WST540: Exercise List 2

Problem 1. Consider the following graph:

Let v_{2} be the starting vertex in Google's random surfing model. Give the probabilities that v_{1}, v_{2}, v_{3} and v_{4} are the second vertex visited, respectively (recall that re-seeding happens with probability 15% at each step).

Solution. v_{1} can be the second vertex in two scenarios:

- Re-seeding occurs right after the first step, and the re-seeding chooses v_{2} (out of the four vertices). The probability is $15 \% \times 25 \%=3.75 \%$.
- Re-seeding does not occur, and the surfer chooses to follow the out-going link of v_{2} to v_{1} (between the two out-going links of v_{2}). The probability is $85 \% \times 50 \%=42.5 \%$.

Hence, the overall probability for v_{1} to be the second vertex is $42.5 \%+3.75 \%=46.25 \%$. In the same way, one can verify that the probabilities for v_{2}, v_{3} and v_{4} are $3.75 \%, 46.25 \%$ and 3.75%, respectively.

Problem 2. Consider the following graph:

Let v_{1} be the starting vertex in Google's random surfing model. Give the probabilities that v_{1} and v_{2} are the i-th vertex visited respectively, for $i=2,3, \ldots, 5$.

Solution.

step	v_{1}	v_{2}
2	0.075	0.925
3	0.861	0.139
4	0.193	0.807
5	0.761	0.239

Problem 3*. What are the page ranks of v_{1} and v_{2} in the graph of Problem 2?
Solution. Suppose that the page rank of v_{1} is x such that $0 \leq x \leq 1$. Then, the page rank of v_{2} must be $1-x$ (because the sum of their page ranks must be 1). Assume, without loss of generality,
that these values are obtained by running the power method using v_{1} as the starting vertex. Then, if we run the power method using v_{2} as the starting vertex instead, by symmetry, the algorithm will output that the page ranks of v_{1} and v_{2} are $1-x$ and x, respectively.

Now we utilize the property that page ranks do not depend on the choice of the initial vertex. Therefore, $1-x=x$ and hence, $x=0.5$. It thus follows that the page ranks of v_{1} and v_{2} must both be 0.5 .

