
Lecture Notes: Markov Inequality, Chebyshev Inequality, and Cher-

noff Bound

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

10 Feb, 2012

In this lecture, we will study three inequalities that are of paramount importance in analyzing
randomized algorithms.

1 Markov inequality

Theorem 1 (Markov inequality). Let X ≥ 0 be a random variable. For any t > 0, it holds that:

Pr[X ≥ t] ≤
E[X]

t
.

Proof. Let f(X) be the probability density function of X. It holds that:

Pr[X ≥ t] =

∫

∞

t

f(X)dX

=
1

t

∫

∞

t

t · f(X)dX

(as t > 0) ≤
1

t

∫

∞

t

X · f(X)dX

(as X ≥ 0) ≤
1

t
· E[X]

as needed.

Corollary 1. Let X ≥ 0 be a random variable. For any t > 0, it holds that:

Pr[X ≥ t · E[X]] ≤
1

t
.

The above corollary is perhaps more intuitive (than Theorem 1): it says that the probability
for X to be t times larger than its expected value is at most 1/t.

Example: sampling. Consider a box of n balls, each of which is either black or white. We want
to know the percentage p of the black balls. Each time we can look at a random ball. If we have
seen k balls among which b balls are black, we estimate p to be b/k. The question is how large k
needs to be before our estimate is close to p with a probability close to 1. To facilitate analysis, let
us assume that after drawing a ball, we put it back into the box, so that it may be drawn again
with the same chance of any other ball. This is called sampling with replacement.

At the end of the lecture, we will find a fairly good answer to the earlier question, but at this
point, we will be content with the following (weaker) claim:
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Lemma 1. For any k ≥ 1, the probability that b/k ≥ 2p is at most 1/2.

Proof. Define random variable xi (1 ≤ i ≤ k) such that xi = 1 if the i-th ball sampled is black, or
0 otherwise. Thus, Pr[xi = 1] = p, which implies that E[xi] = p. Clearly, b =

∑k
i=1

xi. Hence:

E[b] = E

[

k
∑

i=1

xi

]

=
k

∑

i=1

E[xi] = kp.

By Markov inequality:

Pr
[

b ≥ 2 · E[b]
]

≤ 1/2

⇒ Pr[b ≥ 2kp] ≤ 1/2

⇒ Pr[b/k ≥ 2p] ≤ 1/2.

The lemma indicates that, we can over-estimate p by a factor of 2 with at most 50% probability,
regardless of how many balls are sampled.

2 Chebyshev inequality

Theorem 2 (Chebyshev inequality). Let X be a random variable with expectation µ and variance
σ2 (namely, σ > 0 is the standard deviation). For any t > 0, it holds that:

Pr[|X − µ| ≥ tσ] ≤
1

t2
.

Proof.

Pr[|X − µ| ≥ tσ] = Pr[(X − µ)2 ≥ t2σ2]

As σ2 = E[X2]−E[X]2 = E[X2]− µ2, we have:

Pr[(X − µ)2 ≥ t2σ2] = Pr[(X − µ)2 ≥ t2(E[X2]− µ2)]

Define Y = (X − µ)2 = X2 − 2Xµ + µ2. Thus:

E[Y ] = E[X2]− 2E[X]µ + µ2

= E[X2]− 2µ2 + µ2

= E[X2]− µ2.

Hence:

Pr[(X − µ)2 ≥ t2(E[X2]− µ2)] = Pr
[

Y ≥ t2E[Y ]
]

which is at most 1/t2 by Markov inequality.

The theorem says that X can deviate from its expectation by at least t times the standard
deviation with probability at most 1/t2.
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Corollary 2. Let X be a random variable with expectation µ and variance σ2 (namely, σ > 0 is
the standard deviation). For any t > 0, it holds that:

Pr[|X − µ| ≥ t] ≤
σ2

t2
.

Sampling (cont.). We now utilize Chebyshev inequality to obtain a stronger claim about the
sampling scenario described in the earlier section:

Lemma 2. Let δ be any value satisfying 0 < δ < 1. With k = 1

ǫ2δ
, the probability that |b/k− p| ≤ ǫ

is at least 1− δ.

Proof. Define random variables x1, ..., xk as in the proof of Lemma 1. For each i ∈ [1, k], E[xi] = p
and var[xi] = p(1− p). As b =

∑k
i=1

xi and x1, ..., xk are mutually independent, we know:

E[b] = kp

var[b] =

k
∑

i=1

var[xi] = kp(1− p)

Hence:

Pr[|b/k − p| ≥ ǫ] = Pr[|b− kp| ≥ ǫk]

(by Chebyshev inequality) ≤
var[b]

ǫ2k2
=

kp(1− p)

ǫ2k2
=

p(1− p)

ǫ2k

< 1/(ǫ2k)

= δ

Note that the value of k in the above lemma is independent on n. In other words, a fixed number
of samples is sufficient to achieve the probabilistic guarantee described by the same pair of ǫ and
δ, regardless of the size of population (good news for surveying in a populous country).

3 Chernoff bound

Theorem 3 (Chernoff bound). Let X1, ...,Xk be k independent random variables such that, for
each i ∈ [1, k], Xi equals 1 with probability p, and 0 with probability 1 − p. Let X =

∑k
i=1

Xi and
µ = kp. For any ǫ satisfying 0 < ǫ < 1, it holds that:

Pr
[

|X − µ| ≥ ǫµ
]

≤ 2e
−ǫ2µ

3 .

We will skip the proof, which can be found in [1] and is a bit technically involved. Remember
that this theorem demands X1, ...,Xk to be independent. When this condition is fulfilled, the
Chernoff bound usually gives a tighter bound. Next, we demonstrate this in the sampling scenario
of the previous sections.

Sampling (cont.). We will prove the following which significantly improves Lemma 2 when δ is
small.

Theorem 4. Let δ be any value satisfying 0 < δ < 1. With k = 3

ǫ2
ln 2

δ
, the probability that

|b/k − p| ≤ ǫ is at least 1− δ when ǫ < p.
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Proof. Define random variables x1, ..., xk as in the proof of Lemma 1; recall that they are indepen-
dent. For each i ∈ [1, k], E[xi] = p. As b =

∑k
i=1

xi, we know E[b] = kp. Hence:

Pr[|b/k − p| ≥ ǫ] = Pr[|b− kp| ≥ ǫk]

= Pr

[

|b− kp| ≥
ǫ

p
kp

]

= Pr

[

|b−E[b]| ≥
ǫ

p
·E[b]

]

(by Chernoff bound) = ≤ 2e
−

ǫ2

3p2
kp

= 2e
−

ǫ2k
3p

To make the above at most δ, we need:

k ≥
3p

ǫ2
ln

2

δ

As p < 1, taking k = 3

ǫ2
ln 2

δ
guarantees the above.
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