
Lecture Notes: The logarithmic method

Yufei Tao
Chinese University of Hong Kong
taoyf@cse.cuhk.edu.hk

15 Apr, 2012

The topic of this lecture is about indexing. Namely, given an input set S of elements, we would
like to preprocess S by creating a data structure on it. Then, given any query, we can utilize the
structure to answer it efficiently, in particular, with much lower cost than if we did not have the
structure. As an example, let us recall when the binary search tree – a fundamental structure at
the undergraduate level – would be useful. Let S be a set of real values; given a real value q,
a predecessor query finds the maximum value in S that are at most q. To support such queries
efficiently, we can create a binary search tree on S, after which any query can be answered in
O(lg n) time where n = |S|. This is much faster than answering q without using any structure – in
that case, O(n) time is compulsory.

We consider only decomposable problems. Formally, assume that S is divided into two disjoint
partitions: S1, S2, namely, S1 ∩S2 = ∅ and S1∪S2 = S. A query on S is decomposable if the answer
can be obtained in constant time from the answers of the same query on S1 and S2, respectively. For
example, the predecessor problem mentioned earlier is clearly decomposable: to find the predecessor
in S of a real value q, we can first find the predecessors of q in S1, S2 respectively, and then return
the larger of those two predecessors.

In many applications, we need to make our structure dynamic. Namely, we want to support two
types of updates: (i) insertion, where an element e is added in S, and (ii) deletion, where an element
existing in S is removed – in both cases, the structure on S must be modified accordingly, so that
it is still a valid index on the updated S. For the predecessor problem, the binary search tree can
be updated in O(lg n) time per insertion and deletion. For some problems, however, designing a
dynamic structure that supports fast updates can be rather difficult. The nearest neighbor problem
is an example. In this problem, we are given a set S of n two-dimensional points in R

2. Given a
point q ∈ R

2, we want to find the data point in S that is nearest to q by Euclidean distance. There
is an elegant, static, structure based on the Voronoi diagram [3], which consumes O(n) space, and
answers each query in O(lg n) time. Unfortunately, updating a Voronoi diagram turns out to be
rather challenging, and as a result, making the nearest neighbor structure dynamic very difficult.
There has been some recent breakthrough on this problem [2], where a dynamic structure that
can be updated in O(lg6 n) time is given. The structure is quite theoretical, and is not easy to
implement.

It turns out that life is much easier if we only want our structure to be semi-dynamic, that is,
we want to perform only insertions, but not deletions. Although not as useful as (fully) dynamic
structures, semi-dynamic indexes also play an important role in practice, when the dataset of the
underlying application only expands, but never shrinks. We will learn in this lecture a clever
technique called the logarithmic method that can convert a static structure to a semi-dynamic
structure. The only requirement is that the structure can be constructed efficiently. The static
nearest neighbor structure mentioned earlier can be built in O(n lg n) time. We will see that the
logarithmic method permits us to obtain (quite effortlessly) a semi-dynamic structure that consumes

1

O(n) space, answers a query in O(lg2 n) time, and supports an insertion in O(lg2 n) amortized time.

1 The logarithmic method

This method, sometimes also called logarithmic rebuilding, is due to Bentley and Saxe [1]. Assume
that we have already designed a static structure. Let the input set S be empty initially. Next,
we will explain how to maintain a semi-dynamic structure on S as new elements are inserted in S.
Once again, deletions are not allowed.

Let n = |S| be the number of elements that have been inserted so far (at the beginning, n = 0).
At all times, S is divided into h = ⌊lg n⌋ + 1 partitions S0, ..., Sh−1. Namely, these partitions are
mutually disjoint, and their union equals S. Partition Si (0 ≤ i ≤ h − 1) either is empty, or must
have size 2i – in the former case, we say that Si is off, whereas in the latter, we say that Si is on.
In any case, each Si is indexed by a static structure Ti (if Si is off, then Ti is empty).

Whether Si is on or off is determined by an interesting rule. Let us write the value of n in binary
form, which is an h-bit binary string. Refer to the least significant bit as bit 0, and in general, the
second least significant bit as bit 1, and so on. Hence, the most significant bit is bit h − 1. Then,
Si is on if bit i is 1; otherwise, Si is off.

