WST540: Quiz 3

Problem 1. Let $s=$ river and $t=$ digger. Answer the following questions.
(i) Recall that, to compute the edit distance between s and t, we learned a dynamic programming algorithm which works by filling in a 2 d array A, such that $A[i, j](0 \leq i \leq 5,0 \leq j \leq 6)$ equals the edit distance between $s[1 . . i]$ and $t[1 . . j]$. Give the entire A in its final form.
(ii) Give a trace for s and t that corresponds to an editing path that changes s to t with the minimum operations. Also explain what are these operations.

Solution. (i)

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	1	2	3	4	5	5
2	2	2	1	2	3	4	5
3	3	3	2	2	3	4	5
4	4	4	3	3	3	3	4
5	5	5	4	4	4	4	3

(ii) Trace: $\{(1,1),(2,2),(3,3),(4,5),(5,6)\}$. Operations: substitute r with d, v with g , and insert 1.

Problem 2. Let $s=$ tuesday and $t=$ thursday. The matrix A is provided as follows:

	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	0	1	2	3	4	5	5	6	7
2	2	1	1	1	2	3	4	5	6
3	3	2	2	2	2	3	4	5	6
4	4	3	3	3	3	2	3	4	5
5	5	4	4	4	4	3	2	3	4
6	6	5	5	5	5	4	3	2	3
7	7	6	6	6	6	5	4	3	2

Which are the cells that determine $A[4,5]=2$ and $A[4,6]=3$, respectively?
Solution. $A[4,5]$ is determined by $A[3,4] . A[4,6]$ is determined by $A[4,5]$.

