WST540: Exercise List 1

Consider that our document collection S has the following documents: D_{1}, \ldots, D_{5} :

document	words
D_{1}	Data Base System Concepts
D_{2}	Introduction to Algorithms
D_{3}	Computational Geometry: Algorithms and Applications
D_{4}	Data Structures and Algorithm Analysis on Massive Data Sets
D_{5}	Computer Organization

Our dictionary DICT consists of 8 words: $\left\{w_{1}=\right.$ data, $w_{2}=$ system, $w_{3}=$ algorithm, $w_{4}=$ computer, $w_{5}=$ geometry, $w_{6}=$ structure, $w_{7}=$ analysis, $w_{8}=$ organization $\}$. We consider that, by stemming, "computer" and "computational" are regarded as the same word, and so are "algorithms" and "algorithm".

Problem 1. Let $t f(w, D)$ denote the term frequency of term w in a document D as defined in our lecture notes. Give the value of $t f\left(w_{i}, D_{j}\right)$ for all $1 \leq i \leq 8$ and $1 \leq j \leq 5$.

Solution.

	D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
w_{1}	1	0	0	2	0
w_{2}	1	0	0	0	0
w_{3}	0	1	1	1	0
w_{4}	0	0	1	0	1
w_{5}	0	0	1	0	0
w_{6}	0	0	0	1	0
w_{7}	0	0	0	1	0
w_{8}	0	0	0	0	1

Problem 2. Let $i d f(w)$ denote the inverse document frequency of term w as defined in our lecture notes. Give the value of $i d f\left(w_{i}\right)$ for all $1 \leq i \leq 8$.

Solution.

w_{1}	1.32
w_{2}	2.32
w_{3}	0.74
w_{4}	1.32
w_{5}	2.32
w_{6}	2.32
w_{7}	2.32
w_{8}	2.32

For example, $i d f\left(w_{1}\right)=\log _{2}(|S| / 2)=\log _{2}(5 / 2)=1.32$. In particular, the 2 in the denominator is because w_{1} appears in two documents D_{1} and D_{4}.

Problem 3. Convert each document in S into an 8-dimensional point according to the tf-idf model as defined in our lecture notes.

Solution. Consider $D_{i}(1 \leq i \leq 5)$. Let p_{i} be the point converted from D_{i}. The j-th coordinate $p_{i}[j]$ of p_{i} equals $\log _{2}\left(1+t f\left(w_{j}, D_{i}\right)\right) \cdot i d f\left(w_{j}\right)$. For example, when $i=j=1, p_{1}[1]=\log _{2}(1+1)$. $1.32=1.32$. In this way, we can obtain p_{1}, \ldots, p_{8} as:

p_{1}	$(1.32,2.32,0,0,0,0,0,0)$
p_{2}	$(0,0,0.74,0,0,0,0,0)$
p_{3}	$(0,0,0.74,1.32,2.32,0,0,0)$
p_{4}	$(2.09,0,0.74,0,0,2.32,2.32,0)$
p_{5}	$(0,0,0,1.32,0,0,0,2.32)$

Problem 4. Assume that we have received a query with terms "Geometry Algorithm Concepts". Convert the query to an 8 -dimensional point.

Solution. ($0,0,0.74,0,2.32,0,0,0)$.
Problem 5. Rank the documents in descending order of their relevance to the query in Problem 4 according to the cosine metric.

Solution. Let q be the point converted from Q. The cosine metric calculates the score of p_{i} and q as:

$$
\operatorname{score}\left(p_{i}, q\right)=\frac{p_{i} \cdot q}{\left|p_{i}\right| \cdot|q|}
$$

Consider, for example, p_{2}. We have $p_{2} \cdot q=0.74 \cdot 0.74=0.55$ (all the other terms in the dot product is 0). This, together with $\left|p_{2}\right|=0.74$ and $\left|q_{2}\right|=2.44$, gives $\operatorname{score}\left(p_{2}, q\right)=\frac{0.55}{0.74 \times 2.44}=0.30$. The following table gives the scores of all documents:

D_{1}	D_{2}	D_{3}	D_{4}	D_{5}
0	0.30	0.74	0.06	0

The relevance ranking is $D_{3}, D_{2}, D_{4}, D_{1}$ and D_{5}.

