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In this lecture, we will discuss a fundamental problem: given a set S of size n, how to obtain a
random sample set R of S in O(n) time? At first glance, this may seem to be trivial: if we want
an R of size s, how about generating a random number t from 1 to n, taking the t-th element of
S as a sample, and repeating this s times? But another moment’s thought would reveal that this
algorithm may not always suit our needs. First, it samples with replacement. In other words, one
can imagine that, after taking an element of S as a sample, this element is put back into S (i.e.,
replaced) so that it can be sampled again. Sampling with replacement may create a bag of samples,
i.e., a multi-set, because the same element can have several copies in R. In some scenarios, we want
to have distinct samples: for example, if you want to interview s random people to do a survey, it
makes no sense to interview the same person twice. Another limitation of the algorithm is that it
needs to know the number n in advance (otherwise, what is the range of your random number?).
This is not a desired property in data streams: for example, if you want to keep track of a sample
set of the creditcard transactions tomorrow continuously as they take place, you have no idea about
n, i.e., the total number of transactions.

You may easily come up with another simple algorithm: if the sampling rate is p, why not just
independently include each element of S with probability p. The correctness is obvious, and the
time is apparently O(n). Well done, but the algorithm again falls short if we want the sample
set R to have a specific size. For example, if our memory for storing creditcard transactions can
accommodate only 10000 transactions, then we do not want R to have more than 10000 transactions.
How would you choose your p in such a scenario when you do not know n? Furthermore, even if
you do know n, it is difficult to make sure that your sample set never exceeds size s. Note that,
even though the sample set clearly has expected size np, its actual size may be any number from 0
to n, albeit perhaps with a small probability. What if we want |R| to be exactly s for sure?

In this lecture, we will learn another sampling algorithm that allows us to take a sample set R
of a desired size in O(n) time, by looking at each element of S only once. In fact, this algorithm
has a lot to do with a closely related problem: shuffling, as we will also study, actually, will study
first.

1 Random shuffling

Let us first consider the following random shuffling problem. Let S be an array of size n. We
denote the i-th (1 ≤ i ≤ n) element of the array as S[i]. The goal is create a random permutation
of S. Namely, when our algorithm finishes, the list of elements (S[1], S[2], ..., S[n]) should be any
of the n! permutations with the same probability.

Algorithm. We will discuss an algorithm discovered by Durstenfeld [1]. This algorithm is also
often called the Fisher-and-Yates algorithm. The algorithm processes each element of S in turn.
In processing the i-th element S[i], it generates a random number x in the range [1, i] (note that
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the range increases with i). Then, it swaps S[i] with S[x] (of course, if i = x, then the swap has
no effect). At the end of the algorithm, the list of elements currently in the array (S[1], ..., S[n]) is
the final permutation output.

Analysis. The algorithm clearly runs in O(n) time. Now we prove that it is correct:

Lemma 1. The list of elements (S[1], ..., S[n]) at the end of the algorithm can be any of the n!
permutations with the same probability.

Proof. We will prove:

Claim: After processing S[k] (1 ≤ k ≤ n), the list (S[1], ..., S[k]) is any of the k! permutations
with respect to these elements with the same probability.

The correctness of the above claim immediately implies the correctness of the lemma. We prove
the claim by induction. First, the claim is obviously correct for k = 1. Assuming that the claim
holds for k = i, next we show that it also holds for k = i+ 1.

Let P be the list (S[1], ..., S[i]) before processing S[i + 1], and similarly, let P ′ be the list
(S[1], ..., S[i+1]) after processing S[i+1]. Let x be the random number generated in the processing
of S[i + 1]. Then, P ′ is a function of the pair (P, x). Note that P has i! possible choices, while x
has i+ 1 choices. In other words, there are (i+ 1)! different pairs of (P, x). Next, we will prove:

• Fact 1: each pair of (P, x) happens with the same probability in the algorithm.

• Fact 2: each pair of (P, x) produces a distinct P ′.

Combining both facts establishes the correctness of the claim for k = i+ 1.

Proof of Fact 1. By our inductive assumption, each P happens with probability exactly 1/i!. The
value of x is independent from P , and can take any value in [1, i + 1] with probability 1/(i + 1).
Hence, each pair (P, x) happens with probability 1/(i + 1)!.

