
Edit Distances

Yufei Tao

KAIST

May 6, 2013

Y. Tao, May 6, 2013 Edit Distances

Early search engines supported keyword search in an “exact” manner,

namely, reporting websites that contain the query strings precisely. Not

surprisingly, many queries in practice contain typing errors. Instead of

returning websites containing mis-typed words (which is a bad idea in

most cases), modern search engines are able to automatically correct

many of these errors, and proceed with the corrected query strings.

Y. Tao, May 6, 2013 Edit Distances

In a nutshell, spelling correction works as follows. Given a (mis-spelled)
query string q, we want to look up in a dictionary for the strings s that
are similar to q. To carry out this approach, apparently, we must first
find a good way to quantify the similarity of q and s.

In this lecture, we will discuss such a similarity metric, called the edit

distance.

Y. Tao, May 6, 2013 Edit Distances

Given two strings s and t, the edit distance edit(s, t) is the smallest
number of following edit operations to turn s into t:

Insertion: adding a character

Deletion: removing a character

Substitution: replace a character with another one.

Example

edit(abode, blog) = 4 because

We can change abode into blog by 4 operations:

1 delete a ⇒ bode
2 insert l after b ⇒ blode
3 delete d ⇒ bloe.
4 substitute e with g ⇒ blog

Impossible to do so with at most 3 operations.

Y. Tao, May 6, 2013 Edit Distances

Lemma

edit(s, t) = edit(t, s).

Namely, the edit distance is symmetric.

Y. Tao, May 6, 2013 Edit Distances

Next, we discuss the algorithm for computing edit(s, t).

Given a string σ, we denote by σ[i] the i-th character of σ, for each

i ∈ [1, |σ|]. Also, given 1 ≤ i ≤ |σ|, denote by σ[1..i] as the substring of

σ starting from σ[1] and ending at σ[i]. Specially, define σ[1..0] to be the

empty string.

Y. Tao, May 6, 2013 Edit Distances

Let m = |s| and n = |t|.

Lemma

If m = 0, then edit(s, t) = n.

If n = 0, then edit(s, t) = m.

If m > 0, n > 0, and s[m] = t[n], then edit(s, t) is

min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
edit(s[1..m − 1], t[1..n − 1])

If m > 0, n > 0, and s[m] 6= t[n], then edit(s, t) is

min

 1 + edit(s, t[1..n − 1])
1 + edit(s[1..m − 1], t)
1 + edit(s[1..m − 1], t[1..n − 1])

Y. Tao, May 6, 2013 Edit Distances

Equipped with the lemma of the previous slide, next we will learn a
dynamic programming algorithm for computing edit(s, t).

The goal of the algorithm is to fill up a two-dimensional array A.
Specifically, A has m + 1 rows and n + 1 columns. Let us label the rows
as 0, ...,m, and the columns as 0, ..., n. The cell A[i , j] at row i and
column j equals:

A[i , j] = edit(s[1..i], t[1..j]).

Y. Tao, May 6, 2013 Edit Distances

Example

The matrix A for s = abode and t = blog:

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 1 2 3 4
3 3 2 2 2 3
4 4 3 3 3 3
5 5 4 4 4 4

Y. Tao, May 6, 2013 Edit Distances

We use the following strategy to fill up A:

1 First set the first row, and first column.

2 Then, fill the rest of A row by row, starting from row 2, and then
row 3, 4, ... At each row, fill the cells from left to right.

Y. Tao, May 6, 2013 Edit Distances

By the lemma in Slide 7, we can fill in cell A[i , j] the value:

min

 1 + A[i , j − 1]
1 + A[i − 1, j]
A[i − 1, j − 1] if s[i] = t[j], or 1 + A[i − 1, j − 1] otherwise

In any case, we need A[i , j − 1], A[i − 1, j], and A[i − 1, j − 1], all of

which are already available.

Y. Tao, May 6, 2013 Edit Distances

Lemma

The dynamic programming algorithm on the previous slide runs in O(mn)
time.

Y. Tao, May 6, 2013 Edit Distances

Next, we extend the algorithm to compute also an editing path, namely,
a sequence of edit operations to turn s into t.

Definition

A cell A[i , j] is said to be determined by

A[i , j − 1], if A[i , j] = 1 + A[i , j − 1]

A[i − 1, j], if A[i , j] = 1 + A[i − 1, j]

A[i − 1, j − 1], otherwise.

Y. Tao, May 6, 2013 Edit Distances

Definition

Given strings s, t, a set T of integer pairs is called a trace if we can order
the pairs of T as (a1, b1), (a2, b2), ..., (az , bz) for some z ≥ 1 such that
1 ≤ a1 < a2 < ... < az ≤ |s|, and 1 ≤ b1 < b2 < ... < bz ≤ |t|.

Example

Given s = abode and t = blog, then:

{(2, 1), (3, 3)} is a trace.

{(2, 3), (3, 1)} is not a trace.

{(2, 3), (3, 5)} is not a trace.

Y. Tao, May 6, 2013 Edit Distances

Given a trace T , we can imagine a line connecting s[ai] to t[bi], for each
i ∈ [1, z] where z = |T |.

If a character of s or t has a line, we say that it is traced; otherwise, it is
non-traced.

Let t[x1], t[x2], ..., t[xz] be traced characters. We refer to each of
t[1..x1 − 1], t[x1 + 1..x2 − 1], ..., t[xz−1 + 1..xz − 1], t[xz + 1..|t|] as a
non-traced substring of t.

Example

Given a trace {(2, 1), (3, 3), (4, 4)} on s = abode and t = blog, then:

a b o d e

b l o g

t has 4 non-traced substrings: ∅, l, ∅, and ∅.

Y. Tao, May 6, 2013 Edit Distances

Given a trace T on s and t, we can convert s to t by the following steps:

Copy s to σ.

For each i ∈ [1, z] such that ai 6= bi , substitute σ[ai] with t[bi].

For each non-traced character in s, delete the corresponding
character from σ.

Insert the first non-traced substring of t at the beginning of σ.

Append the last non-traced substring of t at the end of σ.

For each non-traced π substring of t between traced characters c
and c ′, insert π in σ between the corresponding characters of c and
c ′.

Y. Tao, May 6, 2013 Edit Distances

Example

a b o d e

b l o g

We convert s to t by:

Substitute d with g.

Delete a and e.

Insert l.

Y. Tao, May 6, 2013 Edit Distances

We can obtain an optimal editing path by finding a trace as follows

algorithm trace(A)
/* assume that A has been filled */
1. initialize a set T = ∅
2. i = m, j = n
3. while i 6= 0 and j 6= 0
4. suppose that A[i , j] is determined by A[i ′, j ′]
5. if i ′ = i − 1 and j ′ = j − 1 then
6. add (i , j) to T
11. i = i ′, j = j ′

12. return T

Y. Tao, May 6, 2013 Edit Distances

Example

The matrix A for s = abode and t = blog:

0 1 2 3 4

0 0 1 2 3 4
1 1 1 2 3 4
2 2 1 2 3 4
3 3 2 2 2 3
4 4 3 3 3 3
5 5 4 4 4 4

Thus, T = {(4, 4), (3, 3), (2, 1)}

Remark

Note that the editing path of T (see Slide 17) is different from the one in
Slide 4. In general, there can be multiple optimal editing paths.

Y. Tao, May 6, 2013 Edit Distances

