions

and deletions.

Y. Tao, April 9, 2013 Tries

From now on, we consider that S is sorted alphabetically (placing L
before all characters of A). In general, given a set S’ of x sorted strings,
we refer to the one in S’ whose rank is [x/2] as the median of S’.

The median of {aaabb.l, aab.l, aabaa.l, aabab.l, abal, abbb.l,
abbba l, abbbb |} is aabab.l.

Furthermore, given a prefix p, denote by S(p) the set of strings in S with
prefix p.

Let S = {aaabbJ_, aabl, aabaal, aabab.l, abal, abbb_l, abbba.l,
abbbb.l}. Then S(aab) = {aab.l,aabaal,aabab.l}.

Y. Tao, April 9, 2013 Tries

We also need to define what it means by concatenation. The
concatenation of two strings s; and s, forms a string by appending the
characters of s, at the end of s;.

If s; = ab and s, = bba, then concatenation gives abbba. If s; = () and
s, = bba, then concatenation gives bba. Similarly, if s; = ab and s, = 0),
concatenation gives ab.

Y. Tao, April 9, 2013 Tries

Let S be a set of strings. The balanced trie on S is a tree T defined as follows:

@ Every node uin T corresponds to a set S(u) of strings, and carries a label L(u)
and a positional index /(u), which will be formally defined below.

@ [(u) is the i-th character of the median of S(u), where i = I(u).
@ Each u corresponds to a possible prefix P(u) of S, where P(u) is the
concatenation of the labels of the nodes on the path from the root to u.
@ If uis the root, S(u) = S, and /(u) = 1.
@ uis a leaf if |S(u)| =1 and I(u) = |s|, where s is the (only) string in S(u).
@ An internal u has at most 3 child nodes u«, u—, and us such that:
@ S(u<) is the set of strings in S(u) alphabetically less than P(u).

I(u<) = I(u).
@ S(u=) is the set of strings in S(u) that have P(u) as their prefixes.
I(u=) = I(u) + 1.

@ S(u>) is the set of remaining strings in S(u). I(u>) = I(u)

Y. Tao, April 9, 2013 Tries

Example: Let S = {aaabb.l, aabl, aabaal, aabab l, abal, abbb.l,
abbba_l, abbbb.l}. The balanced trie is:

(6,3) (b,‘2)
< = =
(a’7{ \(&4) (b7 3)
S s
(b,4) (L4 (q 5)> (a,3) (b,4)
| e S
(b, 5) (L,6) (5,5 (L.4) (a,5)
= = <L Y
(L,6) (L,6) (L,5)(L,6) (b,5)

—
= s
=
=

Each node u is denoted in the form (L(u), I(u)).

Y. Tao, April 9, 2013 Tries

.
f

(b,3) (b,‘2)
< = =

i Bo g

_ — 52 _

(4) (J-74)_(a7 5)> (a, 3) (b,4)

O T

(b,5) (L.6) (b,5) (L.4) (a,5)

; i AN

(L,6) (L6) (L5)(L:6) (gf)
(L.6)

How do we answer an exact matching query with ¢ = aabaa? How
about g = abab?

Y. Tao, April 9, 2013 Tries

A balanced trie occupies O(n) space, and answers a query with string g
in O(log m + |q|) time

Y. Tao, April 9, 2013 Tries

