
Inverted Indexes: Compression

Yufei Tao

KAIST

March 26, 2013

Y. Tao, March 26, 2013 Inverted Indexes: Compression



The inverted index we have learned has a defect: its size can be very
large such that it may not fit in memory. In this case, a part of the index
will have to be stored in the disk, and thus, query processing can incur
(disk) I/Os. A successful search engine aims at completely eliminating
I/Os in a query, because I/Os are significantly more expensive than
memory accesses.

Fortunately, the inverted index is friendly to compression. In this lecture,

we will learn several compression techniques that can make inverted

indexes much smaller.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Review

An inverted index consists of:

For every term wi in DICT , the value of idf (wi ).

For every term wi in DICT , an inverted list, denoted as list(wi ),
which contains a pair

(i , tf (Di ,wi ))

for every document Di that contains wi .

We will refer to i as the document id of Di .

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Example (Excerpted from [Zobel and Moffat, 2006]

Suppose that our document collection is:

document ID content
1 the old night keeper keeps the keep in the town
2 in the big old gown in the big old house
3 the house in the town had the big old keep
4 where the old night keeper never did sleep
5 the night keeper keeps the keep in the night
6 and keeps in the dark and sleeps in the light

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Example (Excerpted from [Zobel and Moffat, 2006]

term w inverted list for w
and (6, 2)
big (2, 2), (3, 1)
dark (6, 1)
did (4, 1)
gown (2, 1)
had (3, 1)
house (2, 1), (3, 1)
in (1, 1), (2, 2), (3, 1), (5, 1), (6, 2)
keep (1, 1), (3, 1), (5, 1)
keeper (1, 1), (4, 1), (5, 1)
keeps (1, 1), (5, 1), (6, 1)
light (6, 1)
never (4, 1)
night (1, 1), (4, 1), (5, 2)
old (1, 1), (2, 2), (3, 1), (4, 1)
sleep (4, 1)
sleeps (6, 1)
the (1, 3), (2, 2), (3, 3), (4, 1), (5, 3), (6, 2)
town (1, 1), (3, 1)
where (4, 1)

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Today, an integer typically requires 64 bits to store (e.g., in C++). Thus,
an inverted list like:

the: (1, 3), (2, 2), (3, 3), (4, 1), (5, 3), (6, 2)

requires 12× 64 = 768 bits.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



In a computer, an integer is represented in binary. In other words, an
integer x ≥ 1 requires at least dlog2(x + 1)e bits to store. Thus, pair (1,
3) in the inverted list of the previous slide could be stored as a bit string
that starts with a 1 (for number 1), followed by 11 (for number 3). This
storage method uses the minimum number of bits (i.e., 3 bits). But does
it really work?

Think

The answer is no. Given a bit string 111, how would you decompress it
into a pair (1, 3)?

Next, we will learn some effective encoding schemes that use a small

number (but more than dlog2(x + 1)e) of bits to represent x

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Elias’ Gamma Code

Let x be an integer at least 1. Elias’ gamma code represents x as follows.
First, let y be the largest power of 2 that is at most x , and z = x − y .
Then, x is represented by a bit string gamma(x):

gamma(x) starts with log2 y 1’s followed by a single 0.

Then, gamma(x) continues with log2 y bits representing z in binary.

Example

Consider x = 13. Then, y = 8 and z = 5. Hence,
gamma(13) = 1110101.

As another example, consider x = 57. Then, y = 32 and z = 25.
Hence, gamma(57) = 11111011001.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Elias’ Gamma Code

Given a bit string gamma(x), we can decompress it back to x as follows

1 Search for the first 0 in gamma(x).

2 Count how many 1’s there are before the 0. Let the number by b.

3 Then, y = 2b.

4 Let z be the number represented by the next b bits of gamma(x) in
binary.

5 x = y + z .

Think

Convince yourself that 111010111111011001 decompresses into two
numbers: 13 and then 57.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Lemma

Let ` = dlog2(x + 1)e. Then, gamma(x) has 2`− 1 bits.

Elias’ gamma code has some variants. A well-known example is Elias’

delta code.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Elias’ Delta Code

Let x be an integer at least 1. Elias’ delta code represents x as follows.
First, let y be the largest power of 2 that is at most x , and z = x − y .
Then, x is represented by a bit string delta(x) decided as follows:

delta(x) starts with gamma(1 + log2 y).

Then, delta(x) continues with log2 y bits representing z in binary.

Example

Consider x = 13. Then, y = 8, z = 5, and
gamma(1 + log2 y) = 11000. Hence, delta(13) = 11000101.

As another example, consider x = 57. Then, y = 32, z = 25, and
gamma(1 + log2 32) = 11010. Hence, delta(57) = 1101011001.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Elias’ Delta Code

Think

Convince yourself that 110001011101011001 decompresses into 13 and
then 57.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Lemma

Let ` = dlog2(x + 1)e. Then, delta(x) has 2dlog2(` + 1)e+ `− 2 bits.

The delta code uses fewer bits than the gamma code for all x ≥ 32.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Now, we are ready to explain how to compress an inverted list. Recall
that the list is a set of (id, frequency) pairs. For example:

(6, 2), (4, 1), (2, 2), (3, 3), (1, 3), (5, 3)

In practice, frequency values are small (i.e., most words appear just a few
times in a document). They are stored directly using Elias’ gamma or
delta code.

IDs, on the other hand, are typically large integers. Of course, we can

represent each ID again using Elias’ gamma or delta code, but there is a

way to do better.

Y. Tao, March 26, 2013 Inverted Indexes: Compression



Let us sort all the pairs in an inverted list by id:

(1, 3), (2, 2), (3, 3), (4, 1), (5, 3), (6, 2)

Let (idi , fi ) the i-th pair for i ≥ 1. For each i ≥ 2, instead of (idi , fi ), we
store:

(idi − idi−1, fi )

namely, we store only the difference between idi and idi−1.

For example, the above inverted list will be stored as:

(1, 3), (1, 2), (1, 3), (1, 1), (1, 3), (1, 2)

Finally, all the numbers in this final sequence of pairs are stored in Elias’
gamma/delta code.

Think

Convince yourself that we can decompress the resulting bit sequence into
the original inverted list precisely.

Y. Tao, March 26, 2013 Inverted Indexes: Compression


