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In this lecture, we will learn a new approach for indexing
high-dimensional points. The approach borrows ideas from distributed
aggregation: a class of problems in distributed computing that appears
rather different from the geometric setup of high-dimensional indexing.
We will also learn a new way to analyze the performance of an algorithm.
This method—called competitive analysis—aims to prove that an
algorithm is efficient on every input of the problem.
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Distributed Computation

We will now temporarily forget about high-dimensional data, and focus
instead on the paradigm of distributed computing.

In this paradigm, there are m servers which do not communicate with
each other (consider that they are geographically apart). We want to
perform certain computation on the data stored on these servers, but
from a computer that is connected to the m servers in a network. For
this purose, we need to acquire data from the servers over the network.
The goal is to minimize the amount of communication required.

. . .
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Many interesting problems can be studied in the paradigm described
in the previous slide. We will look at one of them in this lecture.
The problem is called distributed sum as defined in the next few
slides.
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Distributed Sum

Let S be a set of n objects. Each object o ∈ S has m attributes, denoted
as A1(o),A2(o), ...,Am(o), respectively. For each i ∈ [1,m], the Ai -values
of all objects are stored on server i . Specifically, the server sorts the set
{Ai (o) | o ∈ S} in non-descending order: denote the sorted list as Li .
Each object o has a score defined as score(o) =

∑m
i=1 Ai (o). We want to

identify the object with the smallest score (if multiple objects have this
score, all should be reported).

Example

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

The answer is o3, which has the smallest score 1 + 6 + 3 + 3 = 13.
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Distributed Sum

Each server i ∈ [1,m] provides two operations:

getnext(): returns the next object in Li (or NULL if Li has been
exhausted).

probe(o): returns the Ai value of the requested object o directly.

Example

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

The first getnext() on L2 returns (o6, 2), while the second getnext on the
same list returns (o1, 3). Performing probe(o5) on L3 returns (o5, 2).
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Distributed Sum

Our objective is to retrieve the object(s) with the smallest score using
only the aforementioned operations. The cost of an algorithm is the
number of operations performed.

Example

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

We can easily solve the problem by retrieving everything from all servers,

but this incurs a cost of nm. The challenge is to design an algorithm to

reduce this cost as much as possible.
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Applications

This problem underlies a high-dimensional indexing approach that we will
explain later. Moreover, it directly models a class of applications that aim
to find the top-1 object by aggregating scores from multiple sites:

Finding the best hotel (in a region, e.g., Brisbane) by aggregating
user ratings from several booking sites.

Finding the most popular movie by aggregating ratings from several
movie recommendation sites.

...
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Algorithm

We now describe an algorithm—named the threshold algorithm
(TA)—for solving the problem. Let us gain some ideas about the
algorithm using our running example.

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

First, perform a getnext on every server. In this way, we obtain (o3, 1)
from L1, (o6, 2) from L2, (o1, 1) from L3, and (o1, 2) from L4.

For L1, set threshold τ1 = 1, indicating that all the unseen objects on L1
must have A1 value at least 1. Similarly, set τ2 = 2, τ3 = 1, and τ4 = 2.
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Algorithm

Throughout the algorithm, whenever a new object o is returned by a
sever, we retrieve the remaining m − 1 attributes of o from the other
servers using the probe operation. This allows us to calculate score(o)
immediately.

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

As mentioned, the getnext on L1 retrieved o3; thus, we perform

probe(o3) on L2, L3, and L4. This gives score(o3) = 13. Similarly, we

obtain score(o6) = 48 and score(o1) = 16.
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Algorithm

We then repeat the above. Namely, for each i ∈ [1,m], perform another
getnext on each Li . Suppose that it returns (o,Ai (o)); we update τi to
Ai (o). If o has not been seen before, obtain its values on the other
servers with probe(o).

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

Continuing our example, we retrieve the 2nd pair from each list:

(o1, 8), (o1, 3), (o5, 2), (o3, 3). Since o5 is seen for the first time, we

retrieve A1(o5) = 10,A2(o5) = 7,A4(o5) = 13, and calculate

score(o5) = 32. Now τ1 = 8, τ2 = 3, τ3 = 2, and τ4 = 3.
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Algorithm

(o3, 1)
(o1, 8)
(o4, 9)
(o5, 10)
(o2, 12)
(o6, 18)

List L1 (attr. A1)

(o6, 2)
(o1, 3)
(o2, 4)
(o4, 5)
(o3, 6)
(o5, 7)

