Web Crawling

Yufei Tao KAIST

March 26, 2013

For a search engine to answer users' queries, it has to store all the webpages of the entire WWW in its local storage. For this purpose, obviously, the search engine will have to read every webpage once, a process known as web crawling. In this lecture, we will discuss how this can be done.

We will once again model WWW as a graph $G=(V, E)$. Specifically, every webpage corresponds to a vertex in V. If webpage u has a hyperlink to webpage v, E has an edge from vertex u to vertex v. The following is an example:

The goal of the web crawler is to visit all the webpages (a.k.a. vertices) in G exactly once. Let the beginning, the crawler knows the URLs of only some of the webpages (otherwise, crawling becomes a trivial task why?). Let S, a subset of V, contain all the webpages whose URLs are known to the crawler.

In our example, let us assume $S=\left\{v_{4}, v_{1}, v_{2}, v_{6}\right\}$.

To start with, the crawler picks a vertex $v \in S$, and performs breadth first search (BFS) in G, to visit all the vertices that are reachable from v. Specifically, BFS works as follows:
algorithm $\operatorname{BFS}(v, A)$
/* v is a vertex in S, and A is the set of vertices already visited so far */

1. let queue be a queue that contains only v
2. while queue is not empty
3. remove the first vertex u from queue
4. visit u, and add u to A
5. for every vertex u^{\prime} that u has an edge to
6. if $u^{\prime} \notin A$ and $u^{\prime} \notin q u e u e$ then
append u^{\prime} to queue

Continuing our example, suppose that the crawler picks v_{4} from S. The BFS starting from v_{4} visits $v_{4}, v_{1}, v_{5}, v_{3}$ (in this order). Hence, when it finishes, $A=\left\{v_{4}, v_{1}, v_{5}, v_{3}\right\}$.

Next, the crawler discards from S all the vertices that are already in A. Then, it repeats the above procedure, until S becomes empty.

Continuing our example, the crawler removes v_{4}, v_{1} from S. Suppose that the next vertex it picks from S is v_{2}. The BFS starting from v_{2} visits only v_{2} itself. Then, after removing v_{2} from S, it picks the last vertex v_{6} from S, and launches one more BFS from v_{6}, which visits v_{6} and v_{7}.

At this moment, the algorithm finishes, and has visited $v_{1}, v_{2}, \ldots, v_{7}$, but not v_{8}.

In general, a web crawler can visit only a subset of the webpages in WWW.

It should be now clear that the effectiveness of crawling depends on how large S is. Fortunately, a sufficiently large S can be easily obtained by enumerating all the possible IP addresses. Such an S will allow the crawler to reach billions of pages in WWW, although it still does not guarantee reaching all of them (think: why?).

