Patricia Tries

Yufei Tao
KAIST

May 1, 2013

We will continue the discussion of the exact matching problem on strings.

Problem

Let S be a set of strings, each of which has a unique integer id. Given a query string q, a query reports:

- the id of q if it exists in S
- nothing otherwise.

Notations

Let

- A be the alphabet (i.e., every character of any string must come from A).
- $|s|$ be the length of a string s, i.e., the number of characters in s.
- $m=|S|$, i.e., the number of strings in S.
- $n=$ the total length of the strings in S, i.e., $n=\sum_{s \in S}|s|$.

So far, all our tries use $O(n)$ space. In this lecture, we will improve the space consumption to $O(m)$, without affecting the query time.

This is achieved by a variant of tries called the Patricia trie.

Let $S=\{a a a b b \perp, a a b a a \perp, a a b a b \perp, a b b b \perp, a b b b a \perp, a b b b b \perp\}$. The trie of S is:

A trie can have many internal nodes that have only one child. A Patricia trie essentially eliminates all such nodes.

We will from now on denote the strings in S as $s_{1}, s_{2}, \ldots, s_{m}$, respectively. We will consider that each s_{i} is stored in an array of size $\left|s_{i}\right|$, such that $s_{i}[j]$ gives the j-th $\left(1 \leq j \leq\left|s_{i}\right|\right)$ character of s_{i}.

Definition (Longest Common Prefix)

The longest common prefix (LCS) of a set S of strings is a string σ such that:

- σ is a prefix of every string in S.
- There is no string σ^{\prime} such that σ^{\prime} is a prefix of every string in S, and $\left|\sigma^{\prime}\right|>|\sigma|$.

For example, the LCS of $\{\operatorname{aaabb} \perp, \mathrm{aab} \perp$, aabaa \perp \} is aa, and the of LCS of $\{a a a b b \perp, b a a \perp\}$ is \emptyset.

Given two strings s_{1}, s_{2}, we use $s_{1} \cdot s_{2}$ to denote their concatenation.

Definition (Extension Set)

Let S be a set of strings, and σ the LCS of S. The extension set of S is the set of characters C such that $\sigma \cdot \mathrm{C}$ is a prefix of at least one string in S.

For example, the extension set of $\{$ aaabb \perp, $a \operatorname{ab} \perp$, aabaa $\perp\}$ is $\{a, b\}$. The extension set of $\{a a a b b \perp, b a a \perp\}$ is also $\{a, b\}$.

The Patricia trie T on S is a tree where each node u carries a positional index $P I(u)$, and a representative pointer $R P(u) . T$ can be recursively defined as follows:
(1) If $|S|=1$, then T has only one node whose its PI is $|S|$, and its RP references $s \in S$.
(2) Otherwise, let σ be the LCS of S. The root of T is a node u with $P I(u)=|\sigma|$, and $R P(u)$ referencing s, where s is an arbitrary string in S.
(3) Let E be the extension set of S. Then, u has $|E|$ child nodes, one for each character c in E. Specifically, the child node v_{c} for c is the root of a Patricia trie on the set of strings in S with $\sigma \cdot c$ as a prefix.

Example: Let $S=\{$ aaabb \perp, aabaa \perp, aabab $\perp, a b b b \perp, a b b b a \perp$, abbbb $\perp\}$. The Patricia trie of S is:

Lemma

A Patricia trie on m strings has at most $2 m-1$ nodes.
It is clear that every string in S corresponds to a leaf in its Patricia trie. Let u be a node in the Patricia trie. We say that $s \in S$ is in the subtree of u if the leaf corresponding to s is in the subtree of u.

Lemma

Let u be a node in a Patricia trie. Let $k=P I(u)$ and s the string referenced by $R P(u)$. All the strings in the subtree of u have prefix $s[1] \cdot s[2] \cdot \ldots \cdot s[k]$.

Think

How would you answer an exact matching query with $q=a \operatorname{abab} \perp$. How about $q=a b b a b \perp$?

Combining the Patricia trie with the balanced trie, we obtain:

Theorem

For the exact matching problem on strings, there is a structure that occupies $O(m)$ space, and answers a query with string q in $O(\log m+|q|)$ time.

Think

How?

