Suffix Trees and Arrays

Yufei Tao
KAIST

May 1, 2013

Y. Tao, May 1, 2013 Suffix Trees and Arrays

We will discuss the following substring matching problem:

Problem (Substring Matching)

Let o be a single string of n characters. Given a query string g, a query
returns:

@ all the starting positions of g in s, if g is a substring of ¢;

@ nothing otherwise.

Example
Let 0 = aabbabab. Then:

@ for g = abb, return 2 because substring abb starts at the 2nd
position of .

@ for g = bab, return 4 and 6.

@ for g = bbb, return nothing.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Relation to Search Engines

Our technique for solving this problem will give an elegant solution to the
phrase matching problem, which is crucial to search engines:

Problem (Phrase Matching)

Let S be a set of documents, each of which is a sequence of characters,
and has a distinct id. Given a sequence g of characters, a query returns
the ids of all documents in S that contain g as a substring.

See the next slide for an example.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Relation to Search Engines (cont.)

Let S include the following two documents:

@ document 1: “Search engines are not very effective for
irregular queries.”

@ document 2: “Without search engines, the Internet would
not have been so popular.”

Then:
@ for g = "search engine”, return 1 and 2.

@ for g = "very effective”, return 1.

@ for g = “ular”, return 1 and 2.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Now, we return to the substring matching problem.

We will denote a string s as a sequence s[1]s[2]...s[/] where | = |S], and
s[i] is the i-th character of s (1 < < f).

Definition (Suffix)

For a string s = s[1]s[2]...s[/], the string s[i]s[i + 1]...s[/] is called a suffix
of s for each i € [1, /].

Clearly, a string s has |s| suffixes.

String aabbabab has 8 suffixes: aabbabab, abbabab, bbabab, babab,
abab, bab, ab, b.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Recall that o is the input string of our substring matching problem. We
consider that o is stored in an array of length |o|. We will denote by S
the set of suffixes of o.

A query string g is a substring of ¢ if and only if g is a prefix of a string
in S.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Earlier, we proved:

Let S be a set of m strings, each of which has a unique integer id. We
can build a structure of O(m) space such that, given a query string g,
the ids of all strings s € S such that q is a prefix of s can be reported in
O(log m + |q| + k) time, where k is the number of ids reported.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

We thus immediately obtain:

For the substring matching problem, we can build a structure of O(n)
space such that, given a query string g, the starting positions of all
substring g in o can be reported in O(log n+ |q| + k) time, where k is
the number of reported positions.

The structure implied by the above lemma is called the suffix tree —
essentially, a patricia trie on all the suffixes of o.

The lemma of the previous slide assumes that (i) every string in S is
stored in an array, and (ii) every string terminates with a special symbol
L. Convince yourself that neither assumption prevents us from deriving
the above lemma.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

The subsequent slides will not be tested in the quizzes and exams.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

The suffix tree is not so easy to implement. Next, we will discuss an
alternative structure called the suffix array that is more amenable to
practical use.

To simplify discussion, let us focus on a slightly different problem:

Problem (Substring Detection)

Let o be a single string of n characters. Given a query string g, a query
returns:

@ yes, if g is a substring of o;

@ no, otherwise.

The suffix array can be easily extended to solve the substring matching
problem, which is left as an exercise for you.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

As before, o is the data input to the substring matching problem, and S
is the set of all suffixes of o. For each suffix s € S, define its index to be
the starting position of s in o.

Let 0 = aabbabab. Then, the index of babab is 4, and that of bab is 6. \

For any s, using its index, we can access any s[i] for any i € [1,]s]] in
constant time. Think: why? (Hint: use the array of o)

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Now, we sort S alphabetically in ascending order. From now on, we
denote by S[i], 1 < i < n, the i-th string of S in the ordering.

We can represent the ordering using an array A of size n, specifically, by
storing in A[i] the index of S[i].

See the next slide for an example.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Let 0 = aabbabab. Then:

@ S[1] = aabbabab, A[1] =1.
@ S[2] = ab, Al2] =7.

@ S[3] = abab, A[3] =5.

@ S[4] = abbabab, A[4] = 2.
@ S[5] =b, A[5] =8.

@ S[6] = bab, A[6] = 6.

@ S[7] = babab, A[7] = 4.

@ S[8] = bbabab, A[8] = 3.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Given a string g, we can answer a substring detection query by
performing binary search on array S. For simplicity, we consider only the
case where q is a prefix of neither S[1] and S[m] (think: otherwise, what
do we do?). Here is the algorithm:

© Suppose that we know ¢ is greater a left string S[/] but smaller
than a right string S[r] (at the beginning, / =1 and r = n).

@ Call S[m] the middle string, where m = |(/ + r)/2].
© If g is a prefix of S[m], return yes.

@ Else if g < S[m], then we only need to search in
S[I+1],...,5[m — 1]. Hence, we set r = m and go back to 2 if
| < r — 2 (otherwise, return no).

© Else, we only need to search in S[m+1],...,S[r —1]. Set / = m and
go back to 2 if | < r — 2 (otherwise, return no).

