
Lecture Notes: First-in-first-out Indexing

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

22 Apr, 2012

This lecture discusses a stream model called the first in first out (FIFO) model, which generalizes
the sliding window model we are familiar with. In the FIFO model, we are looking at an unbounded
stream of elements, and at any moment of time, are interested in only a set S of most recently
received elements. This sounds similar to the sequence-based sliding window model, where S has
a fixed size, because the arrival of a new element always implies the deletion of the oldest element
in S. FIFO model, on the other hand, allows an arbitrary interleaving of insertions and deletions
(namely, there can be any number, including 0, of insertions between two consecutive deletions).
The only constraint is that elements must be deleted in the same order as they arrive, and hence
the name FIFO. The size of S, which we denote as n, can therefore vary arbitrarily.

The sequence-based sliding window model is apparently a special case of the FIFO model. The
same is true for the time-based sliding window model, in which elements arrive at the end of every
second1, and expire (and hence, deleted) after t seconds, where t is a parameter. S includes all the
elements that have not expired. Since there is no control on how many elements can arrive in a
second, the size of S can fluctuate significantly. For elements that arrive at the same second, there
is no relative ordering among them, but we can apply an arbitrary ordering (say, but their ids) to
fit the time-based sliding window into the FIFO model.

In some applications, we want to support queries on the elements in S. For example, imagine
that S includes the current locations of taxi cabs (each of which informs a server about its current
location, say, every minute). A useful query in practice asks “where is my nearest taxi cab?” If we
assume Euclidean distance as the distance metric, then this query is essentially nearest neighbor
search, but performed on the (2d) points in S. An interesting problem is to maintain a structure on
S to answer such queries fast. Of course, our structure must support both insertions and deletions
efficiently, too.

Generalizing the above scenario, most problems can be studied in the FIFO indexing scenario.
In such a scenario, we want to maintain a structure on a dynamic set S of elements. An insertion
can add any new element to S, but a deletion is only allowed to remove the element that was
inserted the longest time ago. The structure should enable us to answer a query efficiently. Note
that we have not specified the details of the query. In fact, the technique we are about to discuss
is general enough to work for any decomposable problem (e.g., nearest neighbor search). The only
requirement is that that we know how to build a static structure for solving the problem – very
much like the logarithmic method!

1 Converting a static structure to a FIFO index

Assuming that we have designed a static structure for solving the underlying problem, next we
describe a technique for obtaining a FIFO index on the same problem. The technique was proposed

1Here, we assume that a second is the time unit, but the idea obviously carries over to all time units.

1



by Sheng and Tao [1].

Structure. Given two elements e1, e2 ∈ S, we say that e1 is newer than e2 if e1 arrived later than
e2; otherwise, e1 is older. At all times, we divide S into h−+h++2 disjoint subsets, where h− and
h+ are integers maintained by our algorithm, and satisfy:

h− = O(lg n)

h+ = O(lg n)

h− ≥ h+. (1)

Recall that n is the size of S. We denote those subsets as S−

0
, ..., S−

h−
, S+

h+, ..., S
+

0
, arranged in

anti-chronological order, namely, elements in S−

0
are the oldest and those in S+

0
the newest. For

each i ∈ [0, h+], it holds that |S+

i | is either 0 or 2i (note: a subset can be empty). Similarly, for
each i ∈ [0, h−], |S−

i | is either 0 or 2i. The only exception is S−

h−
, which is always non-empty as

long as n > 0. Each non-empty subset is indexed by a static structure. As a special case, if n = 0,
then no subset exists, and h− = h+ = −1.

Finally, we also maintain a queue of all elements in S, sorted by the order they arrive. Call this
queue the chronological queue.

Query. This is straightforward: simply search all structures and combine the results.

Insertion. To insert an element e, we adopt the same approach as logarithmic rebuilding. Find the
smallest i ∈ [0, h+] such that S+

i is empty. If no such i exists (i.e., S+

h+ , ..., S
+

0
are all non-empty),

increase h+ by 1, and set i to the new h+. We merge all the elements of S+

i−1
, ..., S+

0
together with

e to S+

i (if i = 0 then simply create S+

i = {e}), and build a (static) structure on S+

i . Accordingly,
S+

i−1
, ..., S+

0
are emptied.

If h+ has been increased, it may now be greater than h− (by 1), which violates (1). In this
case, we set h− to h+, rename S+

h+ to S−

h−
, and reset h+ to −1.

