WST540: Quiz 1

Consider that our document collection S has the following documents: D_{1}, \ldots, D_{4} :

document	words
D_{1}	Information retrieval is an important subject.
D_{2}	The Johnson family has got a golden retriever.
D_{3}	Information theory uses plenty of theorems from mathematics.
D_{4}	It provides a golden opportunity for information sharing.

Our dictionary DICT consists of 8 words: $\left\{w_{1}=\right.$ information, $w_{2}=$ retrieval, $w_{3}=$ subject, $w_{4}=$ Johnson, $w_{5}=$ golden, $w_{6}=$ theory, $w_{7}=$ mathematics, $w_{8}=$ sharing $\}$. By stemming, "retrieval" and "retriever" are regarded as the same word, and so are "theory" and "theorem".

Problem 1. Let $t f(w, D)$ denote the term frequency of term w in a document D. Give the value of $t f\left(w_{i}, D_{j}\right)$ for all $1 \leq i \leq 8$ and $1 \leq j \leq 4$.

Solution.

	D_{1}	D_{2}	D_{3}	D_{4}
w_{1}	1	0	1	1
w_{2}	1	1	0	0
w_{3}	1	0	0	0
w_{4}	0	1	0	0
w_{5}	0	1	0	1
w_{6}	0	0	2	0
w_{7}	0	0	1	0
w_{8}	0	0	0	1

Problem 2. Let $i d f(w)$ denote the inverse document frequency of term w. Give the value of $i d f\left(w_{i}\right)$ for all $1 \leq i \leq 8$.

Solution.

w_{1}	0.415
w_{2}	1
w_{3}	2
w_{4}	2
w_{5}	1
w_{6}	2
w_{7}	2
w_{8}	2

Problem 3. Convert D_{1} into an 8-dimensional point according to the tf-idf model.
Solution. (0.415, 1, 2, 0, 0, 0, 0, 0).
Problem 4. Assume that a query (which is a sequence of words) has been converted to a point $(0.415,1,2,0,0,0,0,0)$. What is the score of D_{1} with respect to this query according to the cosine metric?

Solution. 1.
Problem 5. Consider the following graph:

Let v_{1} be the first vertex in Google's random surfing model. What is the probability that v_{2} is the 10 -th vertex visited? Recall that at each step re-seeding happens with probability 15%.

Solution. Observe that v_{2} has no incoming edge. Therefore, at any step, the surfer can reach v_{2} only through re-seeding. The probability is therefore $15 \% / 3=5 \%$.

This problem is canceled because the edge from v_{3} to v_{1} was missing in the quiz paper.

