WST501: Exercise List 2

Problem 1. We have learned that the count-min sketch allows us to answer point queries with a probabilistic guarantee. However, currently, such a guarantee holds only for one query. In this problem, we will see how to extend the guarantee to all queries simultaneously.

Let us consider a cash-register stream. Recall that the underlying dataset is an array A of n real values. Initially, all the elements of A are 0 . Each update has the form (i, v), indicating that we should increase the i-th $(1 \leq i \leq n)$ element $A[q]$ in A by v. Given an array index q (i.e., $1 \leq q \leq n$), a point query returns a value $\hat{A}[q]$ such that $A[q] \leq \hat{A}[q] \leq A[q]+\epsilon\|A\|$, where $\|A\|=\sum_{i=1}^{n} A[i]$. Note that there are n different point queries (i.e., n choices for q).

Describe a data structure that uses $O\left(\frac{1}{\epsilon} \lg \frac{n}{\delta}\right)$ words, such that with probability at least $1-\delta$, we are able to give correct answers to all n point queries (simultaneously).

Problem 2. In probabilistic algorithms, a success probability of at least $1-\frac{1}{n^{c}}$ (where $c>0$ is a constant) is termed a high probability, when the input set has size n. In the setup of Problem 1, prove that there is a structure that uses $O\left(\frac{1}{\epsilon} \lg n\right)$ words such that with high probability, we are able to give correct answers to all n point queries (simultaneously) - this is true regardless of c.

Problem 3. Recall that a chief motivation of applying the reservoir algorithm is to ensure that the sample set should have a specific size. If, on the other hand, we only want to have a probabilistic control over the size, then usually there is a simpler way to sample (without replacement), as we will find out in this problem.

Let S be a set of n elements. We obtain a sample set R by including each element of S independently with a probability p, where p satisfies $p \geq \frac{\lg ^{2} n}{n}$. Prove that when n is larger than a certain constant, the size of R is at most $(1+\epsilon) n p$ with probability at least $1-1 / n$, where ϵ can be any arbitrarily small constant.

