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1 Membership problem

Let U be the set of integers {1, ..., U}, and S of a subset of U with size n (≤ U). We want to
preprocess S into a structure so that, given any integer q ∈ U , we can determine quickly whether
q ∈ S. We will refer to this problem as the membership problem.

We represent each integer in U with w = logU bits (all logarithms have base 2 by default). A
simple solution is to build a hash table on S which answers a query in constant time (which can
be made worst-case using perfect hashing). The space of the hash table is O(nw) bits.

In this lecture, we ask the question: is it possible to solve the problem using a structure of o(nw)
bits? The answer is negative if a precise answer is always desired – it is easy to show that any
structure for this purpose requires at least log

(

U

n

)

bits, which is Ω(nw) when U ≫ n. Thus, we turn
attention to trading precision away by allowing false positives but not false negatives. Specifically,
we want to guarantee:

• If q ∈ S, the query algorithm should always report yes (i.e., the algorithm correctly tells us
q is indeed in the set).

• If q /∈ S, then the algorithm should return no with probability at least 1 − δ, where δ is
an arbitrarily small positive constant. In other words, the algorithm is permitted to err by
saying yes with probability at most δ.

2 The first solution

We first give a simple structure with n/δ bits. Note that, regardless of the constant δ, the space
consumption is always O(n) bits, thus beating the O(nw) space bound of the hash table when
U is large. Let H be a universal family of hash functions from U to {1, ...,m}, where m = n/δ.
Randomly picking a function h ∈ H, we create an array A of size m, such that A[i] = 1 (1 ≤ i ≤ m)
if some integer k ∈ S satisfies h(k) = i; otherwise, A[i] = 0. Since each A[i] requires only 1 bit to
store, A occupies n/δ bits. The query algorithm is simple: given a query key q, we report yes if
A[h(q)] = 1, or no, otherwise. The query time is constant.

It is easy to see that the algorithm always returns yes if q ∈ S. Next, we bound the probability
that it returns yes when q /∈ S. Observe that this happens if and only if there is a key k ∈ S such
that h(k) = h(q). Since H is universal, Pr[h(k) = h(q)] is at most 1/m. Thus, the probability that
at least one such key exists is at most

∑

∀k∈S

[Pr[h(k) = h(q)]] ≤ n/m = δ. (1)

Remark. In deriving (1), we used an inequality commonly referred to as the union bound. For
any events A,B, the bound says that Pr[A∪B] ≤ Pr[A]+Pr[B]. Note that this is true no matter
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whether A and B are disjoint – in fact, the equality holds if and only if they are. Loose as it may
look, the union bound is surprisingly useful in analyzing probabilistic algorithms.

3 Bloom filter

The bloom filter [1] improves our earlier structure by reducing the space to O(n log 1
δ
) bits. The

analysis of the bloom filter assumes a hash function that is (much) stronger than a function from
the universal family, as explained next:

Definition 1. A hash function h : U → {1, ...,m} (where m is an integer) is ideal if, for every
integer k ∈ U , h(k) independently takes a value uniformly distributed in [1,m].

In other words, for any k, h(k) takes any number of {1, ...,m} with the same probability, and
which one it takes does not rely on the hash values of any other keys. Ideal hash functions do
not exist yet (to my knowledge). However, algorithm analysis based on such functions is common
practice in computer science. One possible reason is that, many functions (like those from a
universal hash family) behave in a manner that is fairly close to being ideal.

3.1 Structure and algorithm

Again, let A be an array of size m, where m is to be decided later. Let h1, ..., hl be l independent
ideal hash functions from U to {1, ...,m}. In preprocessing, for each k ∈ S, we set (up to) l bits of
A to 1, i.e., A[hi[k]] = 1 for each i ∈ [1, l]. Note that A[hi[k]] may have already been 1 before the
processing of k, in which case setting the bit to 1 does not change it. Furthermore, it is possible
that less than l bits are set, because some hash functions may happen to hash k to the same value.
The resulting A at the end of preprocessing is the bloom filter.

To answer a query with key q, simply check whether A[hi(q)] is 1 for all i ∈ [1, l]. If so, answer
yes, otherwise, answer no.

3.2 A non-rigorous analysis

We focus on analyzing the probability that the bloom filter errs, i.e., given a q /∈ S, what is the
probability that the query algorithm returns yes. Our analysis in this section is exactly what
appeared in the paper [1] where the bloom filter was invented. While it is easy to understand and
(surprisingly) has been repeated in many subsequent papers, this analysis has been proven wrong
[2]. Nevertheless, the error is minor such that it is hardly noticeable in practice, and even in theory,
can be fixed with a small correction, as explained in the next subsection.

The crux of the analysis lies in deriving the expected number of bits in A that equal 1, after
constructing the bloom filter on S. Recall that, during the construction, the processing of a key
k ∈ S repeats the following l times: set a random bit of A to 1. Hence, a bit of A is not affected by
k with a probability (1− 1/m)l. A bit in the final A remains 0 if and only if it is unaffected by all
n keys in S. It follows that the probability that a bit remains 0 equals (1− 1/m)nl. The expected
number of ones in the bloom filter equals np where p = 1− (1− 1/m)nl.

Now consider answering a query with a q /∈ S. The algorithm repeats the following l times:
probe a random bit to see if it is 1. Each probe hits a one with probability p. Hence, the probability
that all l probes hit 1 is pl. In other words, the bloom filter errs with probability

(1− (1− 1/m)nl)l.
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A common choice of l is
l = (ln 2)

m

n

with which the error probability becomes

(1− (1− 1/m)nl)l ≈ (1− e−
nl

m ) = (1/2)(ln 2)m
n .

The above used the fact that 1+x ≈ ex. Hence, to make sure that the above is at most δ, we need

m = n
ln(1/δ)

(ln 2)2
. (2)

3.3 Fixing the error

The previous analysis neglected the fact that the number of ones in the bloom filter is a random
variable itself. Recently, a simple fix has become available. It is shown in [2, 3] that the correct
value of m to make the error probability at most δ is only slightly greater than as given in (2)
(differing by no more than a small constant factor).
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