Lecture Notes: Best-first Algorithm

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

13 May, 2012

The R-tree is one of the (very) few multi-dimensional indexes that have been incorporated in a
commercial database system (e.g., Oracle, DB2, Informix, etc.). Therefore, it is an important
research topic to design efficient algorithms for R-trees that can be easily implemented. Such
algorithms enhance the power of a commercial system, thus having immediate impacts in practice.

In this lecture, we will study a well-known method called best-first (BF) search, which has been
applied extensively to solve a large number of problems with R-trees. A crucial feature of the
method is that it can be used to design optimal algorithms (we will clarify the notion of optimality
later). We will discuss it in the context of nearest neighbor (NN) search.

1 Best-first algorithm

Let P be a set of 2d points. The NN problem is to find the point p € P that is the closest to a
query point ¢. For example, assume that P consists of p1, ..., p13, as in Figure 1a. Then, the result
of the NN query ¢ is p3. Next, we will explain how a BF algorithm [1] uses the R-tree in Figure 1b
to answer the query.

P2 Ps

10— O
1

| "
P3
8 - O Us

:
67

Ug Uy
T
2]] 73

4 -
. L
~ LT ‘Pl‘]?z‘m‘ ‘P4‘P5‘p6‘ ‘P7‘ps‘p9‘ ‘P10‘P11‘ ‘ ‘Pu‘ﬁn‘
0 2 4 6 8 10 Uy Uy Uz Uy Us
(a) Data and MBRs (b) The structure

Figure 1: An R-tree

BF uses a memory-resident heap H to manage all the (non-leaf or leaf) elements in an R-tree
that have been accessed. This heap makes sure that the most promising element is always deheaped
first, so that it can be processed as early as possible. In NN search, an element is promising if
its MBR is close to ¢ (the MBR of a leaf element is the point it represents). Formally, given a
rectangle r and a point p, we define mindist(p,r) as the minimum distance (MINDIST) from p to
any point (on the boundary or in the interior) of . See Figure 2. Clearly, mindist(p,r) is a lower
bound of the distance from p to any data point that lies in r.

P1

Op2

Figure 2: Hllustration of mindist; mindist(py,r) and mindist(pa,r) equal the lengths of the segments
connecting p; and py to r, respectively.

BF accesses the elements of an R-tree in ascending order of their MINDIST to ¢. For this
purpose, it uses a min-heap H to organize the MINDIST of the elements that have been accessed.
At each step, it deheaps an element from I, and processes it. In case it is a non-leaf element, its
child node is visited such that all of its elements are inserted in J. This continues until the next
element deheaped from H is a data point, which is guaranteed to be the NN of q.

Next, we illustrate the algorithm using Figure 1. The first node visited is the root. Its el-
ements are inserted in I, after which its content is {(rg,0), (r7,1)}! where each pair is in the
form of (r,mindist(q,r)). Then, BF removes r¢ from 3, accesses the child ug referenced by
re, and inserts the elements of ug in H. At a result, # becomes {(r7,1),(r1,1), (r2,3)}. Note
that the first two pairs of H have the same MINDIST; hence, their ordering is random. Simi-
larly, next BF accesses u7, after which H changes to {(r1, 1), (r3, 1), (r2,3), (r4,5), (r5,v/45)}. In
the same fashion, the next two nodes visited are r; and rs3, respectively. At this point, H is
{(p3,V2), (p7,V5), (1, V8), (r2,3), (p2,vV10), (ps, V17), (r,5), (po, 5), (r5,V45)}. Since the next el-

ement deheaped is a data point p3, BF terminates by returning it as the NN.

2 Optimality

Given an R-tree T (such as the one in Figure 1b), let Ay be the class of all algorithms that uses
only T to perform NN search, without any other knowledge about the underlying dataset P. In
other words, any information that an algorithm A € Ag has about P must come from the nodes of
the R-tree already accessed by A. Define cost(A, q) to be the number of nodes of T that A accesses
in order to answer a NN query ¢. Then, an algorithm A* € Ay is optimal on ¢ if

cost(A*,q) < cost(A,q) for any A € Ag.
We consider a general situation where
1. ¢ has a distinct MINDIST to every MBR in T, except those MBRs covering ¢, and

2. q does not coincide with its NN.

Theorem 1. BF is optimal on any query q in the general situation.

Proof. Let p* be the NN of q. Let O be a circle that centers at ¢ and crosses p*. First, notice that
any algorithm A € Ag has the following property: if the MBR r of a node u intersects O, then A
must definitely access u. This is because since all the knowledge of A about the dataset P comes

'For convenience, we demonstrate the content of H with a sorted list, but the sorted order does not need to be
maintained in practice. BF only requires that the smallest element in H be obtained efficiently.

Figure 3: Search region: p is the NN of ¢; then any algorithm in Ag must access a node whose
MBR r intersects circle O.

from the nodes that A has accessed, without accessing u A will not be able to tell whether u has a
point closer to ¢ than p*.

Hence, to establish the optimality of BF, it suffices to prove that BF accesses only those nodes
whose MBRs intersect O. Note that, in the general situation, O has a positive radius (Requirement
1); furthermore, since p itself is a degenerated MBR in T, no MBR can have MINDIST ||p, q| to
q (Requirement 2). The optimality of BF thus follows directly from the fact that it accesses the
MBRs of T in ascending order of their MINDIST. O

3 Remarks

BF can be easily extended to perform k nearest neighbor search. Specifically, instead of terminating
immediately upon deheaping the first data point from H, it terminates after deheaping the k-th.

A drawback of BF is that the size of H is unbounded. However, this is not a serious problem
in practice when k and the dimensionality are low, because in this case H is usually by far smaller
than the memory of a modern computer. Another famous NN algorithm on R-trees can be found
in [2]. This algorithm requires much less memory than BF, but incurs higher query cost if memory
is not a concern.

References

[1] G. R. Hjaltason and H. Samet. Distance browsing in spatial databases. ACM Transactions on
Database Systems (TODS), 24(2):265-318, 1999.

[2] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest neighbor queries. In Proceedings of ACM
Management of Data (SIGMOD), pages 71-79, 1995.

