Nearest Neighbor Search with Keywords:

Compression

Yufei Tao
KAIST

June 3, 2013

Y. Tao, June 3, 2013 Nearest Neighbor Search with Keywords: Compression



In this lecture, we will continue our discussion on:

Problem (Nearest Neighbor Search with Keywords)

Let P be a set of points in N2, where N represents the set of integers.
Each point p € P is associated with a set W, of terms. Given:

@ a point g € N?,

@ an integer k,

@ a real value r,

@ a set W, of terms

a k nearest neighbor with keywords (kNNwK) query returns the k points
in Pg(r) with the smallest Euclidean distances to g, where

Py(r) = {peP|W,C W, and dist(p,q) < r}.

where dist(p, q) is the Euclidean distance between p and g.
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In the previous lecture, we have learned the basic ideas:

@ For every term t, make an inverted list list(t) collecting all the
points p € P such that t € W,,.

@ Index each list(t) with an R-tree.

@ Answer a query via distance browsing.
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In this lecture, we will see how to implement these ideas efficiently. In
particular, we will discuss:

@ How to compress each list(t)?
@ How to build an R-tree on each list(t).

After resolving the above issues, we will obtain a structure called the
spatial inverted index. For simplicity, we will

@ focus on k =1, namely, the INNwK problem. Extensions to
arbitrary k are straightforward and left to you.

@ assume that every x- and y-coordinate is in the range of [0, U — 1],
where U is a power of 2 that equals the lengths of the x- and
y-dimensions.
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Each entry in list(t) has the form (id, x,y).

Why do we need id?

Instead, we will store (pid, z) where:
@ pid is an integer called a pseudo id.

@ z is an integer called a z-value, from which we can obtain x and y
uniquely.
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An encoding that converts a 2d point p = (x, y) to a one dimensional
value z(p) called the z-value of p.

Suppose that x = ajas...ay_1 and y = by by...by_1 in binary, where
¢ = log, U (recall that the x- and y- dimensions have domain [0, U — 1],
and U is a power of 2).

Then, z(p) = a1brazby...ag_1b¢—1 in binary.

Suppose x = 13, y = 25, and U = 32. Then:
@ x = 01101 in binary.

@ y = 11001 in binary.
@ z(p) = 0111100011 in binary = 483 in decimal.

Given z(p), we can decode x and y in a straightforward manner.
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Pictorial illustrations:

U =22
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The z-order encoding is a form of spatial filling curve, which aims at
converting 2d points to 1d values in a proximity preserving manner. This
means:

@ If two points p; and p; are close in 2d space, then often z(p;) and
z(p2) are close.

@ If z(p1) and z(p,) are close, then often p; and p; are close in 2d
space.

Can you observe from the previous slide that the above sometimes are
not true? Do you think that there would exist a “perfect” spatial filling
curve that will make the above always true?
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Now, let us get back to the INNwK problem.

Let us sort all the points in P by z-value. Assign each point p € P a
pseudo id pid(p) that equals the rank of p in the sorted list (i.e., the first
point has rank 1, the second has rank 2, ...).

Example: The figure on the right shows the z-values of the data points.
Hence, pid(ps) = 1, pid(p2) =2, ...
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We are ready to explain how to compress an inverted list list(p).

Suppose that S is the set of points in list(p). We sort these points in
ascending order of their pseudo ids (and hence, also in ascending order of
their z-values). Each entry of the list has the form (pid, z). Apply the
“gapping technique" discussed previously, namely, for the i-th pair

(i > 2), store (Apig, A;), where Ajg is the difference between the pid of
the pair, and that of the (i — 1)-th pair, and similarly, for A,.

Store all integers using Elias’ Gamma code.
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Example:
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Then list(d) has pairs: (0,12),(1,15),(2,23), (6,52). Hence, we store
(0,12),(1,3), (1,8), (4, 29).
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Let n = |P|. If list(p) has r points, our compression scheme uses
O(r(log 2 + log UTZ)) bits.
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Next, we describe a simple way to create effective R-trees. Let S be a set
of 2d points. Suppose that we have sorted them by z-value in ascending
order; let L be the sorted list.

Given a parameter b, let us cut L into blocks of size b, where a block is a
subsequence of points in L.

Treat each block as a leaf node. Once all the leaf nodes have been

decided, so are the internal nodes.
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Example:
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We apply this idea to create R-trees on the inverted lists. There is only
one issue left. Currently, each inverted list has been compressed using the
gapping technique. As a result, if we want to decompress a point p in an
inverted list, we must read the bits of all the points before p in the list.

This creates a problem because, in answering a query by distance
browsing, we must be able to decompress all the points in a leaf node
quickly.

To avoid this problem, we can instead apply the gapping idea locally in
each leaf node. Namely, if a leaf node contains a sequence L of points
(sorted by z-order), the (pid, z) pair of the first point in L is represented
in its original form.

One can show that the extra space overhead thus introduced is limited as
long as b is not too small.
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