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In this lecture, we will continue our discussion on:

Problem (Nearest Neighbor Search with Keywords)

Let P be a set of points in N2, where N represents the set of integers.
Each point p ∈ P is associated with a set Wp of terms. Given:

a point q ∈ N2,

an integer k,

a real value r ,

a set Wq of terms

a k nearest neighbor with keywords (kNNwK) query returns the k points
in Pq(r) with the smallest Euclidean distances to q, where

Pq(r) = {p ∈ P |Wq ⊆Wp and dist(p, q) ≤ r}.

where dist(p, q) is the Euclidean distance between p and q.

Y. Tao, June 3, 2013 Nearest Neighbor Search with Keywords: Compression



In the previous lecture, we have learned the basic ideas:

For every term t, make an inverted list list(t) collecting all the
points p ∈ P such that t ∈Wp.

Index each list(t) with an R-tree.

Answer a query via distance browsing.
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In this lecture, we will see how to implement these ideas efficiently. In
particular, we will discuss:

How to compress each list(t)?

How to build an R-tree on each list(t).

After resolving the above issues, we will obtain a structure called the
spatial inverted index. For simplicity, we will

focus on k = 1, namely, the 1NNwK problem. Extensions to
arbitrary k are straightforward and left to you.

assume that every x- and y-coordinate is in the range of [0,U − 1],
where U is a power of 2 that equals the lengths of the x- and
y-dimensions.
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Each entry in list(t) has the form (id , x , y).

Think

Why do we need id?

Instead, we will store (pid , z) where:

pid is an integer called a pseudo id.

z is an integer called a z-value, from which we can obtain x and y
uniquely.
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Z-order

An encoding that converts a 2d point p = (x , y) to a one dimensional
value z(p) called the z-value of p.

Suppose that x = a1a2...a`−1 and y = b1b2...b`−1 in binary, where
` = log2 U (recall that the x- and y- dimensions have domain [0,U − 1],
and U is a power of 2).

Then, z(p) = a1b1a2b2...a`−1b`−1 in binary.

Example

Suppose x = 13, y = 25, and U = 32. Then:

x = 01101 in binary.

y = 11001 in binary.

z(p) = 0111100011 in binary = 483 in decimal.

Given z(p), we can decode x and y in a straightforward manner.
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Z-order

Pictorial illustrations:
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Z-order

The z-order encoding is a form of spatial filling curve, which aims at
converting 2d points to 1d values in a proximity preserving manner. This
means:

If two points p1 and p2 are close in 2d space, then often z(p1) and
z(p2) are close.

If z(p1) and z(p2) are close, then often p1 and p2 are close in 2d
space.

Think

Can you observe from the previous slide that the above sometimes are
not true? Do you think that there would exist a “perfect” spatial filling
curve that will make the above always true?
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Now, let us get back to the 1NNwK problem.

Let us sort all the points in P by z-value. Assign each point p ∈ P a
pseudo id pid(p) that equals the rank of p in the sorted list (i.e., the first
point has rank 1, the second has rank 2, ...).

Example: The figure on the right shows the z-values of the data points.
Hence, pid(p6) = 1, pid(p2) = 2, ...
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We are ready to explain how to compress an inverted list list(p).

Suppose that S is the set of points in list(p). We sort these points in
ascending order of their pseudo ids (and hence, also in ascending order of
their z-values). Each entry of the list has the form (pid , z). Apply the
“gapping technique” discussed previously, namely, for the i-th pair
(i ≥ 2), store (∆pid ,∆z), where ∆pid is the difference between the pid of
the pair, and that of the (i − 1)-th pair, and similarly, for ∆z .

Store all integers using Elias’ Gamma code.
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Example:
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Then list(d) has pairs: (0, 12), (1, 15), (2, 23), (6, 52). Hence, we store

(0, 12), (1, 3), (1, 8), (4, 29).
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Lemma

Let n = |P|. If list(p) has r points, our compression scheme uses

O(r(log n
r + log U2

r )) bits.
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Next, we describe a simple way to create effective R-trees. Let S be a set
of 2d points. Suppose that we have sorted them by z-value in ascending
order; let L be the sorted list.

Given a parameter b, let us cut L into blocks of size b, where a block is a
subsequence of points in L.

Treat each block as a leaf node. Once all the leaf nodes have been

decided, so are the internal nodes.
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Example:
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We apply this idea to create R-trees on the inverted lists. There is only
one issue left. Currently, each inverted list has been compressed using the
gapping technique. As a result, if we want to decompress a point p in an
inverted list, we must read the bits of all the points before p in the list.

This creates a problem because, in answering a query by distance
browsing, we must be able to decompress all the points in a leaf node
quickly.

To avoid this problem, we can instead apply the gapping idea locally in
each leaf node. Namely, if a leaf node contains a sequence L of points
(sorted by z-order), the (pid , z) pair of the first point in L is represented
in its original form.

One can show that the extra space overhead thus introduced is limited as

long as b is not too small.
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