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Part I

The materials in this part are in the scope of quizzes and exams.
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A good library catalog system would offer the following useful search

functionality on its book collection: a user inputs a few query terms (e.g.,

“web search and text analysis”); the system returns the books that are

most relevant. We already know how to implement this functionality

effectively – this is exactly the relevancy problem we dealt with

previously.
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There is vast similarity between a library and WWW. If we look at each

webpage as a “book”, then WWW appears no more than just a

collection of books. It thus seems easy to build a search engine – why

not just implement the aforementioned search functionality of a catalog

system on our WWW “book collection”? Indeed, this was exactly the

rationale of some early search engines.
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However, Google came up with a new idea to substantially improve the

quality of its search engine. After all, WWW is not just a book

collection, because books do not have hyperlinks to each other. These

hyperlinks, as we will see, provide crucial information that should not be

ignored, when looking for the most “influential” webpages among all

those deemed relevant to a user’s query.
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The main motivation of Google is that webpages have different

authorities. For example, to many people, a politics article posted on the

official page of the US government carries more weight than an article

written by an amateur individual. Provided that both articles are

identically relevant to a user’s query, which one should a search engine

recommend to the user? Google believes that it should be the one from

the white house.
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Previously, in solving the term relevancy problem, we calculated the score

of a webpage as its text relevance to a query. By the authority argument

in the last slide, we know that the score combine both the text relevance

and its authority. We will come back to the issue of how to do the

combination later. Now, we will discuss how to compute the authority of

a webpage.
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Graph Modeling of WWW

From now on, we will model WWW as a directed graph G = (V ,E ).
Each webpage is represented as a node in V . Given two nodes (a.k.a.
webpages) v1, v2 ∈ V , there is a link from v1 to v2 in E if there is a
hyperlink in webpage v1 to webpage v2.

Assumption: To simplify our discussion, we will assume that every node
in G has at least one outgoing link.

Here is an example from our reference book:

v1

v2 v3

v4 v5
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Let us imagine the following process that mimics the behavior of a user
surfing randomly in WWW:

1. Let u be the webpage that the user is currently at.

2. With probability α:

2.1 Click on a random hyperlink in u.
2.2 Set u to the new webpage that opens up.
2.3 Repeat from Step 1.

3. With probability 1− α:

3.1 Set u to a random webpage in WWW – we will refer to this as
re-seeding.

3.2 Repeat from Step 1.

We refer to the above process as Google’s random surfing.
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Page Rank

Definition (Page Rank)

The authority (a.k.a. page rank) of a webpage equals the probability that
it is the t-th webpage visited by the user when t tends to ∞.

α is often set to 0.85 in practice.

To start the process, the first page visited by the user can be any
webpage in WWW – its choice does not affect the page ranks.
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v1

v2 v3

v4 v5

Example: Assume that the first webpage chosen by the user is v1. Let us
analyze the probability that the second page is v3. For this to happen,
one of the following disjoint events must take place:

Re-seeding happens in choosing the first webpage, and picks v4.
The probability for this is 0.15 · (1/5) = 0.03.

Re-seeding does not happen, and the user follows the link from v1
to v3. The probability for this is 0.85 · (1/2) = 0.425.

Hence, the probability for v3 to be the second webpage is

0.03 + 0.425 = 0.455.
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v1

v2 v3

v4 v5

Example: Let us analyze the probability that the third webpage is v4. For
this to happen, one of the following disjoint events must take place:

Re-seeding happens in choosing the second page, and picks v4. The
probability for this is 0.15 · (1/5) = 0.03.

v3 is at the second page, re-seeding does not happen, and the user
follows the link from v3 to v4. The probability for this is
0.455 · 0.85 · (1/2) = 0.193.

Hence, the probability for v4 to be the third webpage is

0.03 + 0.193 = 0.223.
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Given a vertex v ∈ V , let p(v , t) be the probability that v is the t-th
webpage visited. Then, we have the following recurrence from the above
discussion:

p(v , t + 1) =
1− α
|V |

+ α ·
∑

u∈in(v)

p(u, t)

outdeg(u)

where

in(v) is the set of in-neighbors of v (i.e., nodes with links pointing
to v).

outdeg(v) is the out-degree of v (i.e., the number of out-going links
of v).
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It is guaranteed that, when t is sufficient large:

p(v , t + 1) = p(v , t)

holds for all v ∈ V .

The value of p(v , t) at this moment is referred to as the page rank of v .

Example

v1

v2 v3

v4 v5

Example: The page ranks of v1, ..., v5 are 0.1716, 0.1666, 0.3214, 0.1666,
and 0.1737, respectively. You can write a program to verify this (see the
next slide). Later, in Part II, we will learn an easier way to do so.
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Page Rank Computation

The following algorithm is called the power method:

1 Let v be an arbitrary node in V . Set p(v , 1) = 1, and p(u, 1) = 0
for all vertices u 6= v .

2 t = 1.

