WST540: Exercise 5

Problem 1. Let $s=$ solver and $t=$ lovely. Answer the following questions.
(i) Recall that, to compute the edit distance between s and t, we learned a dynamic programming algorithm which works by filling in a 2 d array A, such that $A[i, j](0 \leq i, j \leq 6)$ equals the edit distance between $s[1 . . i]$ and $t[1 . . j]$. Give the entire A in its final form.
(ii) Remember that each cell in A is determined by at least one other cell (where the notion of "determine" is as defined in Lecture 13). Give all the cells that can determine $A[3,4]$. Repeat this for $A[2,5]$ and $A[4,3]$.
(iii) Give a trace for s and t that corresponds to an editing path that changes s to t with the minimum operations. Also explain what are these operations.

Solution. (i)

	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	1	2	3	4	5	6
2	2	2	1	2	3	4	5
3	3	2	2	2	3	3	4
4	4	3	3	2	3	4	4
5	5	4	4	3	2	3	4
6	6	5	5	4	3	3	4

(ii) $A[3,4]$ can be determined by $A[2,3]$ or $A[3,3] . \quad A[2,5]$ is determined by $A[2,4] . \quad A[4,3]$ is determined by $A[3,2]$.
(iii) Trace: $\{(1,1),(2,2),(4,3),(5,4),(6,6)\}$. Operations: substitute s with 1 , remove 1 , insert 1 , and substitute r with y .

Problem 2. Let s and t be as defined in Problem 1. Suppose that we only want to verify whether the edit distance between s and t is greater than 1. Give the values of the cells of A that need to be computed by the algorithm in Lecture 14.

	0	1	2	3	4	5	6
0	0	1	2	-	-	-	-
1	1	1	2	2	-	-	-
2	2	2	1	2	2	-	-
3	-	2	2	2	2	2	-
4	-	-	2	3	3	3	2
5	-	-	-	2	3	4	3
6	-	-	-	-	2	3	4

Problem 3. Let $s=$ father and $t=$ feather. Answer the following questions for $q=3$:
(i) List all the positional q-grams of s and t.
(ii) Let $d=1$. Give the number of positional q-grams of t that d-match at least one positional q-gram of s. List those q-grams of t.

Solution. (i)
For $s:\{(1, \mathrm{fat}),(2$, ath $),(3$, the $),(4$, her $),(5, \mathrm{er} \#),(6, \mathrm{r} \# \#)\}$.
For $t:\{(1$, fea $),(2$, eat $),(3$, ath $),(4$, the $),(5$, her $),(6$, er\# $),(7, r \# \#)\}$
(ii) Five: $(3$, ath $),(4$, the $),(5$, her $),(6, e r \#),(7, r \# \#)$.

Problem 4. Let s be a string of length 6 , and t a string of length 7. Fix $d=2$ and $q=2$. Let x be the number of positional q-grams of s that d-match at least one positional q-gram of t. Answer the following questions.
(i) If $x=2$, can the edit distance of s and t be at most d ? If not, explain why; otherwise, justify your answer with an example of s and t.
(ii) If $x=3$, can the edit distance of s and t be at most d ? If not, explain why; otherwise, justify your answer with an example of s and t.

Solution. (i) No. This is because, by the Lemma in Lecture 15, x must be at least $7-2 \times 2=3$.
(ii) Yes. Here is an example: $s=$ aaaaaa, $t=$ abaabaa.

