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In this lecture, we will discuss the following approximate string matching
problem.

Problem (Approximate String Matching)

Let S be a set of strings, each of which has a distinct id. Given a query
string t and a value d, we want to report the ids of all strings in S that
are within edit distance d from t.

This is a key problem for search engines to provide automatic correction
of spelling errors. In practice, d is a small value, e.g., 1.

Suppose that S has {ab, abbb, babb, bbaa, bbbaa}, where the strings
have ids 1 to 5 (from left to right). Then:

@ for t = bba and t = 1, the query returns 4.

@ for t = bab and t = 2, the query returns 1, 2, 3, and 4.
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We will consider the problem in the scenario where |t| > d. As
mentioned, a typical value of d in practice is 1, in which case essentially
we require |t| > 2.

We will discuss some solutions that have been confirmed to be highly
effective in practice. They, however, are heuristic in the sense that they
do not have attractive worst case performance guarantees in the worst
case.
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@ the query string t is short
@ the alphabet has a small size, and
@ d is small

we can convert the problem into exact matching as follows. Generate all
the d-neighbors of t, i.e., strings that are within edit distance d from t.

For t = ab and a binary alphabet {a, b}, all the 1-neighbors of t include
{a, b, bb, aa, aab, bab, abb, aba}.

Observe that, for each s € S, edit(s,t) < d if and only if s is a
d-neighbor of t. Hence, we can answer the approximate matching query
by finding the exact matches of all d-neighbors of t.

Think: What is the most serious drawback of this solution?
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Next, we discuss solutions that are more efficient in practice.

As before, we will denote by s[i] the i-th letter of a string s (1 </ < s]|),
and by s[i..j] (1 <i<j<|s|) the substring of s that starts at s[i] and
ends at s[j]. Also, let # be a special symbol that does not exist in any
data string of S.

Definition (g-gram)
Let s be a string, and (i, o) be a pair where i is an integer and o a string
of length g. Then, (i, t) is a positional g-gram of s if either of the
following conditions holds:

@ i<|s|—g+1land o =s[i..i+q—1]

@ i€ [|s|—g+1,|s|], and o is formed by concatenating s]i..|s|] and a
sequence of #.

If (i,0) is a positional g-gram, then ¢ is a g-gram of s.
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Example

Consider s = bbaa. Then, s has
@ four positional 1-grams: (1,b),(2,b),(3,a), (4, a).
@ two l-grams: a and b.

@ four positional 2-grams: (1,bb), (2,ba), (3, aa), (4, a#).

@ four 2-grams: bb, ba, aa, a#.

We will denote by Qq(s) the set of all positional g-grams of s. Clearly,
|Qq(s)] = Isl-

Y. Tao, May 21, 2013 Approximate String Matching



Let s and t be two strings. Let (/i,05) and (j, o) be positional g-grams
of s and t, respectively. We say that (i, 0,) d-matches (j, ;) if:

@ 05 =0¢
o |i—jl<d.

We will also say that (i, 05) is a d-match of (j, 0;), and conversely, (j, o¢)
is a d-match of (i, 05).
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Lemma

If edit(s,t) < d, then Q,4(t) has at least

max{]s], [t[} — dq

positional g-grams each having at least a d-match in Qq(s).

v

Suppose that s = bbaa. Let g=2 and d = 1.

@ For t = bba, Qq(t) has 3 positional g-grams that have d-matches
in Qq(s): (1,bb),(2,ba), (3,a#).

@ For t =ba, Qq4(t) has 1 positional g-gram with a d-match in Qq(s):
(1,pa).

@ For t = aa, Qq4(t) has no positional g-gram with a d-match in

Qq(s).

A\
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Note that the reverse of the lemma is not true. Namely, even if Qq(t)
has at least max{|s|, |t|} — dq positional g-grams with d-matches in
Qq(s), it is still possible that edit(s, t) > d.

Suppose that s = bbaa. Let g =2 and d = 1.

@ For t = bbb, Qq(t) has 2 positional g-grams that have d-matches
in Qq(s): (1,bb),(2,bb).
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The previous lemma indicates a filter refinement strategy for solving the
approximate string matching problem:

@ (Filter) Find the set C of candidate strings s € S such that Qq(t)
has at least |t| — dq positional g-grams with d-matches in Qq(s).

@ (Refinement) For every candidate string s € C, verify whether
edit(s,t) < d.

We focus on the filter step because the refinement step simply invokes
the edit distance verification algorithm we discussed before.
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We will instead focus on the following g-gram matching problem. Given
a positional g-gram (i, ¢), find all the strings in s € S such that (i, o)
has at least a d-match in Qq4(s).

How do we implement the filter step efficiently by leveraging a solution
to the above problem?

We will solve the g-gram matching problem using an inverted index, as

shown next.
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Let Q be the set of g-grams of all the strings in S. We create an inverted
index as follows.

@ For each g-gram o € Q, create an inverted list list(o).

@ For every string s € S with a position g-gram (i, o) for some
i € [1,]s]], the inverted list list(o) contains an entry (id(s), i),
where id(s) is the id of s.
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Suppose that S has {ab, abbb, babb, bbaa, bbbaa}, where the strings
have ids 1 to 5 (from left to right). Let g = 2. The inverted index is:

g-gram o | inverted list for o

aa (4, 3), (5, 4)

ab (1, 1), (2,1), (3 2)

a#t (4, 4), (5, 5)

ba (3, 1), (4, 2), (5, 3)

bb (2,2), (2, 3), (3, 3), (4, 1), (5 1), (5, 2)
b# (1,2), (2. 4). (3. 4)

@ How would you use the above index to find the ids of the strings s
such that @(s) has a 1-match of (3, ab)?

@ Putting everything together, how would answer a query with
t = bbab and d = 17
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