WST540: Exercise List 3

Problem 1. Consider the following graph:

Each node represents a website and each edge represents a hyperlink. Suppose that a web crawler initially knows only v_{4}. Using the BFS algorithm discussed in Lecture 4 , which websites will be discovered by the crawler when it finishes?

Solution. The BFS algorithm visits v_{4}, v_{2}, v_{1} and then v_{3}. It is not able to discover v_{5}.
Problem 2. Suppose that we have the following document collection:

document ID	content
1	the old night keeper keeps the keep in the town
2	in the big old gown in the big old house
3	the house in the town had the big old keep
4	where the old night keeper never did sleep
5	the night keeper keeps the keep in the night
6	and keeps in the dark and sleeps in the light

Also, consider that our dictionary has words \{big, dark, gown, house, keep, light, night, old, sleep, town $\}$. Assume that, after stemming, we have the following equivalence:

$$
\begin{aligned}
\text { keep } & =\text { keeper, keeps } \\
\text { sleeps } & =\text { sleep }
\end{aligned}
$$

Give the document-level inverted lists of all the words in the dictionary. Each entry of an inverted list should have the format (doc id, term frequency).

Solution.

term w	inverted list for w
big	$(2,2),(3,1)$
dark	$(6,1)$
gown	$(2,1)$
house	$(2,1),(3,1)$
keep	$(1,3),(3,1),(4,1),(5,3),(6,1)$
light	$(6,1)$
night	$(1,1),(4,1),(5,2)$
old	$(1,1),(2,2),(3,1),(4,1)$
sleep	$(4,1),(6,1)$
town	$(1,1),(3,1)$

Problem 3. Give the Eilas' gamma and delta codes of 23.

Solution. Gamma code: 111100111. Delta code: 110010111.

Problem 4. Consider the following inverted list, where each entry is in the format of (doc id, term freq):

$$
(1,1),(4,1),(5,2)
$$

Give the bit sequence that compresses the above list based on the following ideas:

- For the i-th $(i \geq 2)$ pair, represent its id by storing in Elias' gamma code the difference from the id of the $(i-1)$-th pair.
- Store each term-frequency value in Elias' gamma code.

Solution. We will store the following sequence of values: 1, 1, 3, 1, 1, 2. The bit sequence is: 0010100100.

Problem 5. Give the word-level inverted lists for Problem 3. Each entry of an inverted list should have the format (doc id, term frequency, position 1, position $2, \ldots$).

Solution.

term w	inverted list for w
big	$(2,2,3,8),(3,1,8)$
dark	$(6,1,5)$
gown	$(2,1,5)$
house	$(2,1,10),(3,1,2)$
keep	$(1,3,4,5,7),(3,1,10),(4,1,5),(5,3,3,4,6),(6,1,2)$
light	$(6,1,10)$
night	$(1,1,3),(4,1,4),(5,2,2,9)$
old	$(1,1,2),(2,2,4,8),(3,1,9),(4,1,3)$
sleep	$(4,1,8),(6,1,7)$
town	$(1,1,10),(3,1,5)$

