
Lecture Notes: Count-min Sketch (Prelude)

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

26 Feb, 2012

We will revisit the set membership problem in this lecture. Let us recall its definition. The universe
U is the set of integers {1, ..., U}. S is a subset of U of size n. We want to store S in a structure
such that, given any integer q ∈ U , we can determine whether q belongs to S. Also remember that
we do not need to be correct all the time. Instead, it suffices to achieve the following probabilistic
guarantees:

• If q ∈ S, the answer must be yes. Namely, in this case, no error is allowed.

• If q /∈ S, the answer should be no with probability at least 1− δ, where δ > 0 is an arbitrarily
small constant. Namely, in this case, the algorithm can err with a probability at most δ.

We have learned that the problem can be solved by the bloom filter using O(n lg 1

δ
) bits (note:

not O(n) words which is equivalent to O(n lgU) bits). Our description was adequate for practical
needs: all the details have been provided for you to implement the structure. However, from a
theoretical point of view, two issues have been left unresolved:

1. We assumed that there is a “random oracle” that allows us to use ideal hash functions. Review
the bloom-filter lecture about what is an ideal hash function. Such a random oracle does not
exist yet.

2. Our “analysis” of the bloom filter was sloppy. In fact, we never gave a rigorous proof of its
theoretical guarantees, except to mention that such a proof indeed exists, but had to be left
out because it was a bit too complicated for the interests of this course.

While the issue of “random oracle” is arguably not a very acute one – after all, many people
can comfortably live with it because in practice many hash functions work just well enough to be
considered as an oracle – the second issue is much more serious: it has left some vacuum in our
knowledge system that prevents us from thinking we have learned everything inside out! We will
deal with this next by providing a replacement of the bloom filter to solve the set membership
problem. It turns out that we will kill two birds with one stone, because the solution requires only
universal hashing!

The structure we will describe in fact resembles a more general technique, called the count-min

sketch, we will discuss in detail later. The subsequent discussion provides an early look into that
technique.

1 A new structure for solving the set membership problem

Our structure consists of d arrays A1, ..., Ad. Each Ai (1 ≤ i ≤ d) is an array of l bits. The values
of d and l will be determined later. Initially, every bit Ai[j] for all j ∈ [1, l] is 0. We choose
independently d hash functions h1, ..., hd from a universal family. Each hash function maps from

1



domain {1, ..., U} to {1, ..., l}. Remember that each hi can be described by using only two integers
of O(lgU) bits.

To build the structure, we go through each element k ∈ S. For each i ∈ [1, d], set Ai[hi(k)]
to 1 (if the bit is already 1, then do nothing). To answer a query q, simply check whether
A1[h1(q)], ..., Ad[hd(q)] are all 1. If so, then we return yes; otherwise, return no.

2 Analysis

Arrays A1, ..., Ad require in total ld bits to store. Plus the storage of the h1, ..., hd, the total space
consumption is ld+O(d lgU) bits.

It is easy to see that we always answer yes if q ∈ S. Next, we analyze the probability that we
return yes if q /∈ S. Fix any i ∈ [1, d]. For us to return yes, Ai[hi(q)] must be 1, or in other words,
there is some k ∈ S such that hi(q) = hi(k). We say that a clash happens. The fact q /∈ S implies
that q 6= k. Since function hi is universal, we know:

Pr[hi(q) = hi(k)] ≤ 1/l.

By union bound, the probability that there exists at least one clash is at most n/l.
If our answer is yes, it means that, there must be at least a clash in every array Ai (1 ≤ i ≤ d).

Due to the independence of hash functions, we know that the probability for this to happen is at
most (n/l)d. To achieve error probability at most δ, we need:

(n/l)d ≤ δ

⇒ d log2(n/l) ≤ log2 δ

Now it is time to fix d and l to make the above inequality hold. There are many choices possible.
Let us set, for example, l = 2n. So the above inequality becomes:

d log2(1/2) ≤ log2 δ

⇒ d ≥ log2(1/δ)

Setting d = log2(1/δ), we thus have a structure that uses O(n lg 1

δ
+ lg 1

δ
lgU) = O(lg 1

δ
(n + lgU))

bits.

2


