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Let us now consider the prefix matching problem on strings:

Problem

Let S be a set of strings, each of which has a unique integer id. Given a
query string q, a query reports all the ids of the strings s ∈ S such that q
is a prefix of s.

Example

Let S = {abbba⊥, aabaa⊥, aaabb⊥, abbb⊥, aabab⊥, abbbb⊥}, where
the strings have ids 1, 2, ..., 6, respectively. Then:

for q = ab, we should return ids 1, 4, 6.

for q = aab, return 2, 5.

for q = ba, return nothing.
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We will show how to augment the Patricia trie to answer prefix matching
queries efficiently.

Here is the Patricia trie for our example in the previous slide:

1
a b

b

6

6

a b

aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥

2
a

4
a b

6

4

5 6 6
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Augmentation 1

For each string s, define its rank as 1 greater than the number of strings
in S (alphabetically) less than s. In other words, the smallest string in S
has rank 1, while the largest string in S has rank |S |. We store the rank
of s at its leaf.

The ranks are written in blue numbers in brackets:
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a b

aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥
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(4) (5) (6)
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Augmentation 2

For each internal node u in the trie, store a rank interval [l , r ], where l
(r) is the smallest (largest) rank of the leaves in the subtree of u.

The rank intervals are given in blue:
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[1, 6]

[1, 3] [4, 6]

[2, 3]
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Augmentation 3

Chain up all leaf nodes as follows: for each i ∈ [1, n− 1], store at the leaf
with rank i a pointer to the leaf with rank i + 1. Call these pointers the
bottom pointers. The bottom pointer of the leaf with rank n is nil.

The bottom pointers are shown in red.
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Augmentation 4

At each internal node u, store a down pointer to the smallest leaf (in the
alphabetic order) in the subtree of u.

The down pointers are shown in purple.
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Augmentation 5

Finally, for each string s ∈ S , store its id at the leaf corresponding to s.

The ids are given in green.

[5]
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Query

To answer a prefix matching query with string q, first find the highest
node u such that q is a prefix of the possible prefix represented by u.

[5]
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aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥
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(1)
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[1, 6]

[1, 3] [4, 6]

[2, 3]

[3]

[2]

[4] [1] [6]

Suppose that q = aab. In the above figure, u is the node in the red circle

(whose possible prefix is aaba). We know that all the leaves in the

subtree of u correspond to strings that have q as a prefix.
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Query

Follow the down pointer of u to the left most leaf z in its subtree.

[5]
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aaabb⊥ aabaa⊥ aabab⊥ abbb⊥ abbba⊥ abbbb⊥
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[1, 6]

[1, 3] [4, 6]

[2, 3]

[3]

[2]

[4] [1] [6]

In the above, we get to the leaf node with rank 2.
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Query

Report the id of z . Then, follow the bottom pointer of z to the leaf z ′

with the next rank. If the rank of z ′ is in the rank interval of u, it means
that z ′ is still in the subtree of u. In that case, we report the id of z ′, and
repeat the above. Otherwise (i.e., z ′ is outside the subtree of u), we stop.

[5]
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[1, 6]

[1, 3] [4, 6]
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[2]

[4] [1] [6]

In the above, we visit the leaf nodes with ranks 2, 3, and 4, but report

only ids 2 and 5. Note that rank 4 is outside the rank interval [2, 3] of

node u (which is the node in the red circle).
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The above structure has the following performance:

Theorem

For the prefix matching problem, our structure consumes O(|S |) space,
and answers a query with string q in O(|q||A|+ k) time, where k is the
number of ids reported, and A is the alphabet.

For |A| = O(1), the query time of the above theorem becomes
O(|q|+ k). For large alphabets, we can combine the above structure
with the balanced trie to obtain:

Theorem

For the prefix matching problem, there is a structure that consumes
O(|S |) space, and answers a query with string q in O(|q|+ log |S |+ k)
time.
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