Prefix Matching

Yufei Tao KAIST

May 1, 2013

Let us now consider the prefix matching problem on strings:

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports all the ids of the strings $s \in S$ such that q is a prefix of s.

Example

Let $S=\{$ abbba \perp, aabaa \perp, aaabb $\perp, a b b b \perp$, aabab $\perp, a b b b b \perp$, where the strings have ids $1,2, \ldots, 6$, respectively. Then:

- for $q=a b$, we should return ids $1,4,6$.
- for $q=a a b$, return 2,5 .
- for $q=b a$, return nothing.

We will show how to augment the Patricia trie to answer prefix matching queries efficiently.

Here is the Patricia trie for our example in the previous slide:

Augmentation 1

For each string s, define its rank as 1 greater than the number of strings in S (alphabetically) less than s. In other words, the smallest string in S has rank 1, while the largest string in S has rank $|S|$. We store the rank of s at its leaf.

The ranks are written in blue numbers in brackets:

Augmentation 2

For each internal node u in the trie, store a rank interval $[I, r]$, where I (r) is the smallest (largest) rank of the leaves in the subtree of u.

The rank intervals are given in blue:

Augmentation 3

Chain up all leaf nodes as follows: for each $i \in[1, n-1]$, store at the leaf with rank i a pointer to the leaf with rank $i+1$. Call these pointers the bottom pointers. The bottom pointer of the leaf with rank n is nil.

The bottom pointers are shown in red.

Augmentation 4

At each internal node u, store a down pointer to the smallest leaf (in the alphabetic order) in the subtree of u.

The down pointers are shown in purple.

Augmentation 5

Finally, for each string $s \in S$, store its id at the leaf corresponding to s.
The ids are given in green.

Query

To answer a prefix matching query with string q, first find the highest node u such that q is a prefix of the possible prefix represented by u.

Suppose that $q=a a b$. In the above figure, u is the node in the red circle (whose possible prefix is aaba). We know that all the leaves in the subtree of u correspond to strings that have q as a prefix.

Query

Follow the down pointer of u to the left most leaf z in its subtree.

In the above, we get to the leaf node with rank 2.

Query

Report the id of z. Then, follow the bottom pointer of z to the leaf z^{\prime} with the next rank. If the rank of z^{\prime} is in the rank interval of u, it means that z^{\prime} is still in the subtree of u. In that case, we report the id of z^{\prime}, and repeat the above. Otherwise (i.e., z^{\prime} is outside the subtree of u), we stop.

In the above, we visit the leaf nodes with ranks 2, 3, and 4, but report only ids 2 and 5 . Note that rank 4 is outside the rank interval [2,3] of node u (which is the node in the red circle).

The above structure has the following performance:

Theorem

For the prefix matching problem, our structure consumes $O(|S|)$ space, and answers a query with string q in $O(|q||A|+k)$ time, where k is the number of ids reported, and A is the alphabet.

For $|A|=O(1)$, the query time of the above theorem becomes $O(|q|+k)$. For large alphabets, we can combine the above structure with the balanced trie to obtain:

Theorem

For the prefix matching problem, there is a structure that consumes $O(|S|)$ space, and answers a query with string q in $O(|q|+\log |S|+k)$ time.