Proof of Fact 2. Let (P1, x1) and (P2, x2) be two distinct pairs. Namely, at least one of the
following is true: P1 6= P2, x1 6= x2. Let P ′

1 and P ′

2 be the P ′ produced by the first and second
pairs, respectively. Our aim is to show that P1 6= P2. We distinguish two cases:

• Case 1: P1 = P2. Since x1 6= x2, P
′

1 differs from P ′

2 in the (i+ 1)-st element (by the way the
algorithm works). Hence, P1 6= P2.

• Case 2: P1 6= P2. Let j be the smallest number such that the j-th element of P1 is different
from that of P2. If x1 6= x2 or x1 = x2 6= j, then P ′

1 still differs from P ′

2 in the j-th element.
Otherwise (i.e., x1 = x2 = j), then P ′

1 still differs from P ′

2 in the (i+ 1)-st element.

This completes the proof.

2 Random sampling

Now we are ready to tackle random sampling. The problem setup is as follows. Let S be an
unbounded stream of elements, namely, its elements keep arriving. We are allowed to spend only
constant time on each element, i.e., when it arrives. We want to maintain a random sample set R
of size s. More specifically, if n is the number of elements we have seen so far, then any subset with
size s of those elements should have exactly the same probability of being our R. Furthermore, this
has to be true at all times.
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Algorithm. The algorithm we are presenting now is called the reservoir algorithm [2]. We denote
the i-th element of R as R[i]. At the beginning, we fill up R with the first s elements of the stream.
Starting from the (s + 1)-st element, however, we go through a random process to decide whether
to sample the element, and if yes, which existing sample is to be replaced. Specifically, let e be
the n-th element in the stream where n ≥ s+ 1. We generate a random number x from 1 to n. If
x > s, then e is discarded. Otherwise, we set R[x]← e, i.e., essentially discarding the original R[x]
and using e to take its place. It is clear that each element is processed with constant time.

Correctness. To show that the algorithm is correct, we need to prove:

Lemma 2. After processing n elements, R is any subset with size s of those n elements with the
same probability.

Note that it is insufficient to prove that each of the first n elements has the same chance of
being in R (why?).

Proof. We prove the lemma with induction on n. The lemma is obviously true for n = s. Assuming
that the lemma is correct for n = k, next we show that it is also correct for n = k + 1.

Let e be the (k+ 1)-st element in the stream. Let R be the sample set before processing e, and
R′ the sample set after processing e. Furthermore, let x be the random number generated in the
processing of e. Note that R has

(

k

s

)

difference choices, while x has k + 1 choices.
Consider one specific subset T of the first k + 1 elements in the stream. We will prove that

R′ = T with probability exactly 1

(k+1

s
)
= s!(k+1−s)!

(k+1)! . For this purpose, we distinguish two cases:

• Case 1: T does not include e, or equivalently, T = R and x > s. By our inductive assumption,
the probability that T = R equals 1

(k
s
)
= s!(k−s)!

k! . As x > s (independently from T = R) takes

place with probability k+1−s

k+1 , we know that any T of Case 1 can be R′ with probability
s!(k−s)!

k! · k+1−s

k+1 = s!(k+1−s)!
(k+1)! .

• Case 2: T includes e. This case implies that the following two conditions must hold simulta-
neously:

– Condition C1: T differs from R in only one element e′.

– Condition C2: x equals exactly the position of e′ in R.

Let us analyze the probability that C1 holds. How many R can differ from T in only one
element? To answer this question, we construct such an R as follows. First, add all the
elements in T but e to R. Second, add to R any of the k − (s − 1) elements that are in the
first k elements of the stream, but are not already in R. Hence, it is clear that the number
of such R is k − s + 1. By our inductive assumption, each such R occurs with probability
1

(k
s
)
= s!(k−s)!

k! . Hence, C1 holds with probability s!(k−s)!
k! · (k − s+ 1) = s!(k−s+1)!

k!

Condition C2, on the other hand, holds with probability 1/(k + 1), because x has to be
precisely the index of e′ in R, out of the k+1 possible choices. As C1 and C2 are independent,
the probability that they bold hold equals s!(k−s+1)!

k! · 1
k+1 = s!(k−s+1)!

(k+1)! .

This completes the proof.
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