3 Use the equation of the previous slide to calculate p(v , t + 1) for all
v ∈ V .

4 If p(v , t) = p(v , t + 1) for all v ∈ V , terminate the algorithm.

5 Otherwise, t ← t + 1, and repeat from Step 3.

In practice, Step 4 is usually replaced by “if t is large enough (e.g.,

t = 100), terminate the algorithm”.
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Document Ranking (Revisited)

Let us revisit the scenario where Google needs to rank the webpages in
response to a user’s query. Suppose that the query is a sequence Q of
terms. In the relevancy problem, our solution was to calculate a relevance
score score(D,Q) for each webpage D, and then, rank all the webpages
by their scores.

Google, on the other hand, takes into account both the relevance
score(D,Q) of D, and its page rank, denoted as pageR(D). Specifically,
it calculates a function f (D, q) which monotonically increases whenever
score(D,Q) or pageR(D) increases. Then, all documents are ranked in
descending order of their values of f (D, q).

The details of f (D, q) have been kept as a commercial secret, on which

Google has been granted a patent.
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Part II

The following materials are intended for advanced understanding.
They will not be tested in quizzes and exams.

We will discuss how page ranks relate to the well-established theory of
Markov chains. In particular, we will see that page ranks form an

eigenvector of a matrix that depends on the WWW graph G and α.
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Definition (Stochastic Matrix)

An n × n matrix M is called a stochastic matrix if all the following hold:

Every value in M is non-negative.

The values of every row sum up to 1.

From now on, define M[i , j ] as the value at the i-th row, and the j-th

column of M.
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Every stochastic matrix M defines a “random walk” process, formally
known as a Markov chain.

Consider that we have a directed graph Gmark of n nodes: v1, ..., vn.
For every non-zero entry M[i , j ] of M (1 ≤ i , j ≤ n), Gmark has an
edge from vi to vj (note: j can be i , namely, there can be self-loop
edges).

At the beginning of the random walk, you stand at any vertex of
your choice – this is your first stop.

Then, inductively, assuming you are at a node vi at the t-th stop
(t ≥ 1), you move to a neighbor vj with probability M[i , j ]. The
new node you are standing at now is the (t + 1)-th stop.
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Definition (Irreducibility)

An n× n stochastic matrix M is irreducible if, for all 1 ≤ i , j ≤ n, there is
a path from vi to vj in Gmark .
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Definition (Probability Vector)

An n × 1 vector P is a probability vector if both the following are true:

Each component in P is a value between 0 and 1.

All components of P sum up to 1.
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Theorem

Let M be an irreducible stochastic matrix corresponding to Google’s
random walk, and MT be the transpose of M. The following statements
are correct:

There is a unique probability vector P satisfying P = MTP.

MT has a an eigenvalue 1. All the other eigenvalues of MT have
absolute values strictly less than 1.
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The process of Google’s random surfing can be regarded as a Markov
chain. Specifically, assume that WWW has n webpages v1, ..., vn. If you
are currently at webpage vi , then you jump to webpage vj as the next
stop with probability:

1−α
n , if vi does not have a hyperlink to vj .

1−α
n + α

outdeg(vi )
, if vi has outdeg(vi ) hyperlinks, one of which points

to vj .

You can view the above process as a Markov chain on a graph Gmark ,
where each vi corresponds to a webpage, and there is a link from every vi
to every vj (even for i = j). Let M be the matrix for this Markov chain.
Then, M[i , j ] is set as the probability of jumping from vi to vj as
discussed above.

Think

Verify by yourself that M is an irreducible stochastic matrix.
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As before, let p(vi , t) (1 ≤ i ≤ n) be the probability that webpage vi is
the t-th one visited by the random surfer. Let P(t) be an n × 1 vector
such that:

P(t) = (p(v1, t), p(v2, t), ..., p(vn, t))T

where the superscript T stands for “transpose”.

From Slide 13, we know:

P(t + 1) = MT · P(t).
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When P(t + 1) = P(t), the values in P(t) give the page ranks of the
vertices v1, ..., vn. At this moment, P(t) is the solution of P from the
following equation:

P = MT · P.

Namely, P (which is a probabilistic vector) is an eigenvector of M of
eigenvalue 1. By the theorem in Slide 22, P exists and is unique.

Remark: For this reason, P is commonly referred to as the stationary
probability vector of the Markov chain described by M.
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With everything said, we can now re-state the power method in a concise
manner:

1 Set P(1)← (1, 0, ..., 0)T , and t ← 1.

2 Compute

P(t + 1) = MT · P(t).

3 t ← t + 1.

4 Repeat from Step 2.
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Theorem

Let M be an irreducible stochastic matrix corresponding to Google’s
random surfing, and P be the stationary probability vector of the Markov
chain described by M. Then, in the power method, limt→∞ P(t) = P.

In practice, the value α controls the convergence rate, i.e., how far P(t)

gets close to P. In particular, the smaller is α, the faster the

convergence.
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Example

v1

v2 v3

v4 v5

The matrix describing the random walk is:

M =


0.03 0.03 0.455 0.03 0.455
0.455 0.03 0.455 0.03 0.03
0.03 0.455 0.03 0.455 0.03
0.455 0.03 0.03 0.03 0.455
0.03 0.03 0.88 0.03 0.03


You can verify that P = (0.1716, 0.1666, 0.3214, 0.1666, 0.1737)T is an eigenvector of
MT with eigenvalue 1. It is the stationary probability vector of the Markov chain
described by M.
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