WST540: Quiz 3

Problem 1. Let s = river and t = digger. Answer the following questions.

(i) Recall that, to compute the edit distance between s and t, we learned a dynamic programming algorithm which works by filling in a 2d array A, such that A[i, j] $(0 \le i \le 5, 0 \le j \le 6)$ equals the edit distance between s[1..i] and t[1..j]. Give the entire A in its final form.

(ii) Give a trace for s and t that corresponds to an editing path that changes s to t with the minimum operations. Also explain what are these operations.

Solution. (i)

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	1	2	3	4	5	5
2	2	2	1	2	3	4	5
3	3	3	2	2	3	4	5
4	4	4	3	3	3	3	4
5	5	5	4	4	4	4	3

(ii) Trace: $\{(1,1), (2,2), (3,3), (4,5), (5,6)\}$. Operations: substitute **r** with **d**, **v** with **g**, and insert **l**.

Problem 2. Let s =tuesday and t = thursday. The matrix A is provided as follows:

		0	1	2	3	4	5	6	7	8
(0	0	1	2	3	4	5	6	7	8
	1	0	1	2	3	4	5	5	6	7
	2	2	1	1	1	2	3	4	5	6
	3	3	2	2	2	2	3	4	5	6
4	4	4	3	3	3	3	2	3	4	5
	5	5	4	4	4	4	3	2	3	4
(6	6	5	5	5	5	4	3	2	3
	7	7	6	6	6	6	5	4	3	2

Which are the cells that determine A[4,5] = 2 and A[4,6] = 3, respectively?

Solution. A[4,5] is determined by A[3,4]. A[4,6] is determined by A[4,5].