List L2 (attr. A2)

(o1, 1)
(o5, 2)
(o3, 3)
(o6, 8)
(o4, 10)
(o2, 11)

List L3 (attr. A3)

(o1, 2)
(o3, 3)
(o2, 10)
(o5, 13)
(o6, 20)
(o4, 27)

List L4 (attr. A4)

Recall that our current best object o3 has score 13. Since∑4
i=1 τi = 8 + 3 + 2 + 3 = 16 > 13, the algorithm terminates here with

o3 as the final result (think: why?).
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Pseudocode of the TA Algorithm

algorithm TA

1. τ1 = τ2 = ... = τm = −∞
2. while

∑m
j=1 τj ≤ score(obest) where obest is the

object with the lowest score among the seen objects
3. for i = 1 to m
4. (o,Ai (o)) = getnext() on Li
5. τi = Ai (o)
6. if o seen for the first time then
7. obtain score(o) by probing the values of o on the

other m − 1 servers

We will refer to Lines 3-7 collectively as a round. In our previous

example, the algorithm terminated after 2 rounds.
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Analysis

The cost of the TA algorithm heavily depends on the input. On the
easiest input, it may finish with a cost of O(m), while on the hardest
input it may incur a cost of Ω(nm).

(o1, 0)
(..., 1)

...

(o1, 0)
(..., 1)

...

(o1, 0)
(..., 1)

... ...

Best case O(m)

(o1, 0)
(o2, 0)
...

(on
2
, 0)

(on
2+1, 1)

...

(on, 1)

(on
2+2, 1)

(o1, 0)
(o2, 0)
...

(on
2
, 0)

(on
2+1, 1)

...

(on, 1)

(on
2+2, 1)

1 m/2

... (o1, 1)
(o2, 1)

...

(on
2
, 1)

(on
2+1, 0)

...

(on, 0)

(on
2+2, 0)

m/2 + 1 m

... (o1, 1)
(o2, 1)

...

(on
2
, 1)

(on
2+1, 0)

...

(on, 0)

(on
2+2, 0)

Worst case Ω(nm)
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Analysis

Next, we will show that the TA algorithm in fact performs reasonably

well on every input (even when it has cost Ω(nm)!). More specifically, we

will show that its cost can be higher than that of any algorithm by a

factor of at most O(m). Hence, when m is small, the TA algorithm can

no longer be improved considerably.
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Analysis

Suppose that we have fixed the input, namely, L1, L2, ..., Lm. Denote by
costTA the number of operations performed by the TA algorithm.

Consider any other algorithm α whose cost is costα. We will show that

costTA = O(m2) · costα

If TA has the above property, it is said to be O(m2)-competitive.
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Analysis

Lemma: costα ≥ m.

Proof: We will prove that α must probe at least one object from each of
L1, L2, ..., Lm.

Suppose that this is not true, such that α terminates without probing

anything from Li for some i ∈ [1,m]. Let o∗ be the object returned by α.

As α knows nothing about Ai (o
∗), it cannot rule out the possibility

where Ai (o
∗) is exceedingly large and prevents o∗ from being the best

object.
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Analysis

We will now prove our main theorem:

Theorem: costTA ≤ (m2 + m) · costα.

Proof: First, if costα ≥ n, then the theorem follows directly from the
obvious fact that costTA ≤ mn.

Next, we will focus exclusively on the scenario where costα < n. Notice
that in this case, there must have been at least one object o# that has
not been seen by α—that is, α does not know any attribute of o#.

In the following, we will denote by o∗ the best object eventually reported

(if multiple objects are returned, let o∗ be any of them).

INFS4205/7205, Uni of Queensland High-Dimensional Indexing by Distributed Aggregation



Analysis

Proof (cont.): Let x be the number of rounds performed by TA. Recall
that (i) each round incurs m getnext operations, and (ii) each getnext is
followed by at most m − 1 probe operations. Therefore:

costTA ≤ m · x + m · x · (m − 1) = m2 · x .

Next, we will prove:

costα ≥ x − 1. (1)

If we manage to do so, then we will have

costTA ≤ m2(costα + 1) = m2 · costα + m2

≤ m2 · costα + m · costα
= (m2 + m) · costα

which will complete the proof.
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Analysis

Proof (cont.): Now it remains to prove (1). Let Pi be the sequence of
the first x − 1 objects of Li .

x objects
Pi (x− 1 objects)

Next we will prove that α must access all the positions of at least one of

P1, ...,Pm. This will establish (1), and hence, complete the whole proof.
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Analysis

Proof (cont.): Let τ ′i be the Ai -value of the last object in P ′i . It must
hold that

m∑
i=1

τ ′i ≤ score(o∗). (2)

To see this, consider:

Case 1: o∗ seen in the first x − 1 rounds. In this case, o∗ must
be the best object at the end of round x − 1. By the fact that TA
did not terminate at round x − 1, (2) holds.