The query time is O(|q| log n), because it takes O(|q|) time to compare ¢
to S[m], and we need to do O(log n) comparisons.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Next, we will show how to improve the time of this algorithm
substantially to O(log n+ |ql).

At each iteration of the binary search, we denote [S[/], S[r]] as a search
interval.

Crucial observation: there can be only n possible search intervals.

To show this, observe that binary search can be described instead by a
decision tree T defined as follows:

@ If |S| <2, then T is empty.

@ Otherwise, the root u of T is S[m] where m = [(1+ n)/2]. Also, u
has a left subtree T; and a right subtree T,, where

o T is the decision tree on array S[1, ..., m]
e T, is the decision tree on S[m, ..., n].

Y. Tao, May 1, 2013 Suffix Trees and Arrays

The decision tree T when S has 8 elements:

S[4]
/\
S[2] S[e]
\5[3] S5 S[7]

In general, T has n — 2 nodes. Furthermore, node S[i] corresponds to a
unique search interval [S[/], S[r]] such that i = [(/ + r)/2], that is, S]i]
is the middle string of this search interval.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

To achieve query time O(log n + |q|), besides A, we need two more
integer arrays L and R of size n.

For each i € [2,n — 1], let [left, right] be the search interval that S[i]
corresponds to. Then:

@ L[i] = the length of the longest common prefix (LCP) of left and
S[i].

@ RJ[i] = the LCP length of right and S[i].

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Let 0 = aabbabab. Then:

@ S[1] = aabbabab, A[1] =1.

@ S[2] =ab, A[2] =7, L[2] =1, R[2] = 2.

@ S[3] = abab, A[3] =5, L[3] =2, R[3] =2.

@ S[4] = abbabab, A[4] =2, L[4] =1, R[4] = 0.
@ S[5] =b, A[5] =8, L[5] =0, R[5] =1.

@ S[6] = bab, A[6] =6, L[6] =0, R[6] = 1.

@ S[7] = babab, A[7] =4, L[7] =3, R[7] =1.

@ S[8] = bbabab, A[8] = 3.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

The suffix array on S is nothing but the collection of three arrays: A, L,
and R. The total space consumption is clearly O(n).

Y. Tao, May 1, 2013 Suffix Trees and Arrays

We now discuss how to answer a substring detection query with string g
using a suffix array. The algorithm is the same as the one in Slide 77,
except that at any point, we maintain two values:

@ [cplen(left, q):
the LCP length of g and the left string left = S[/].

@ Icplen(right, q):
the LCP length of g and the right string right = S|r].

Let us also define:

@ Icplen(left, mid):
the LCP length of left and the middle string mid = s[m].

@ Icplen(right, mid):
the LCP length of mid and right.

Knowing m, both Icplen(left, mid) and Icplen(right, mid) can be obtained
as L[m] and R[m] in constant time, respectively.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Next, we show how to incrementally maintain Icplen(left, g) and
leplen(right, q).

Case 1: Icplen(left, q) < Icplen(left, mid)
It must hold that ¢ > mid (think: why?).

Hence, | = m; Ieplen(left, q) and Icplen(right,) remain unchanged
(think: why?).

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Case 2: Icplen(left, q) > Icplen(left, mid)

It must hold that g < mid (think: why?). Thus, r = m, and we set:
leplen(right,q) = lcplen(left, q)

Think: Why is the above correct? Also, Icplen(right, g) cannot have
decreased; why?

Y. Tao, May 1, 2013 Suffix Trees and Arrays

The next two cases are symmetric to the previous two:

Case 3: Icplen(right, q) < lcplen(right, mid)
Case 4: Icplen(right, q) > lcplen(right, mid)

Their handling is similar to the handling of Cases 1 and 2. The details
are left to you.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Case 5: Icplen(left, q) = Icplen(left, mid) and
leplen(left, q) = Icplen(right, mid)

We know that g and mid share the same first
x = max{leplen(left, q), lcplen(right, q)}

characters. Nevertheless, we do not know yet which of them is greater.

To find out, we decide the LCP length y of mid and g. This requires only
y — x + 1 comparisons, namely, comparing left[i] and q[i] for each
iex+1,y+1]

We then have three more cases.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Case 5.1: y = |q|

So, g is a prefix of mid. The algorithm finishes and returns yes.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Case 5.2: y < |g| and q[y + 1] < mid[y + 1]

So, g < mid. Thus, r = m. We set

leplen(right,q) = 'y

Icplen(right, @) cannot have decreased after the above because
y > x > leplen(right, q). On the other hand, if y > x, lcplen(right, q)
has increased by at least y — x.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

Case 5.3: y < |q| and qly + 1] > mid[y + 1]
So, g > mid. Thus, | = m. We set

leplen(left,q) = y

Icplen(left,) cannot have decreased. If y > x, Icplen(left, q) has
increased by at least y — x.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

For the substring detection problem, we can create a suffix array on o
that occupies O(n) space, and enables a query with string g to be
answered in O(log n + |q|) time.

Y. Tao, May 1, 2013 Suffix Trees and Arrays

