WST540: Exercise 6

Problem 1. Consider the following R-tree:

Suppose that we apply the best-first algorithm to find the nearest neighbor of the query point q as shown in the picture. List the nodes in the order that they are visited by the algorithm.

Solution. $u_{1}, u_{3}, u_{6}, u_{7}$. The algorithm then terminates by reporting e.
Problem 2. Repeat the above by finding the 2 nearest neighbors of q.
Solution. $u_{1}, u_{3}, u_{6}, u_{7}$. The algorithm reports e, then h, and then terminates.
Problem 3. Calculate the z-values of the black points in the following figure (the data space has domain $[0,7]$ on each dimension):

Solution.

point	z-value
a	$(010000)_{2}=16$
b	$(000110)_{2}=6$
c	$(01100)_{2}=28$
d	$(011011)_{2}=27$
e	$(100000)_{2}=32$
f	$(100111)_{2}=39$
g	$(111101)_{2}=61$
h	$(101011)_{2}=43$

Problem 4. Consider that we create an R-tree on the points in the previous problem using the method discussed in our lecture. Show the leaf MBRs of the R-tree.

Solution.

Problem 5. Consider that a server hosts a 1d hidden dataset D which contains 8 points as shown below. We want to discover the entire D by issuing range queries in the way described in class. Suppose that the value of k is 4 , such that whenever the query result has more than 4 points, the server always returns the first 4 points alphabetically (e.g., for a query with range [2, 7], the server returns $c, d, e, f)$. Give the queries that need to be issued by our algorithm.

Solution. We start by issuing $q_{1}=(-\infty, \infty)$. The server returns $\{a, b, c, d\}$. Hence, q_{1} is divided by a 3 -way split into $q_{2}=(-\infty, 0], q_{3}=[1,1]$, and $q_{4}=[2, \infty)$. Queries with q_{2} and q_{3} are resolved. For q_{4}, the server returns $\{c, d, e, f\}$. Hence, q_{4} is divided into $q_{5}=[2,2], q_{6}=[3,3]$, and $q_{7}=[4, \infty)$. The queries with these three intervals are all resolved.