Deletion. Deleting the oldest element e is carried out in a reverse manner. First, find the smallest
i ∈ [0, h−] such that S−

i is non-empty. Note that e is definitely in S−

i . After discarding e, S−

i

has 2i − 1 elements left. If i > 1, split these elements into S−

0
, ..., S−

i−1
, obeying their chronological

order requirement mentioned earlier (this can be done in O(2i) time using the chronological queue).
Construct a structure on each of S−

0
, ..., S−

i−1
, and empty S−

i .
If i equals h−, we need to decrease h− by 1. Now, h− may become less than h+ (by 1). In this

case, set h− to h+, rename S+

h+ to S−

h−
, and decrease h+ to the largest j such that S+

j is non-empty.

If no such j exists, set h+ to −1.

2 Analysis

We now analyze the performance guarantees of the FIFO index obtained by the technique described
in the previous section. We will focus on the update cost, leaving out the query cost and space
consumption (whose analysis is trivial for most problems). The update cost depends on the con-
struction time of the static structure deployed. We characterize the construction time as at most
t · U(t), if the underlying dataset has t elements. For example, a B-tree on t real numbers can be
built in O(t lg t) time, in which case U(t) = O(lg t). We will prove:

Theorem 1. In the FIFO index described in Section 1, the insertion and (if applicable, also)
deletion of an element e require U(2ne) · O(lg ne) amortized time, where ne is the size of S at the
time e is inserted.

2



Note that the U(ne) · O(lg ne) is the total amortized cost of inserting and deleting an element
e. How the cost is divided into insertion and deletion time is irrelevant: e.g., one can allocate all
the U(ne) ·O(lg ne) to insertion, and claim that a deletion incurs zero cost.

Recall that our algorithm divides S into subsets S−

0
, ..., S−

h−
, S+

h+ , ..., S
+

0
. We say that the ele-

ments in S+

h+ ∪ ...∪S+

0
are in the insertion phase, while those in S−

0
∪ ...∪S−

h−
in the deletion phase.

Let us start with a key observation:

Lemma 1. At any time, if x elements are in the insertion phase, then less than 2x elements are
in the deletion phase.

Proof. The lemma is vacuously true if n = 0. For n > 0, S−

h−
is non-empty; hence, x ≥ 2h

−

. On

the other hand, the insertion phase can have at most 20+21+ ...+2h
+

< 2h
++1 ≤ 2h

−+1 ≤ 2x.

Now we give another crucial fact about e:

Lemma 2. At any time, e is in a subset of size less 2ne.

Proof. If e is still in the insertion phase, all the elements in the deletion phase must be older than
e. Hence, the deletion phase has no more than ne elements. By Lemma 1, the entire insertion
phase has less than 2ne elements, implying that the subset where e is has less than 2ne elements.

Consider the moment when the subset of emigrates to the deletion phase (i.e., due to renaming).
By the previous paragraph, the subset has size less than 2ne before the migration. Since migration
does not affect the subset size, e is still in a subset of size less than 2ne. From now on, e can only
move to smaller subsets, thus completing the proof.

Now we are ready to prove Theorem 1. The cost of maintaining our FIFO index comes from
merging and splitting subsets (in the insertion and deletion phases, respectively). If a merged
subset has 2i elements for some i, the merging costs

2i · U(2i)

time. We can amortize the cost over all the 2i elements that are now in the merged subset, so that
each element bears U(2i) time at most. By Lemma 2, e bears at most U(2ne) time for each of the
merges involving e.

Similarly, splitting a subset of size 2i − 1 (for some i) takes

i−1∑

j=0

2j · U(2j) ≤ (2i − 1) · U(2i)

time. Amortizing the cost to the 2i − 1 elements in the divided subset, we charge at most U(2i)
cost on each of them. By Lemma 2, e bears at most U(2ne) time for each of the splits involving e.

How many times does e need to bear the cost of U(2ne)? During the insertion (deletion) phase,
e moves into subsets of increasing (decreasing) sizes. By Lemma 2, we know that e appears in at
most O(lg ne) subsets in each phase. This completes the proof of Theorem 1.

References

[1] C. Sheng and Y. Tao. FIFO indexes for decomposable problems. In Proceedings of ACM
Symposium on Principles of Database Systems (PODS), pages 25–35, 2011.

3