Insertion. Now we are ready to explain how to handle an insertion. Let e be the new element to
be added to S. We first find the smallest i such that Si is empty. If i is 0, then we simply create
an S0 with only e itself (remember that S0, if not empty, is allowed to contain only 1 element),
and build T0. If i > 0, on the other hand, we union all the elements of S0, ..., Si−1, together with
e, into Si. Note that Si now contains

20 + 21 + ...+ 2i−1 + 1 = 2i

elements, namely, exactly the size that a non-empty Si is supposed to have. Now, we empty all
S0, ..., Si−1 (because all their elements have moved to Si), and destroy T0, ..., Ti−1 accordingly.
Finally, we build Ti for Si from scratch. Note that, before the insertion, all of S0, ..., Si−1 were on
while Si was off. Afterwards, S0, ..., Si−1 are off, while Si is on.

It may be inspiring to point out that, an insertion is performed in a manner drastically different
from what happens in a binary search tree. In the above algorithm, we never really “updated” any
particular Ti. Instead, all we did was only to destroy (i.e., discarding a structure) and then rebuild.

Query. To answer a query on S, we issue it on each of S0, ..., Sh−1 using the structures on them,
respectively. Since the query is decomposable (recall that we restrict our attention to decomposable
problems only in this lecture), the final answer can be obtained from the answers of S0, ..., Sh−1 in
O(h) = O(lg n) time.

2 Analysis

Let us characterize the efficiency of a static structure by its space usage, query time, and construc-
tion time. Specifically, suppose that, on an input set of size n, our static structure occupies at most
spc(n) space, answers a query in at most qry(n) time, and can be constructed in at most bld(n)
time. Next, we will analyze the space, query, and insertion cost of the semi-dynamic structure
obtained by the logarithmic method.

Space. This is quite obvious: since S0, ..., Sh−1 form a partition of S, it follows that the total space

2

consumption is
i=h−1
∑

i=0

spc(|Si|) ≤
i=h−1
∑

i=0

spc(2i).

Query. Recall that we answer a query by issuing it on each of T0, ..., Th−1. Clearly, the cost of
performing the query on each Ti (0 ≤ i ≤ h − 1) is at most qry(2i), noticing that Ti indexes at
most 2i elements. Hence, the total cost of all the h queries is

i=h−1
∑

i=0

qry(2i).

Finally, we spend O(h) time combining all their results into the final answer, but this is dominated
by the above summation (noticing that each term in the summation is at least 1).

Insertion. It is easy to see that not all insertions can be performed with low cost: an insertion
may trigger the reconstruction of an index on a sizable partition, and hence, incur expensive cost.
However, it turns out that the amortized cost per insertion is low. We will show this using a
charging argument.

Recall that, to insert an element, we first find the smallest i such that Si is empty. Then, we
destroy T0, ..., Ti−1, and rebuild Ti from their elements. Since Ti indexes exactly 2i elements, we
know that the reconstruction of Ti takes at most bld(2i) time. We charge the cost over the 2i

elements that are now in Ti. Hence, each element bears at most 1

2i
· bld(2i) cost.

After n insertions, how much cost can an element be charged this way? The crucial observation
is that an element can only move from Si to Sj such that i < j, namely, the subscript monotonically
increases each time the element needs to bear extra cost. Hence, the element can be amortized at
most

i=h−1
∑

i=0

(

1

2i
· bld(2i)

)

cost. This is the amortized cost per insertion.
We thus have obtained:

Theorem 1. Our semi-dynamic structure uses at most
∑i=h−1

i=0
spc(2i) space, answers a query in

O(
∑i=h−1

i=0
qry(2i)) time, and supports an insertion in at most

∑i=h−1

i=0

(

1

2i
· bld(2i)

)

amortized time.

Application. Now let us use the above theorem to obtain a semi-dynamic structure for the nearest
neighbor problem. As mentioned before, on an input set of size n, there is a static structure that
uses at most spn(n) = O(n) space, answers a query in at most qry(n) = O(lg n) time, and can be
constructed in at most bld(n) = O(n lg n) time. We prove:

Lemma 1. For the nearest neighbor problem, there is a semi-dynamic structure that uses O(n)
space, answers a query in O(lg2 n) time, and supports an insertion in O(lg2 n) amortized time.

Proof. It follows directly from Theorem 1 (note: 1

2i
· bld(2i) = 1

2i
· O(2i · lg 2i) = O(lg n)).

References

[1] J. L. Bentley and J. B. Saxe. Decomposable searching problems I: Static-to-dynamic transfor-
mation. Journal of Algorithms, 1(4):301–358, 1980.

3

[2] T. M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries.
In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
1196–1202, 2006.

[3] M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry: Algo-
rithms and Applications. Springer-Verlag, 3 edition, 2008.

4

