Edit Distances: Verification

Yufei Tao
KAIST

June 13, 2013

Given two strings s, t, we already know how to compute their edit distance edit (s, t) using dynamic programming in $O(|s||t|)$ time. It turns out that we can do better if we only need to verify whether $e d i t(s, t) \leq d$. This can be done in

$$
O(|s|+|t|+d \cdot \min \{|s|,|t|\})
$$

time.

For simplicity, we will assume $|s|=|t|=\ell$. It is left as an exercise for you to extend our discussion to the case of $|s| \neq|t|$.

Our goal now is to verify whether edit $(s, t) \leq d$ in $O(d \ell)$ time for $d<\ell$ (if $d \geq \ell$, the answer is trivially yes).

Recall that, in order to compute edit (s, t) in $O\left(\ell^{2}\right)$ time, our strategy was to fill in an $(\ell+1) \times(\ell+1)$ array A. To solve the verification problem, we will adopt a similar strategy, except that we will fill in only a hexagon part of A, as explained next.

Let us first define the gray boundary cells to be

- At row 0 , the left most d cells.
- At column 0 , the top most d cells.

Define the blue boundary cells to be

- At row $\ell+1$, the right most d cells.
- At column $\ell+1$, the bottom most d cells.

An example with $\ell=8$ and $d=2$:

Define the yellow boundary cells to be:

- $A[0, d], A[1, d+1], \ldots, A[\ell+1-d, \ell+1]$
- $A[d, 0], A[d+1,1], \ldots, A[\ell+1, \ell+1-d]$

An example with $\ell=8$ and $d=2$:

Define the green cells to be all those cells inside the region surrounded by the gray yellow, and blue boundary cells.
An example with $\ell=8$ and $d=2$:

We fill in only the colored cells (i.e., ignoring the others) as follows:
(1) Fill in the gray cells normally.
(2) Put $d+1$ in all the yellow cells.
(3) Compute the green and blue cells in the same manner as in the $O\left(\ell^{2}\right)$-time algorithm (i.e., row by row, and left to right at each row).
Report yes if $A[\ell+1, \ell+1] \leq d$, and no, otherwise.
Since there are only $O(d \ell)$ colored cells, the running time is $O(d \ell)$.

Example: $s=$ humanity, $t=$ hunamity, and $d=2$.
After the first two steps:

		h	u	m	a	n	i	t	y
	0	1	2	3					
h	1				3				
u	2					3			
n	3						3		
a		3						3	
m			3						3
i				3					
t					3				
y						3			

Example: $s=$ humanity, $t=$ hunamity, and $d=2$.
After all steps:

$m \mathrm{a} n \mathrm{i}$ t y									
	0	1	2	3					
h	1	0	1	2	3				
u	2	1	0	1	2	3			
n	3	2	1	1	2	2	3		
a		3	2	2	1	2	3	3	
m			3	2	2	2	3	4	3
i				3	3	3	2	3	4
t					3	4	3	2	3
y						3	4	3	2

So we conclude edit $(s, t) \leq 2$.

Think
 Why is the algorithm correct?