Case 2: o∗ seen in the x-th round. It thus follows that
Ai (o

∗) ≥ τ ′i for every i ∈ [1,m]. In this case, (2) also holds.
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Analysis

Proof (cont.): Assume for contradiction that, every Pi has at least one
position that is not accessed by algorithm α.

Recall that there is an object o# such that α has not seen any attribute
of o#. As a result, α cannot rule out the possibility that, o# is in Pi for
every i ∈ [1,m]—namely, o# sits at the position in Pi that is missed by α.

In that possibility,

score(o#) ≤
m∑
i=1

τ ′i ≤ score(o∗);

and hence, α is incorrect by not outputting o#.

INFS4205/7205, Uni of Queensland High-Dimensional Indexing by Distributed Aggregation



We now return to high-dimensional spaces, and explain how the TA
algorithm can be utilized for index designing. For this purpose, we will
again use nearest neighbor search (and its approximate version) as the
representative problem. Recall:

Let P be a set of d-dimensional points in Rd . The (Euclidean)
nearest neighbor (NN) of a query point q ∈ Rd is the point p ∈ P
that has the smallest Euclidean distance to q.

We denote the Euclidean distance between p and q as ‖p, q‖.
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Index Creation

For every dimension i ∈ [1, d ], simply sort P by coordinate i . This
creates d sorted lists: P1,P2, ...,Pd , one for each dimension.

For each Pi , we create a suitable structure (e.g., a hash table) that allows
us to obtain, in O(1) time, the i-th coordinate of any given point p ∈ P.
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Answering a NN Query

We will do so by turning the query into a distributed sum problem.

Let q = (q[1], q[2], ..., q[d ]) be the query point. Suppose that, somehow,
we have obtained d sorted lists L1, L2, ..., Ld of P where:

In Li (i ∈ [1, d ]), the points p ∈ P have been sorted in ascending
order of |p[i ]− q[i ]|2.

Then, the goal is essentially to minimize

score(p) =
d∑

i=0

|p[i ]− q[i ]|2

which is a distributed sum problem with m = d lists.
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Answering a NN Query

At first glance, it appears that we do not have L1, L2, ..., Ld of P. In fact,
we do. It will be left to you to think:

How to implement the getnext operation in O(1) time (except for
the first getnext, which takes O(log n) time).

How to implement the probe operation in O(1) time.
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2D Illustration

q

p

The algorithm accesses (at most) the points of P in the shaded area (p is
the NN of q).

INFS4205/7205, Uni of Queensland High-Dimensional Indexing by Distributed Aggregation



Recall that the TA algorithm is (2m2)-competitive. In other words,
the NN query algorithm is good only if m = d is small. Unfor-
tunately, this contradicts our goal of supporting high-dimensional
queries.

Interestingly, this problem is significantly alleviated if it suffices to
retrieve approximate NNs, where we only have to consider m =
O(log n), no matter how large is d .
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ε-Approximate Nearest Neighbor Search

Let P be a set of d-dimensional points in Rd . Given a query point
q ∈ Rd , an ε-approximate nearest neighbor query returns a point
p ∈ P satisfying:

‖p, q‖ ≤ (1 + ε) · ‖p∗, q‖

where p∗ is the NN of q in P.
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The Johnson-Lindenstrauss (JL) Lemma

We will not state the lemma formally, but we will explain how to use it
for ε-approximate NN queries search. Our description will trade some
rigor for simplicity, but should work quite well in practice.

First, pick m = c · log2 n random lines `1, `2, ..., `m passing the origin,
where c is a sufficiently large constant (depending on m). Then, project
all the points of P into the subspace defined by `1, `2, ..., `m. Let P ′ be
the resulting dataset. Note that P ′ is m-dimensional.

Given a query q in the original space, we obtain its projection q′ in the
subspace. Then, we find the (exact) NN p′ of q′ in the subspace (using
the TA algorithm as explained before).

Return the original “image point” p of p′. The JL-lemma states that p is
an (1 + ε)-approximate NN of q with a high probability.
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