WST540: Exercise List 1

Consider that our document collection S has the following documents: $D_1, ..., D_5$:

document	words
D_1	Data Base System Concepts
D_2	Introduction to Algorithms
D_3	Computational Geometry: Algorithms and Applications
D_4	Data Structures and Algorithm Analysis on Massive Data Sets
D_5	Computer Organization

Our dictionary *DICT* consists of 8 words: $\{w_1 = \text{data}, w_2 = \text{system}, w_3 = \text{algorithm}, w_4 = \text{computer}, w_5 = \text{geometry}, w_6 = \text{structure}, w_7 = \text{analysis}, w_8 = \text{organization}\}$. We consider that, by stemming, "computer" and "computational" are regarded as the same word, and so are "algorithms" and "algorithm".

Problem 1. Let tf(w, D) denote the term frequency of term w in a document D as defined in our lecture notes. Give the value of $tf(w_i, D_j)$ for all $1 \le i \le 8$ and $1 \le j \le 5$.

Solution.

		D_1	D_2	D_3	D_4	D_5
	w_1	1	0	0	2	0
	w_2	1	0	0	0	0
	w_3	0	1	1	1	0
	w_4	0	0	1	0	1
	w_5	0	0	1	0	0
	w_6	0	0	0	1	0
	w_7	0	0	0	1	0
	w_8	0	0	0	0	1

Problem 2. Let idf(w) denote the inverse document frequency of term w as defined in our lecture notes. Give the value of $idf(w_i)$ for all $1 \le i \le 8$.

Solution.

w_1	1.32
w_2	2.32
w_3	0.74
w_4	1.32
w_5	2.32
w_6	2.32
w_7	2.32
w_8	2.32

For example, $idf(w_1) = \log_2(|S|/2) = \log_2(5/2) = 1.32$. In particular, the 2 in the denominator is because w_1 appears in two documents D_1 and D_4 .

Problem 3. Convert each document in S into an 8-dimensional point according to the tf-idf model as defined in our lecture notes.

Solution. Consider D_i $(1 \le i \le 5)$. Let p_i be the point converted from D_i . The *j*-th coordinate $p_i[j]$ of p_i equals $\log_2(1 + tf(w_j, D_i)) \cdot idf(w_j)$. For example, when i = j = 1, $p_1[1] = \log_2(1+1) \cdot 1.32 = 1.32$. In this way, we can obtain $p_1, ..., p_8$ as:

p_1	(1.32, 2.32, 0, 0, 0, 0, 0, 0)
p_2	(0, 0, 0.74, 0, 0, 0, 0, 0)
p_3	(0, 0, 0.74, 1.32, 2.32, 0, 0, 0)
p_4	(2.09, 0, 0.74, 0, 0, 2.32, 2.32, 0)
p_5	(0, 0, 0, 1.32, 0, 0, 0, 2.32)

Problem 4. Assume that we have received a query with terms "Geometry Algorithm Concepts". Convert the query to an 8-dimensional point.

Solution. (0, 0, 0.74, 0, 2.32, 0, 0, 0).

Problem 5. Rank the documents in descending order of their relevance to the query in Problem 4 according to the cosine metric.

Solution. Let q be the point converted from Q. The cosine metric calculates the score of p_i and q as:

$$score(p_i, q) = \frac{p_i \cdot q}{|p_i| \cdot |q|}$$

Consider, for example, p_2 . We have $p_2 \cdot q = 0.74 \cdot 0.74 = 0.55$ (all the other terms in the dot product is 0). This, together with $|p_2| = 0.74$ and $|q_2| = 2.44$, gives $score(p_2, q) = \frac{0.55}{0.74 \times 2.44} = 0.30$. The following table gives the scores of all documents:

The relevance ranking is D_3, D_2, D_4, D_1 and D_5 .